Molecular Systematics and Crop Evolution

  • John Doebley

Abstract

During the past decade, the tools of molecular biology have been applied to plant systematics with remarkable success. New insights have been gained into such topics as phylogenetic reconstruction, introgression, genomic evolution, and levels of genetic variation in natural populations. Molecular methods have provided greater resolution than was previously possible with other approaches. Moreover, variation in DNA sequences is more readily subjected to statistical analysis than many previous types of data, and it can be less ambiguous, making interpretation of data more straightforward.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allard, R.W. (1988) Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild relatives. J. Hered. 79, 225–238.PubMedGoogle Scholar
  2. Beadle, G.W. (1972) The mystery of maize. Field Mus. Nat. Hist. Bull. 43, 2–11.Google Scholar
  3. Berthou, F., Mathieu, C., and Vedel, F. (1983) Chloroplast and mitochondrial DNA variation as an indicator of phylogenetic relationships in the genus Coffea L. Theor. Appl. Genet. 65, 77–84.CrossRefGoogle Scholar
  4. Bland, M.M., Matzinger, D.F., and Levings, C.S. (1985) Comparison of the mitochondrial genome of Nicotiana tabacum with its progenitor species. Theor. Appl. Genet. 69, 535–541.CrossRefGoogle Scholar
  5. Bowman, C.M., Bonnard, G., and Dyer, T. A. (1983) Chloroplast DNA variation between species of Triticum and Aegilops. Location of the variation on the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm. Theor. Appl. Genet. 65, 247–262.CrossRefGoogle Scholar
  6. Brieman, A. (1987) Mitochondrial DNA diversity in the genera of Triticum and Aegilops revealed by Southern blot hybridization. Theor. Appl. Genet. 73, 563–570.CrossRefGoogle Scholar
  7. Clegg, M.T., Brown, A.H.D., and Whitfeld, P.R. (1984a) Chloroplast DNA diversity in wild and cultivated barley: implications for genetic conservation. Genet. Res. 43, 339–343.CrossRefGoogle Scholar
  8. Clegg, M.T., Rawson, J.R., and Thomas, K. (1984b) Chloroplast DNA variation in pearl millet and related species. Genetics 106, 449–461.PubMedGoogle Scholar
  9. Close, P.S., Shoemaker, R.C, and Keim, P. (1989) Distribution of restriction site polymorphism within the chloroplast genome of the genus Glycine, subgenus Soya. Theor. Appl. Genet. 77, 768–776.CrossRefGoogle Scholar
  10. Decker, D.S. (1988) Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Econ. Bot. 42, 4–15.CrossRefGoogle Scholar
  11. Decker, D.S., and Wilson, H.D. (1987) Allozyme variation in the Cucurbita pepo complex: C. pepo var. ovifera vs. C. texana. Syst. Bot. 12, 263–273.CrossRefGoogle Scholar
  12. Dennis, E.S., and Peacock, W.J. (1984) Knob heterochromatin homology in maize and its relatives. J. Molec. Evol. 20, 341–350.PubMedCrossRefGoogle Scholar
  13. Doebley, J.F. (1989) Isozymic evidence and the evolution of crop plants. In: Isozymes in Plant Biology (eds. D. Soltis and P. Soltis), Dioscorides Press, Portland, OR, pp. 165–191.CrossRefGoogle Scholar
  14. Doebley, J.F. (1990) Molecular evidence and the evolution of maize. Econ. Bot. 445, 6–27.CrossRefGoogle Scholar
  15. Doebley, J.F., and Sisco, P.H. (1989). On the origin of the maize male sterile cytoplasms: it’s completely unimportant, that’s why it’s so interesting. Maize Genet. Newsl. 63: 108–109.Google Scholar
  16. Doebley, J.F., Goodman, M.M., and Stuber, C.W. (1986) Exceptional genetic divergence of Northern Flint Corn. Amer. J. Bot. 73, 64–69.CrossRefGoogle Scholar
  17. Doebley, J., Renfroe, W., and Blanton, A. (1987) Restriction site variation in the Zea chloroplast genome. Genetics 117, 139–147.PubMedGoogle Scholar
  18. Doebley, J., Stec, A., Wendel, J., and Edwards, M. (1990) Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc. Natl. Acad. Sci. USA 87, 9888–9892.PubMedCrossRefGoogle Scholar
  19. Doyle, J.J. (1988) 5S ribosomal gene variation in the soybean and its progenitor. Theor. Appl. Genet. 75, 621–624.CrossRefGoogle Scholar
  20. Doyle, J.J., and Beachy, R.N. (1985) Ribosomal gene variation in soybean (Glycine) and its relatives. Theor. Appl. Genet. 70, 369–376.Google Scholar
  21. Duvall, M.R., and Doebley, J. (1990) Restriction site variation in the chloroplast genome of Sorghum (Poaceae). Syst. Bot. 15, 472–480.CrossRefGoogle Scholar
  22. Edwards, M.D., Stuber, C.W., and Wendel, J.F. (1987) Molecular marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116, 113–125.PubMedGoogle Scholar
  23. Erickson, L.R., Strauss, N.A., and Beversdorf, W.D. (1983) Restriction patterns reveal origins of chloroplast genomes in Brassica amphiploids. Theor. Appl. Genet. 65, 201–206.CrossRefGoogle Scholar
  24. Feldman, M. (1976) Wheats. Triticum spp. (Gramineae-Triticinae). In: Evolution of Crop Plants (ed. N.W. Simmonds), Longman, New York, pp. 120–127.Google Scholar
  25. Galinat, W.C. (1988) The origin of corn. In: Corn and Corn Improvement (ed. B. Walden), Crop Science Society of America, Madison, WI, pp. 1–31.Google Scholar
  26. Gepts, P., and Clegg, M.T. (1989) Genetic diversity in pearl millet (Pennisetum glaucum (L.) R. Br.) at the DNA sequence level. J. Hered. 80, 203–208.Google Scholar
  27. Gerstel, D.U. (1976) Tobacco. In: Evolution of Crop Plants (ed. N.W. Simmonds), Longman, New York, pp. 273–277.Google Scholar
  28. Graur, D., Bogher, M., and Brieman, A. (1989) Restriction endonuclease profiles of mitochondrial DNA and the origin of the B genome of bread wheat, Triticum aestivum. Heredity 62, 335–342.CrossRefGoogle Scholar
  29. Green, R.M., Vardi, A., and Galun, E. (1986) The plastome of Citrus. Physical map, variation among Citrus cultivars and species and comparison with related genera. Theor. Appl. Genet. 72, 170–177.CrossRefGoogle Scholar
  30. Harlan, J.R. (1975) Crops and Man, Crop Science Society of America, Madison, WI.Google Scholar
  31. Harlan, J.R., de Wet, J.M.J., and Price, E.G. (1973) Comparative evolution of cereals. Evolution 27, 311–325.CrossRefGoogle Scholar
  32. Havey, M.J., and Muehlbauer, F.J. (1989) Variability for restriction lengths and phylogenies in lentil. Theor. Appl. Genet. 77, 839–843.CrossRefGoogle Scholar
  33. Hawkes, J.G. (1989) Nomenclatural and taxonomic note on infrageneric taxa of the tuberbearing Solanums (Solanaceae). Taxon 38, 489–492.CrossRefGoogle Scholar
  34. Hawkes, J.G., Lester, R.N., and Skelding, A.D. (1979) The Biology and Taxonomy of the Solanaceae, Academic Press, New York.Google Scholar
  35. Hilu, K.W. (1988) Identification of the “A” genome of finger millet using chloroplast DNA. Genetics 118, 163–167.PubMedGoogle Scholar
  36. Holwerda, B.C., Jana, S., and Crosby, W.L. (1986) Chloroplast and mitochondrial DNA variation in Hordeum vulgare and Hordeum spontaneum. Genetics 114, 1271–1291.PubMedGoogle Scholar
  37. Hosaka, K. (1986) Who is the mother of the potato?—restriction endonuclease analysis of chloroplast DNA of cultivated potatoes. Theor. Appl. Genet. 72, 606–618.CrossRefGoogle Scholar
  38. Hosaka, K., and Hanneman, R.E. (1988a) The origin of the cultivated tetraploid potato based on chloroplast DNA. Theor. Appl. Genet. 76, 172–176.Google Scholar
  39. Hosaka, K., and Hanneman, R.E. (1988b) Origin of chloroplast DNA diversity in the Andean potatoes. Theor. Appl. Genet. 76, 333–340.Google Scholar
  40. Keim, P., Shoemaker, R.C., and Palmer, R.G. (1989) Restriction fragment length polymorphism diversity in soybean. Theor. Appl. Genet. 77, 786–792.CrossRefGoogle Scholar
  41. Kung, S.D., Zhu, Y.S., and Shen, G.F. (1982) Nicotiana chloroplast genome. III. Chloroplast DNA evolution. Theor. Appl. Genet. 61, 73–79.CrossRefGoogle Scholar
  42. McClean, P.E., and Hanson, M.R. (1986) Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species. Genetics 112, 649–667.PubMedGoogle Scholar
  43. McClintock, B. (1984) The significance of the response of the genome to challenge. Science 226, 792–801.PubMedCrossRefGoogle Scholar
  44. Neale, D.B., Saghai-Maroof, M.A., Allard, R.W., Zhang, Q., and Jorgensen, R.A. (1988) Chloroplast DNA diversity in populations of wild and cultivated barley. Genetics 120, 1105–1110.PubMedGoogle Scholar
  45. Ogihara, Y., and Tsunewaki, K. (1988) Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor. Appl. Genet. 76, 321–332.CrossRefGoogle Scholar
  46. Palmer, J.D. (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Amer. Natur. 130, S6–S29.CrossRefGoogle Scholar
  47. Palmer, J.D., and Herbon, L.A., (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 28, 87–97.PubMedCrossRefGoogle Scholar
  48. Palmer, J.D., Shields, C.R., Cohen, D.B., and Orton, T.J. (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor. Appl. Genet. 65, 181–189.CrossRefGoogle Scholar
  49. Palmer, J.D., Jorgensen, R.A., and Thompson, W.F. (1985) Chloroplast DNA variation and evolution in Pisum: patterns of change and phylogenetic analysis. Genetics 109, 195–213.PubMedGoogle Scholar
  50. Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S.E., and Tanksley, S.D. (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721–726.PubMedCrossRefGoogle Scholar
  51. Perl-Treves, R., and Galun, E. (1985) The Cucumis plastome: physical map, intrageneric variation and phylogenetic relationships. Theor. Appl. Genet. 71, 417–429.Google Scholar
  52. Rick, C.M., and Fobes, J.F. (1975) Allozyme variation in the cultivated tomato and closely related species. Bull. Torrey Bot. Club 102, 376–384.CrossRefGoogle Scholar
  53. Rieseberg, L.H., and Seiler, G. (1990) Molecular evidence and the origin and development of the domesticated sunflower (Helianthus annuus L.). Econ. Bot. 44S, 79–91.CrossRefGoogle Scholar
  54. Shoemaker, R.C, Hatfield, P.M., Palmer, R.G., and Atherly, A.G. (1986) Chloroplast DNA variation in the genus Glycine subgenus Soja. J. Hered. 77, 26–30.Google Scholar
  55. Simmonds, N.W. (1976) Evolution of Crop Plants, Longman, New York.Google Scholar
  56. Simmonds, N.W. (1979) Principles of Crop Improvement, Longman, New York.Google Scholar
  57. Song, K.M., Osborn, T.C, and Williams, P.H. (1988a) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 1. Genome evolution of diploid and amphidiploid species. Theor. Appl. Genet. 75, 784–794.CrossRefGoogle Scholar
  58. Song, K.M., Osborn, T.C., and Williams, P.H. (1988b) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 2. Preliminary analysis of subspecies within B. rapa and B. oleracea. Theor. Appl. Genet. 76, 593–600.CrossRefGoogle Scholar
  59. Timothy, D.H., Levings, C.S., Pring, D.R., Conde, M.F., and Kermicle, J.L. (1979) Organelle DNA variation and systematic relationships in the genus Zea: teosinte. Proc. Natl. Acad. Sci. USA 76, 4220–4224.PubMedCrossRefGoogle Scholar
  60. Tsunewaki, K., and Ogihara, Y. (1983) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species. II. On the origin of the polyploid wheat cytoplasms as suggested by chloroplast DNA restriction fragment patterns. Genetics 104, 155–171.PubMedGoogle Scholar
  61. Wilson, H.D. (1989) Discordant patterns of allozyme and morphological variation in Mexican Cucurbita. Syst. Bot. 14, 612–623.CrossRefGoogle Scholar
  62. Wendel, J.F. (1989) New World tetraploid cottons contain Old World cytoplasms. Proc. Natl. Acad. Sci. USA 86, 4132–4136.PubMedCrossRefGoogle Scholar
  63. Zimmer, E.A., Jupe, E.R., and Walbot, V. (1988) Ribosomal gene structure, variation and inheritance in maize and its ancestors, Genetics 120, 1125–1136.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • John Doebley

There are no affiliations available

Personalised recommendations