Advertisement

Strategies in β-lactam Design

  • Francis C. Neuhaus
  • Nafsika Georgopapadakou

Abstract

It has been 50 years since Florey, Chain and their associates first described the treatment of staphylococcal and streptococcal infections with penicillin (49). This epoch-making discovery ushered in a new era of fruitful research culminating in the identification of the bacterial cell wall as the target of this β-lactam (222). Penicillin was found to act by inhibiting the cross-linking enzymes involved in the biosynthesis of peptidoglycan (PG), the major cell-wall polymer (298, 323). For many scientists, the design of β-lactams targeted specifically to these essential enzymes is the ultimate research goal in this area.

Keywords

Clavulanic Acid Lactam Antibiotic Porin Channel Transpeptidation Reaction Iactam Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Actor, P., L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman. 1988. Antibiotic inhibition of bacterial cell surface assembly and function, p. 1–657. American Society for Microbiology, Washington, D.C.Google Scholar
  2. 2.
    Adachi, H., T. Ohta, and H. Matsuzawa. 1987. A water-soluble form of penicillin-binding protein 2 of Escherichia coli constructed by site-directed mutagenesis. FEBS Lett. 226:150–154.PubMedGoogle Scholar
  3. 3.
    Adachi, H., T. Ohta, and H. Matsuzawa. 1991. Site-directed mutants, at position 166, of RTEM-1 β-lactamase that form a stable acyl-enzyme intermediate with penicillin. J. Biol. Chem. 266:3186–3191.PubMedGoogle Scholar
  4. 4.
    Albrecht, H.A., G. Beskid, K.-K. Chan, J.G. Christenson, R. Cleeland, K.H. Deitcher, N.H. Georgopapadakou, D.D. Keith, D.L. Pruess, J. Sepinwall, A.C. Specian Jr., R.L. Then, M. Weigele, K.F. West, and R. Yang. 1990. Cephalosporin 3’-quinolone esters with a dual mode of action. J. Med. Chem. 33:77–86.PubMedGoogle Scholar
  5. 5.
    Albrecht, H.A., G. Beskid, K.-K. Chan, J.G. Christenson, R. Cleeland, K.H. Deitcher, D.D. Keith, D.L. Pruess, J. Sepinwall, A. Specian Jr., R.L. Then, M. Weigele, and K.F. West. 1988. Dual-action cephalosporins: an idea whose time has come. 28th Intersci. Conf. Antimicrob. Agents Chemother., abstr. 441.Google Scholar
  6. 6.
    Albrecht, H.A., G. Beskid, N.H. Georgopapadakou, D.D. Keith, F.M. Konzelman, D.L. Pruess, P. Rossman, and C.C. Wei. 1990. Dual-action cephalosporins: cephalosporin 3’-quinolone carbamates. 30th Intersci. Conf. Antimicrob. Agents Chemother., abstr. 402.Google Scholar
  7. 7.
    Allen, N.E., D.B. Boyd, J.B. Campbell, J.B. Deeter, T.K. Elzey, B.J. Foster, L.D. Hatfield, J.N. Hobbs, Jr., W.J. Hornback, D.C. Hunden, N.D. Jones, M.D. Kinnick, J.M. Morin, Jr., J.E. Munroe, J.K. Swartzendruber, and D.G. Vogt. 1989. Molecular modeling of y-lactam analogues of β-lactam antibacterial agents: synthesis and biological evaluation of selected penem and carbapenem analogues. Tetrahedron 45:1905–1928.Google Scholar
  8. 8.
    Al-Obeid, S., E. Collatz, and L. Gutmann. 1990. Mechanism of resistance to vancomycin in Enterococcus faecium D366 and Enterococcus faecalis A256. Antimicrob. Agents Chemother. 34:252–256.Google Scholar
  9. 9.
    Ambler, R.P. 1980. The structure of β-lactamases. Phil. Trans. R. Soc. (Biol) 289:321–331.Google Scholar
  10. 10.
    Ambler, R.P., M. Daniel, J. Fleming, J.-M. Hermoso, C. Pang, and S.G. Waley. 1985. The amino acid sequence of the zinc-requiring β-lactamase II from the bacterium Bacillus cereus 569. FEBS Lett. 189:207–211.PubMedGoogle Scholar
  11. 11.
    Aoki, H., H. Sakai, M. Kohsaka, T. Konomi, J. Hosoda, Y. Kubochi, E. Iguchi and H. Imanaka. 1976. Nocardicin A, a new monocyclic β-lactam antibiotic. I. Discovery, isolation and characterization. J. Antibiot. 29:492–500.PubMedGoogle Scholar
  12. 12.
    Arakawa, Y., M. Ohta, N. Kido, Y. Fujii, T. Komatsu, and N. Kato. 1986. Close evolutionary relationship between the chromosomally encoded β-lactamase gene of Klebsiella pneumoniae and the TEM β-lactamase gene mediated by R plasmids. FEBS Lett. 207:69–74.PubMedGoogle Scholar
  13. 13.
    Arakawa, Y., M. Ohta, N. Kido, M. Mori, H. Ito, T. Komatsu, Y. Fujii, and N. Kato. 1989. Chromosomal β-lactamase of Klebsiella oxytoca a new class A enzyme that hydrolyzes broad-spectrum β-lactam antibiotics. Antimicrob. Agents Chemother. 33:63–70.PubMedGoogle Scholar
  14. 14.
    Arisawa, M., and R.L. Then. 1982. 6-Acetylmethylenepenicillanic acid (Ro 15903), a potent β-lactamase inhibitor. I. Inhibition of chromosomally and R-factormediated β-lactamases. J. Antibiot. 35:1578–1583.PubMedGoogle Scholar
  15. 15.
    Arisawa, M., and R.L. Then. 1983. Inactivation of TEM-1 β-lactamase by 6acetylmethylenepenicillanic acid. Biochem. J. 209:609–615.PubMedGoogle Scholar
  16. 16.
    Aronoff, S.C., M.R. Jacobs, S. Johenning, and S. Yamabe. 1984. Comparative activities of the β-lactamase inhibitors YTR 830, sodium clavulanate, and sulbactam combined with amoxicillin or ampicillin. Antimicrob. Agents Chemother. 26:580–582.PubMedGoogle Scholar
  17. 16a.
    Ator, M.A., and P.R. Ortiz de Montellano. 1990. Mechanism-based (suicide) enzyme inactivation, p. 213–282. In D.S. Sigman and P.D. Boyer (ed.), The enzymes, vol. 19. Mechanism of catalysis. 3rd edition. Academic Press, San Diego.Google Scholar
  18. 17.
    Barbour, A.G. 1981. Properties of the penicillin-binding proteins in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 19:316–322.PubMedGoogle Scholar
  19. 17a.
    Bauernfeind, A. 1986. Classification of β-lactamases. Rev. Infect. Dis. 8 (Suppl. 5):470–481.Google Scholar
  20. 18.
    Beise, F., H. Labischinski, and P. Giesbrecht. 1988. Role of the penicillin-binding proteins of Staphylococcus aureus in the induction of bacteriolysis by β-lactam antibiotics, p. 360–366. In P. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.Google Scholar
  21. 19.
    Bentley, P.H., and R. Southgate. 1989. Recent advances in the chemistry of βlactam antibiotics, p. 1–380. Proceedings of the 4th International Symposium. Royal Society of Chemistry, Special Publication No. 70. London.Google Scholar
  22. 20.
    Bentley, P.H., and A.V. Stachulski. 1983. Synthesis and biological activity of some fused β-lactam peptidoglycan analogues. J. Chem. Soc. Perkin Trans. I:1187–1192.Google Scholar
  23. 21.
    Benz, R. Porin from bacterial and mitochondria) outer membranes. CRC Crit. Rev. Biochem. 19:145–190.Google Scholar
  24. 22.
    Berger-Bächi, B., and C. Ryffel. 1990. Control PBP 2’ synthesis in Staphylococci . In H. Kleinkauf and H. von Döhren (ed.), 50 Years of Penicillin Application, in press, Berlin.Google Scholar
  25. 22a.
    Berger-Bachi, B., L. Barberis-Maino, A. Straessle, and F.H. Kayser. 1989. FemA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus: molecular cloning and characterization. Mol Gen. Genet. 219:263–269.PubMedGoogle Scholar
  26. 23.
    . Bicknell, R., E.L. Emanuel, J. Gagnon, and S.G. Waley. 1985. The production and molecular properties of the zing β-lactamase of Pseudomonas maltophilia IID 1275. Biochem. J. 229:791-797. PubMedGoogle Scholar
  27. 24.
    Blaszczak, L.C., R.F. Brown, G.K. Cook, W.J. Hornback, R.C. Hoying, J.M. Indelicato, C.L. Jordan, A.S. Katner, M.D. Kinnick, J.H. McDonald, III, J.M. Morin, Jr., J.E. Munroe, and C.E. Pasini. 1990. Comparative reactivity of 1-carba1-dethiacephalosporins with cephalosporins. J. Med. Chem. 33:1656–1662. PubMedGoogle Scholar
  28. 25.
    Böhme, E.H.W., H.E. Applegate, B. Toeplitz, J.E. Dolfini, and J.Z. Gougoutas. 1971. 6-Methyl penicillins and 7-methyl cephalosporins. J. Am. Chem. Soc. 93:4324–4326.PubMedGoogle Scholar
  29. 26.
    Boissinot, M., and R.C. Levesque. 1990. Nucleotide sequence of the PSE-4 carbenicillinase gene and correlations with the Staphylococcus aureus PC 1 β-lactamase crystal structure. J. Biol. Chem. 265:1225–1230. PubMedGoogle Scholar
  30. 27.
    Botta, G.A., and J.T. Park. 1981. Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J. Bacteriol. 145:333–340.PubMedGoogle Scholar
  31. 28.
    Bowler, L.D., and B.G. Spratt. 1989. Membrane topology of penicillin-binding protein 3 of Escherichia con. Molecular Microbiol. 3:1277–1286. Google Scholar
  32. 29.
  33. 30.
    Boyd, D.B. 1979. Conformational analogy between β-lactam antibiotics and tetrahedral transition states of a dipeptide. J. Med. Chem. 22:533–537.PubMedGoogle Scholar
  34. 31.
    Boyd, D.B. 1982. Theoretical and physicochemical studies on β-lactam antibiotics p. 437–545. In R.B. Morin and M. Gorman (ed.), Chemistry and biology of βlactam antibiotics: penicillins and cephalosporins, vol. 1. Academic Press, New York.Google Scholar
  35. 32.
    Boyd, D.B. 1983. Quantum mechanics in drug design: methods and applications. Drug Inform. J. 17:121–131. Google Scholar
  36. 33.
    Boyd, D.B. 1984. Electronic structures of cephalosporins and penicillins. 15. Inductive effect of the 3-position side chain in cephalosporins. J. Med. Chem. 27:63–66.PubMedGoogle Scholar
  37. 34.
    Boyd, D.B. 1987. Computer-assisted molecular design studies of β-lactam antibiotics, p. 339–356. In H. Umezawa (ed.), Frontiers of antibiotic research. Proceedings of the 4th Takeda Science Foundation Symposium on Bioscience, Academic Press, Orlando, FL.Google Scholar
  38. 34a.
    Boyd, D.B., J.D. Snoddy, and H.-S Lin. 1991. Molecular simulations of DD-peptidase a model β-lactam-binding protein: synergy between X-ray crystallography and computational chemistry. J. Computational Chemistry 12:635–644.Google Scholar
  39. 35.
    Boyd, D.B., D.K. Herron, W.H.W. Lunn, and W.A. Spitzer. 1980. Parabolic relationships between antibacterial activity of cephalosporins and β-lactam reactivity predicted from molecular orbital calculations. J. Am. Chem. Soc. 102:1812–1814. Google Scholar
  40. 36.
    Boyd, D.B., and J.L. Ott. 1986a. Lack of relevance of kinetic parameters for exocellular DD-peptidases to cephalosporin MICs. Antimicrob. Agents Chemother. 29:774–780. Google Scholar
  41. 37.
    Boyd, D.B. and J.L. Ott. 1986b. Examination of model enzyme and penetration systems in relation to antibacterial activity. J. Antibiot. 39:281–285.Google Scholar
  42. 38.
    Broom, N.J.P., K. Coleman, P.A. Hunter, and N.F. Osborne. 1990.6-(Substituted methylene)penems, potent broad spectrum inhibitors of bacterial β-lactamase. II. Racemic furyl and thienyl derivatives. J. Antibiot. 43:76–82.PubMedGoogle Scholar
  43. 39.
    Broome-Smith, J.K. 1985. Construction of a mutant of Escherichia coli that has deletions of both the penicillin binding protein 5 and 6 genes. J. Gen. Microbiol. 131:2115–2118.PubMedGoogle Scholar
  44. 40.
    Brown, M.R., W.D.G. Allison, and P. Gilbert. 1988. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J. Antimicrob. Chemother. 22:777–780. PubMedGoogle Scholar
  45. 41.
    Brown, A.G., D. Butterworth, M. Cole, G. Hanscomb, J.D. Hood, C. Reading, and G.N. Rolinson. 1976. Naturally occurring β-lactamase inhibitors with antibacterial activity. J. Antibiot. 29:668–669.PubMedGoogle Scholar
  46. 42.
    Brown, A.G., M.J. Pearson, and R. Southgate. 1990. Other β-lactam agents, p. 655–702. In C. Hansch, P.G. Sammes, and J.B. Taylor (ed.), Comprehensive medicinal chemistry; the rational design, mechanistic study and therapeutic application of chemical compounds, vol. 2. Enzymes and other molecular targets. Pergamon Press, Oxford.Google Scholar
  47. 43.
    Brown, A.G., and S.M. Roberts. 1984. Recent advances in the chemistry of βlactam antibiotics, p. 1–391. Royal Society of Chemistry, Special Publication No. 52. London.Google Scholar
  48. 44.
    Buchanan, C.E. 1981. Topographical distribution of penicillin-binding proteins in Escherichia coli membrane. J. Bacteriol. 145:1293–1298. PubMedGoogle Scholar
  49. 44a.
    Buckwell, S.C., M.I. Page, S.G. Waley, and J.L. Longridge. 1988. Hydrolysis of 7-substituted cephalosporins catalyzed by β-lactamases I and II from Bacillus cereus and by hydroxide ion. J. Chem. Soc. Perkin Trans. II:1815–1821. Google Scholar
  50. 44b.
    Bugg, T.D.H., S. Dutka-Malen, M. Arthur, P. Courvalin, and C.T. Walsh. 1991. Identification of vancomycin resistance protein VanA as a D-alanine:D-alanine ligase of altered substrate specificity. Biochemistry 30:2017–2021.PubMedGoogle Scholar
  51. 45.
    Büscher, K.-H., W. Cullmann, W. Dick, and W. Opferkuch. 1987. Imipenem resistance in Pseudomonas aeruginosa resulting from diminished expression of an outer membrane protein. Antimicrob. Agents Chemother. 31:703–708.PubMedGoogle Scholar
  52. 45a.
    Bush, K. 1989. Classification of β-lactamases: Groups 1,2a, 2b, and 2b’. Antimicrob. Agents Chemother. 33:264–270.PubMedGoogle Scholar
  53. 46.
    Bush, K., and R.B. Sykes. 1984. Interaction of β-lactam antibiotics with β-lactamases as a cause for resistance, p. 1–31. In L.E. Bryan (ed.), Antimicrobial drug resistance. Academic Press, New York.Google Scholar
  54. 46a.
    Bush, K., and R.B. Sykes. 1986. Methodology for the study of β-lactamases. Antimicrob. Agents Chemother. 30:6–10.PubMedGoogle Scholar
  55. 47.
    Bycroft, B.W., R.E. Shute, and M.J. Begley. 1988. Novel β-lactamase inhibitory and antibacterial 6-spiro-epoxypenicillins. J. Chem. Soc., Chem. Commun. 5:274–276.Google Scholar
  56. 48.
    Cartwright, S.J., and S.G. Waley. 1983. Beta-lactamase inhibitors. Med. Res. Rev. 33:341–382.Google Scholar
  57. 49.
    Chain, E., H.W. Florey, A.D. Gardner, N.G. Heatley, M.A. Jennings, J. Orr-Ewing, and A.G. Sanders. 1940. Penicillin as a chemotherapeutic agent. Lancet 2:226–228.Google Scholar
  58. 50.
    Chambers, H.F. 1988. Methicillin-resistant Staphylococci. Clin. Microbiol. Rev. 1:173–186. PubMedGoogle Scholar
  59. 51.
    Charlier, P.,O. Dideberg, J.-M Frère, P.C. Moews, and J.R. Knox. 1983. Crystallographic data for the β-lactamase from Enterobacter cloacae P99. J. Mol. Biol. 171:237–238.PubMedGoogle Scholar
  60. 52.
    Christensen, B.G. 1981. Structure-activity relationships in β-lactam antibiotics, p. 101–122. In M.R.J. Salton and G.D. Shockman (ed.), β-Lactam antibiotics: mode of action, new developments, and future prospects. Academic Press, New York.Google Scholar
  61. 53.
    Christenson, J., N. Georgopapadakou, D. Keith, K.-C. Luk, V. Madison, R. Mook, D. Pruess, J. Roberts, P. Rossman, C.-C. Wei, M. Weigele, and K. West. 1988a. a-Cyclopropylpenams: the synthesis and activity of a new class of penam antibacterials, p. 33–48. In P.H. Bentley and R. Southgate (ed.), Recent advances in the chemistry of β-lactam antibiotics. Proceedings of the 4th international symposium. Royal Society of Chemistry, Special Publication No 70. London.Google Scholar
  62. 54.
    Christenson, J.G., D.L. Pruess, M.K. Talbot, and D.D. Keith. 1988b. Antibacterial properties of (2,3)-a-and (2,3)-β-methylene analogs of penicillin G. Antimicrob. Agents Chemother. 32:1005–1011. Google Scholar
  63. 55.
    Chung, S.K., and D.F. Chodosh. 1989. Computer graphics/molecular mechanics studies of β-lactam antibiotics. Geometry comparison with x-ray crystal structures. Bull. Korean Chem. Soc., 10:185–190. Google Scholar
  64. 56.
    Clayden, N.J., C.M. Dobson, L.-Y. Lian, and J.M. Twyman. 1986. A solid-state 13C nuclear magnetic resonance study of the conformational states of penicillins. J. Chem. Soc. Perkin Trans. 1I:1933–1940. Google Scholar
  65. 57.
    Cohen, N.C. 1983. β-Lactam antibiotics: geometrical requirements for antibacterial activities. J. Med. Chem. 26:259–264.PubMedGoogle Scholar
  66. 57a.
    Cohen, N.C. 1985. Drug design in three dimensions. Advances in Drug Research. 14:41–145.Google Scholar
  67. 58.
    Cohen, N.C., I. Ernest, H. Fritz, H. Fuhrer, G. Rihs, R. Scartazzini, and P. Wirz. 1987. 183. Are the known Δ2-cephems inactive as antibiotics because of an unfavourable steric orientation of their 4a-carboxylic group? Synthesis and biology of two Δ 2-cephem-4β-carboxylic acids. Heiv. Chim. Acta 70:1967–1979. Google Scholar
  68. 59.
    Cohen, S.A., and R.F. Pratt. 1980. Inactivation of Bacillus cereus β-lactamase I by 6-β-bromopenicillanic acid: mechanism. Biochemistry 19:3996–4003.PubMedGoogle Scholar
  69. 60.
    Cohenford, M.A., J. Abraham, and A.A. Medeiros. 1988. A colorimetric procedure for measuring β-lactamase activity. Anal. Biochem. 168:252–258.Google Scholar
  70. 61.
    Coleman, K., D.R.J. Griffin, J.W.J. Page, and P.A. Upshon. 1989. In-vitro evaluation of BRL 42715, a novel β-lactamase inhibitor. Antimicrob. Agents Chemother. 33:1580–1587.PubMedGoogle Scholar
  71. 61a.
    Cook, G.K., J.H. McDonald, III, W. Alborn, Jr., D.B. Boyd, J.A. Eudaly, J.M. Indelicato, R. Johnson, J.S. Kasher, C.E. Pasini, D.A. Preston, and E.C.Y. Wu. 1989. 3-Quaternary ammonium 1-carba-l-dethiacephems. J. Med. Chem. 32:2442–2450.PubMedGoogle Scholar
  72. 61b.
    Costerouss, G., S. Gouindambr, J.G. Teutsch. March 1990. U.S. patent 4,908,359.Google Scholar
  73. 62.
    Coulson, A. 1985. β-Lactamase: molecular studies. Biotechnol. Gen. Eng. Rev. 3:219–253.Google Scholar
  74. 62a.
    Coulton, J.W., P. Mason, and D. Dorrance. 1983. The permeability barrier of Haemophilus infiuenzae type b against β-lactam antibiotics. J. Antimicrob. Chemother. 12:435–449.PubMedGoogle Scholar
  75. 62b.
    Coyette, J., J.-M. Ghuysen, and R. Fontana. 1980. The penicillin-binding proteins in Streptococcus faecalis ATCC 9790. Eur. J. Biochem. 110:445–456.PubMedGoogle Scholar
  76. 63.
    Cozens, R.M., E. Tuomanen, W. Tosch, O. Zak, J. Suter, and A. Tomasz. 1986. Evaluation of the bactericidal activity of β-lactam antibiotics on slowly growing bacteria cultured in the chemostat. Antimicrob. Agents Chemother. 29:797–802.PubMedGoogle Scholar
  77. 64.
    Cuchural, G.J., S. Hurlbut, M.H. Malamy, and F.P. Tally. 1988. Permeability to β-lactams in Bacteroides fragilis. J. Antimicrob. Chemother. 22:785–790.PubMedGoogle Scholar
  78. 65.
    Cullmann, W. 1990. Interaction of β-lactamase inhibitors with various β-lactamases. Chemotherapy 36:200–208.PubMedGoogle Scholar
  79. 66.
    Curtis, N.A.C., R.L. Eisenstadt, S.J. East, R.J. Cornford, L.A. Walker, and A.J. White. 1988. Iron-regulated outer membrane proteins of Escherichia coli K-12 and mechanism of action of catechol-substituted cephalosporins. Antimicrob. Agents Chemother. 32:1879–1886.PubMedGoogle Scholar
  80. 67.
    Curtis, N.A.C., and M.V. Hayes. 1981. A mutant of Staphylococcus aureus H deficient in penicillin-binding protein 1 is viable. FEMS Microbiol. Lett. 10:227229.Google Scholar
  81. 68.
    Curtis, N.A.C., M.V. Hayes, A.W. Wyke, and J.B. Ward. 1980. A mutant of Staphylococcus aureus H lacking penicillin-binding protein 4 and transpeptidase activity in vitro. FEMS Microbiol. Lett. 9:263–266.Google Scholar
  82. 69.
    Curtis, N.A.C., D. Orr, G.W. Ross, and M.G. Boulton. 1979a. Competition of β lactam antibiotics for the penicillin-binding proteins of Pseudomonas aeruginosa , Enterobacter cloacae , Klebsiella aerogenes , Proteus rettgeri , and Escherichia coli: comparison with antibacterial activity and effects upon bacterial morphology. Antimicrob. Agents Chemother. 16:325–328.Google Scholar
  83. 70.
    Curtis, N.A.C., D. Orr, G.W. Ross, and M.G. Boulton. 1979b. Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity. Antimicrob. Agents Chemother. 16:533–539.Google Scholar
  84. 71.
    Curtis, N.A.C., G.W. Ross, and M.G. Boulton. 1979c. Effect of 7a-methoxy substitution of cephalosporins upon their affinity for the penicillin-binding proteins of E. coli K12. Comparison with antibacterial activity and inhibition of membrane bound model transpeptidase activity. J. Antimicrob. Chemother. 5:391–398.Google Scholar
  85. 72.
    Datta, N., and P. Kontomichalou. 1965. Penicillinase synthesis controlled by infectious R-factors in Enterobacteriaceae. Nature 208:239–241.PubMedGoogle Scholar
  86. 73.
    Demuth, T.P., R.E. White, R.A. Tietjen, F.H. Ebetino, W.G. Kraft, J.A. Andersen, C.C. McOsker, M.A. Walling, B.W. Davis, and F.J. Rourke. 1990. C-10 quinolylcephem carbamates: synthesis and evaluation of a new class of antibacterial agents. 200th ACS National Meeting, Div. Med. Chem., abstr. 154.Google Scholar
  87. 73a.
    Demuth, T.P., R.E. White, R.A. Tietjen, R.J. Storrin, J.R. Skuster, J.A. Andersen, C.C. McOsker, R. Freedman, and F.J. Rourke. 1991. Synthesis and antibacterial activity of new C-10 quinolyl-cephem esters. J. Antibiot. 44:200–209.PubMedGoogle Scholar
  88. 74.
    den Blaauwen, T., M. Aarsman, and N. Nanninga. 1990. Interaction of monoclonal antibodies with the enzymatic domains of penicillin-binding protein lb of Escherichia coll. J. Bacteriol. 172:63–70.PubMedGoogle Scholar
  89. 75.
    den Blaauwen, T., and N. Nanninga. 1990. Topology of penicillin-binding protein lb of Escherichia coli and topography of four antigenic determinants studied by immunocolabeling electron microscopy. J. Bacteriol. 172:71–79.PubMedGoogle Scholar
  90. 76.
    den Blaauwen, T., F.B. Wientjes, A.H.J. Kolk, B.G. Spratt, and N. Nanninga. 1989. Preparation and characterization of monoclonal antibodies against native membrane-bound penicillin-binding protein 1B of Escherichia coli. J. Bacteriol. 171:1394–1401.PubMedGoogle Scholar
  91. 77.
    De Pedro, M.A., U. Schwarz, U. Nishimura, and Y. Hirota. 1980. On the biological role of penicillin-binding proteins 4 and 5. FEMS Microbiol. Lett. 9:219–221.Google Scholar
  92. 78.
    Dexter, D.D., and J.M. van der Veen. 1978. Conformations of penicillin G: crystal structure of procaine penicillin G monohydrate and a refinement of the structure of potassium penicillin G.J. Chem. Soc., Perkin Trans. I:185–190. Google Scholar
  93. 79.
    Dideberg, O., P. Charlier, J.-P Wéry, P. Dehottay, J. Dusart, T. Erpicum, J.-M. Frère, and J.-M Ghuysen. 1987. The crystal structure of the β-lactamase of Streptomyces albus G at 0.3 nm resolution. Biochem. J. 245:911–913.PubMedGoogle Scholar
  94. 79a.
    Dolinger, D.L., L. Daneo-Moore, and G.D. Shockman. 1989. The second peptidoglycan hydrolase of Streptococcus faecium ATCC 9790 covalently binds penicillin. J. Bacteriol. 171:4355–4361.PubMedGoogle Scholar
  95. 80.
    Dougherty, T.J., A.E. Koller, and A. Tomasz. 1980. Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 18:730–737.PubMedGoogle Scholar
  96. 81.
    Dougherty, T.J., A.E. Koller, and A. Tomasz. 1981. Competition of β-lactam antibiotics for the penicillin-binding proteins of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 20:109–114. PubMedGoogle Scholar
  97. 82.
    Dürckheimer, W., F. Adam, G. Fischer, and R. Kirrstetter. 1987. Synthesis and biological properties of newer cephem antibiotics, p. 161–192. In H. Umezawa (ed.), Frontiers of antibiotic research. Proceedings of the 4th Takeda Science Foundation Symposium on Bioscience. Academic Press, Orlando, FL.Google Scholar
  98. 83.
    Dürckheimer, W., J. Blumbach, R. Lattrell, and K.H. Scheunemann. 1985. Recent developments in the field of β-lactam antibiotics. Angew. Chem. Int. Ed. Eng. 24:180–202.Google Scholar
  99. 83a.
    Dutka-Malen, S., C. Molinas, M. Arthur, and P. Courvalin. 1990. The VanA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes. Mol. Gen. Genet. 224:364–372.PubMedGoogle Scholar
  100. 84.
    Edelman, A., L. Bowler, J.K. Broome-Smith, and B.G. Spratt. 1987. Use of a βlactamase fusion vector to investigate the organisation of penicillin-binding protein 1B in the cytoplasmic membrane of Escherichia coll . Mol. Microbiol. 1:101–106. PubMedGoogle Scholar
  101. 85.
    Eley, A., and D. Greenwood. 1986. Characterization of β-lactamases in clinical isolates of Bacteroides. J. Antimicrob. Chemother. 18:325–333.PubMedGoogle Scholar
  102. 86.
    Ellerby, L.M., W.A. Escobar, A.L. Fink, C. Mitchinson, and J.A. Wells. 1990. The role of lysine-234 in β-lactamase catalysis probed by site-directed mutagenesis. Biochemistry 29:5797–5806.PubMedGoogle Scholar
  103. 87.
    English, A.R., D. Girard, and S.L. Haskell. 1984. Pharmacokinetics of sultamicillin in mice, rats, and dogs. Antimicrob. Agents Chemother. 25:599–602.PubMedGoogle Scholar
  104. 88.
    English, A.R., J.A. Retsema, A.E. Girard, J.E. Lynch, and W.E. Barth. 1978. CP45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of betalactams: initial bacteriological characterization. Antimicrob. Agents Chemother. 14:414–419.PubMedGoogle Scholar
  105. 89.
    Faraci, W.S., and R.F. Pratt. 1986. Interactions of cephalosporins with the Streptomyces R61 DD-transpeptidase/carboxypeptidase. Influence of the 3’ substituents. Biochem. J. 238:309–312.PubMedGoogle Scholar
  106. 90.
    Faraci, W.S., and R.F. Pratt. 1987. Nucleophilic re-activation of the PC1 βlactamase of Staphylococcus aureus and of the DD-peptidase of Streptomyces R61 after their inactivation by cephalosporins and cephamycins. Biochem. J. 246:651–658.PubMedGoogle Scholar
  107. 91.
    Ferreira, L.C.S., U. Schwarz, W. Keck, P. Charlier, O. Dideberg, and J.-M. Ghuysen. 1988. Properties and crystallization of a genetically engineered, water-soluble derivative of penicillin-binding protein 5 of Escherichia coli K12. Eur. J. Biochem. 171:11–16. PubMedGoogle Scholar
  108. 92.
    Fink, A. 1985. The molecular basis of β-lactamase catalysis and inhibition. Pharm. Res. 2:55–61.Google Scholar
  109. 92a.
    Fontana, R., R. Cerini, P. Longoni, A. Grossato, and P. Canepari. 1983. Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J. Bacteriol. 155:1343–1350. PubMedGoogle Scholar
  110. 93.
    Frère, J.-M., and B. Joris. 1985. Penicillin-sensitive enzymes in peptidoglycan biosynthesis. CRC Critical Rev. Microbiol. 11:299–396. Google Scholar
  111. 94.
    Frère, J.-M., B. Joris, O. Dideberg, P. Charlier, and J.-M. Ghuysen. 1988. Penicillin-recognizing enzymes. Biochemical Society Transactions. 16:934–938.PubMedGoogle Scholar
  112. 95.
    Frère, J.-M., B. Joris, L. Varetto, and M. Crine. 1988. Structure-activity relationships in the β-lad= family: an impossible dream. Biochem. Pharmacol. 37:125–132 .PubMedGoogle Scholar
  113. 96.
    Frère, J.-M., J.A. Kelly, D. Klein, J.-M. Ghuysen, P. Claes, and H. Vanderhaeghe. 1982. A2- and 03-cephalosporins, penicillinate and 6-unsubstituted penems; intrinsic reactivity and interaction with β-lactamases and D-alanyl-D-alanine-cleaving serine peptidases. Biochem. J. 203:223–234.PubMedGoogle Scholar
  114. 97.
    Garcia-Bustos, J.F., B.T. Chait, and A. Tomasz. 1988. Altered peptidoglycan structure in a pneumococcal transformant resistant to penicillin. J. Bacteriol. 170:2143–2147.PubMedGoogle Scholar
  115. 98.
    Garcia-Bustos, J.F., and A. Tomasz. 1990. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc. Natl. Acad. Sci. USA 87:5415–5419.PubMedGoogle Scholar
  116. 99.
    Gensmantel, N.P., D. McLellan, J.J. Morris, M.I. Page, P. Proctor, and G.S. Randahawa. 1980. Mechanisms in the reactions of some β-lactam antibiotics and their derivatives, p. 227–239. In G.I. Gregory (ed.), Recent advances in the chemistry of β-lactam antibiotics. Royal Society of Chemistry, Special publication no. 38. London.Google Scholar
  117. 100.
    Georgopapadakou, N.H. 1988. Penicillin-binding proteins. p. 409–431 In P.K. Peterson and J. Verhoef (eds.), Antimicrobial agents annual 3. Elsevier Science Publishers BV. Amsterdam.Google Scholar
  118. 101.
    Georgopapadakou, N.H., A. Bertasso, K.K. Chan, J.S. Chapman, R. Cleeland, L.M. Cummings, B.A. Dix, and D.D. Keith. 1989. Mode of action of the dual-action cephalosporin Ro 23–9424. Antimicrob. Agents Chemother. 33:1067–1071.PubMedGoogle Scholar
  119. 102.
    Georgopapadakou, N.H., L.M. Cummings, E.R. LaSala, J. Unowsky, and D.L. Pruess. 1988. Overproduction of penicillin-binding protein 4 in Staphylococcus aureus is associated with methicillin resistance, p. 597–602. In P.L. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, DC.Google Scholar
  120. 103.
    Georgopapadakou, N.H., B.A. Dix, and Y.R. Mauriz. 1986. Possible physiological functions of penicillin-binding proteins in Staphylococcus aureus. Antimicrob. Agents Chemother. 29:333–336.PubMedGoogle Scholar
  121. 104.
    Georgopapadakou, N.H., and F.Y. Liu. 1980a. Penicillin-binding proteins in bacteria. Antimicrob. Agents Chemother. 18:148–157. Google Scholar
  122. 105.
    Georgopapadakou, N.H., and F.Y. Liu. 1980b. Binding of β-lactam antibiotics to penicillin-binding proteins of Staphylococcus aureus and Streptococcus faecalis: relation to antibacterial activity. Antimicrob. Agents Chemother. 18:834–836.Google Scholar
  123. 106.
    Georgopapadakou, N.H., D.A. Russo, A. Liebman, W. Burger, P. Rossman, and D. Keith. 1987. Interaction of (2,3)-methylenepenams with penicillin-binding proteins. Antimicrob. Agents Chemother. 31:1069–1074.PubMedGoogle Scholar
  124. 107.
    Georgopapadakou, N.H., S.A. Smith, and R.B. Sykes. 1983. Penicillin-binding proteins in Bacteroides fragilis. J. Antibiot. 36:907–910.PubMedGoogle Scholar
  125. 108.
    Georgopapadakou, N.H., and R.B. Sykes. 1983. Bacterial enzymes interacting with β-lactam antibiotics, p. 1–77. In A.L. Demain and N.A. Solomon (ed.), Antibiotics containing the beta-lactam structure II. Handbook of experimental pharmacology, vol. 67/II, Springer-Verlag, Berlin/Heidelberg.Google Scholar
  126. 109.
    Ghuysen, J.-M. 1977. The bacterial DD-carboxypeptidase-transpeptidase enzyme system: a new insight into the mode of action of penicillin, p. 1–162. University of Tokyo Press, Tokyo.Google Scholar
  127. 110.
    Ghuysen, J.-M. 1984. Exploration of active sites of DD-peptidases, p. 115–123. In W. Paton, J. Mitchell, and P. Turner (ed.), Proceedings IUPHAR 9th International Congress of Pharmacology, Vol. 1. London.Google Scholar
  128. 111.
    Ghuysen, J.-M. 1988a. Bacterial active-site serine penicillin-interactive proteins and domains: mechanism, structure, and evolution. Rev. Infect. Dis. 10:726–732.Google Scholar
  129. 112.
    Ghuysen, J.-M. 1988b. Evolution of DD-peptidases and β-lactamases, p. 268–284. In P.L. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, DC.Google Scholar
  130. 112a.
    Ghuysen, J.-M. 1991. Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45:37–67.PubMedGoogle Scholar
  131. 113.
    Ghuysen, J.-M., J.-M. Frère, B. Joris, J. Dusart, C. Duez, M. Leyh-Bouille, M. Nguyen-Distèche, J. Coyette, O. Dideberg, P. Charlier, G. Dive, and J. LamotteBrasseur. 1989. Inhibition of enzymes involved in bacterial cell wall synthesis, p. 523–572. In M. Sandler and H.J. Smith (ed.), Design of enzyme inhibitors as drugs. Oxford University Press, New York.Google Scholar
  132. 113a.
    Ghuysen, J.-M., J.-M. Frère, M. Leyh-Bouille, J. Coyette, J. Dusart, and M. Nguyen-Distèche. 1979. Use of model enzymes in the determination of the mode of action of penicillins and 03-cephalosporins. Ann. Rev. Biochem. 48:73–101.PubMedGoogle Scholar
  133. 114.
    Ghuysen, J.-M., J.-M Frère, M. Leyh-Bouille, H.R. Perkins, and M. Nieto. 1980. The active centres in penicillin-sensitive enzymes. Phil. Trans. R. Soc. Lond. B289:285–301.Google Scholar
  134. 115.
    Ghuysen, J.-M., J.-M. Frère, M. Leyh-Bouille, M. Nguyen-Distèche, J. Coyette, J. Dusart, B. Joris, C. Duez, O. Dideberg, P. Charlier, G. Dive, and J. LamotteBrasseur. 1984. Bacterial wall peptidoglycan, DD-peptidases, and beta-lactam antibiotics. Scand. J. Infect. Dis., Suppl. 42:17–37 (1984).Google Scholar
  135. 115a.
    Gibson, R.M., H. Christensen, and S.G. Waley. 1990. Site-directed mutagenesis of β-lactamase I. Biochem. J. 272:613–619. PubMedGoogle Scholar
  136. 116.
    Giesbrecht, P. 1991. On the mechanism of β-lactam action: the majority of Staphylococci are killed via murosome-induced wall perforations both under “lytic” and under “non-lytic” doses of penicillin. In H. Kleinkauf and H. von Döhren (ed.), 50 Years of Penicillin Application, in press.Google Scholar
  137. 117.
    Giesbrecht, P., H. Labischinski, and J. Wecke. 1985. A special morphogenetic wall defect and the subsequent activity of “murosomes” as the very reason for penicillin-induced bacteriolysis in Staphylococci. Arch Microbiol. 141:315–324.PubMedGoogle Scholar
  138. 118.
    Glauner, B., and U. Schwarz. 1983. The analysis of murein composition with highpressure-liquid chromatography, p. 29–34. In R. Hakenbeck, J.V. Höltje, and H. Labischinski (ed.), The target of penicillin: the murein sacculus of bacterial cell walls, architecture and growth. Walter de Gruyter and Co., Berlin.Google Scholar
  139. 119.
    Gordon, E.M., and R.B. Sykes. 1982. Cephamycin antibiotics, p. 199–370. In R.B. Morin and M. Gorman (ed.), Chemistry and biology of β-lactam antibiotics, vol. 1. Penicillins and cephalosporins. Academic Press, New York.Google Scholar
  140. 119a.
    Gotoh, N., H. Wakebe, E. Yoshihara, T. Nakae, and T. Nishino. 1989. Role of protein F in maintaining structural integrity of the Pseudomonas aeruginosa outer membrane. J. Bacteriol. 171:983–990.PubMedGoogle Scholar
  141. 120.
    Graham, M.N., and T.J. Mantle. 1989. Purification of a class C A-type β-lactamase from a derepressed strain of Enterobacter cloacae. Biochem. J. 260:705–710.PubMedGoogle Scholar
  142. 121.
    Gutmann, L., S. Al-Obeid, D. Billot-Klein, J.F. Acar, E. Collatz, and J. van Heijenoort. 1990. Vancomycin (Van) resistance and synergy between penicillin (pen) involve an inducible carboxypeptidase (CPDase) in Van-resistant Enterococci (VRE). 30th Intersci. Conf. Antimicrob. Agents Chemother., abstr. 929.Google Scholar
  143. 122.
    Gutmann, L., S. Vincent, D. Billot-Klein, J.F. Acar, E. Mrèna, and R. Williamson. 1986. Involvement of penicillin-binding protein 2 with other penicillin-binding proteins in lysis of Escherichia con by some β-lactam antibiotics alone and in synergistic lytic effect of amdinocillin (mecillinam). Antimicrob. Agents Chemother. 30:906–912.PubMedGoogle Scholar
  144. 123.
    Hakenbeck, R., M. Tarpay, and A. Tomasz. 1980. Multiple changes of penicillin-binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 17:364–371.PubMedGoogle Scholar
  145. 124.
    Hakenbeck, R., J.-V. Holtje, and H. Labischinski. 1983. The target of penicillin: the murein sacculus of bacterial cell walls; architecture and growth, p. 1–663. Walter de Gruyter and Co., Berlin.Google Scholar
  146. 125.
    Hall, M.N., and T.J. Silhavy. 1979. The ompB locus and the regulation of the major outer membrane porin proteins of Escherichia coli K-12. J. Mol. Biol. 146:23–43.Google Scholar
  147. 126.
    Hamilton-Miller, J.M.T., and J.T. Smith (ed). 1979. Beta-lactamases, p. 1–500. Academic Press, New York.Google Scholar
  148. 127.
    Hancock, R.E.W., G.M. Decad, and H. Nikaido. 1979. Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa PA01. Biochim. Biophys. Acta 554:323–331.PubMedGoogle Scholar
  149. 128.
    Handwerger, A., and A. Tomasz. 1986. Alterations in kinetic properties of penicillin-binding proteins of penicillin-resistant Streptococcus pneumoniae. Antimicrob. Agents Chemother. 30:57–63.PubMedGoogle Scholar
  150. 129.
    Hanson, J.E., A.P. Kaplan, and P.A. Bartlett. 1989. Phosphonate analogues of carboxypeptidase A substrates are potent transition-state analogue inhibitors. Biochemistry 28:6294–6305.PubMedGoogle Scholar
  151. 130.
    Harada, S., S. Tsubotani, T. Hida, H. Ono, and H. Okazaki. 1986. Structure of lactivicin, an antibiotic having a new nucleus and similar biological activities to βlactam antibiotics. Tetrahedron Lett. 27:6229–6232.Google Scholar
  152. 131.
    Hart, C.A., and A. Percival. 1982. Resistance to cephalosporins among gentamicinresistant Klebsiellae. J. Antimicrob. Chemother. 9:275–286.PubMedGoogle Scholar
  153. 132.
    Hartman, B.J., and A. Tomasz. 1984. Low-affinity penicillin-binding protein associated with β-lactam resistance in Staphylococcus aureus . J. Bacteriol. 158:513–516.PubMedGoogle Scholar
  154. 133.
    Hedges, R.W., and M. Matthew. 1979. Acquisition by Escherichia coli of plasmidborne beta-lactamases normally confined to Pseudomonas spp. Plasmid 2:269–278.PubMedGoogle Scholar
  155. 134.
    Herzberg, O., and J. Moult. 1987. Bacterial resistance to β-lactam antibiotics: crystal structure of β-lactamase from Staphylococcus aureus PC 1 at 2.5 A resolution. Science 236:694–701.PubMedGoogle Scholar
  156. 134a.
    Herzberg, O. 1991. Refined crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.0 A resolution. J. Mol. Biol. 217:701–719.PubMedGoogle Scholar
  157. 135.
    Hoover, J.R.E. 1983. β-Lactam antibiotics; structure-activity relationships, p. 119–245. In A.L. Demain and N.A. Solomon (ed.), Antibiotics containing the betalactam structure. II. Handbook of experimental pharmacology, vol. 67/II, Springer-Verlag, Berlin/Heidelberg.Google Scholar
  158. 136.
    Hoover, J.R.E., and G.L. Dunn. 1979. The β-lactam antibiotics, p. 83–172. In M.E. Wolff (ed.), Burger’s medicinal chemistry. Part II. 4th ed. Wiley and Sons, Inc., New York.Google Scholar
  159. 137.
    Huovinen, P., S. Huovinen, and G.A. Jacoby. 1988. Sequence of PSE-2 β-lactamase. Antimicrob. Agents Chemother. 32:134–136.PubMedGoogle Scholar
  160. 137a.
    Hurlbut, S., G.J. Cuchural, and F.P. Tally. 1990. Imipenem resistance in Bacteroides distasonis mediated by a novel β-lactamase. Antimicrob. Agents Chemother. 34:117–120.PubMedGoogle Scholar
  161. 138.
    Iida, K., S. Hirata, S. Nakamuta, and M. Koike. 1978. Inhibition of cell division in Escherichia coli by a new synthetic penicillin, piperacillin. Antimicrob. Agents Chemother. 14:257–266. PubMedGoogle Scholar
  162. 139.
    Imada, A., K. Kitano, K. Kintaka, M. Muroi, and M. Asai. 1981. Sulfazecin and isosulfazecin, novel β-lactam antibiotics of bacterial origin. Nature 289:590–591.PubMedGoogle Scholar
  163. 140.
    Indelicato, J.M., T.T. Norvilas, R.R. Pfeiffer, W.J. Wheeler, and W.L. Wilham. 1974. Substituent effects upon the base hydrolysis of penicillins and cephalosporins. Competitive intramolecular nucleophilic amino attack in cephalosporins. J. Med. Chem. 17:523–527.PubMedGoogle Scholar
  164. 141.
    Indelicato, J.M., and W.L. Wilham 1974. Effect of 6-a substitution in penicillins and 7-a substitution in cephalosporins upon β-lactam reactivity. J. Med. Chem. 17:528–529.PubMedGoogle Scholar
  165. 142.
    Ishino, F., W. Park, S. Tomioka, S. Tamaki, I. Takase, K. Kunugita, H. Matsuzawa, S. Asoh, T. Ohta, B.G. Spratt, and M. Matsuhashi. 1986. Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and rodA protein. J. Biol. Chem. 261:7024–7031.PubMedGoogle Scholar
  166. 143.
    Ishino, F., M. Wachi, K.-H. Ueda, Y. Ito, R.A. Nicholas, J.L. Strominger, T. Senda, K. Ishikawa, Y. Mitsui, and M. Matsuhashi. 1988. Crystallization and preliminary crystallographic studies of the high-molecular-weight penicillin-binding protein 1B-8 of Escherichia coli , p. 285–291. In P. Actor, L. Daneo Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.Google Scholar
  167. 144.
    Izaki, K., M. Matsuhashi, and J.L. Strominger. 1968. Biosynthesis of the peptidoglycan of bacterial cell walls. XIII. Peptidoglycan transpeptidase and walanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J. Biol. Chem. 243:3180–3192.PubMedGoogle Scholar
  168. 145.
    Jacoby, G.A., and L. Sutton. 1985. β-Lactamases and f3-lactam resistance in Escherichia coli. Antimicrob. Agents Chemother. 28:703–705.PubMedGoogle Scholar
  169. 146.
    Jansson, J.A.T. 1965. A direct spectrophotometric assay for penicillin f3-lactamase (penicillinase). Biochim. Biophys. Acta 99:171–172.PubMedGoogle Scholar
  170. 147.
    Jaurin, B., and T. Grundström. 1981. AmpC cephalosporinase of Escherichia coli K12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc. Natl. Acad. Sci. USA 78:4897–4901.PubMedGoogle Scholar
  171. 148.
    Johnson, J.R., R.B. Woodward, and R. Robinson. 1949. The constitution of the penicillins, p. 440–454. In H.T. Clarke, J.R. Johnson, and R. Robinson (ed.), The chemistry of penicillin. Princeton University Press, Princeton, NJ.Google Scholar
  172. 149.
    Joris, B., F. De Meester, M. Galleni, and J.-M. Frère, and J. van Beeumen. 1987. The Kl β-lactamase of Klebsiella pneumoniae. Biochem. J. 243:561–567.PubMedGoogle Scholar
  173. 150.
    Joris, B., J.-M. Ghuysen, G. Dive, A. Renard, O. Dideberg, P. Charlier, J.-M. Frère, J.A. Kelly, J.C. Boyington, P.C. Moews, and J.R. Knox. 1988. The activesite-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem. J. 250:313–324.PubMedGoogle Scholar
  174. 151.
    Jungheim, L.N., S.K. Sigmund, and J.W. Fisher. 1987. Bicyclic pyrazolidinones, a new class of antibacterial agent based on the β-lactam model. Tetrahedron Lett. 28: 285–288.Google Scholar
  175. 152.
    Juteau, J.-M., and R.C. Levesque. 1990. Sequence analysis and evolutionary perspectives of ROB-1 β-lactamase. Antimicrob. Agents Chemother. 34:1354–1359.PubMedGoogle Scholar
  176. 153.
    Kahan, J.S., F.M. Kahan, R. Goegelman, S.A. Currie, M. Jackson, E.O. Stapley, T.W. Miller, A.K. Miller, D. Hendlin, S. Mochales, S. Hemadez, H.B. Woodruff, and J. Birnbaum. 1979. Thienamycin, a new β-lactam antibiotic. 1. Discovery, taxonomy, isolation and physical properties. J. Antibiot. 32:1–12.PubMedGoogle Scholar
  177. 154.
    Kamiya, K., M. Takamoto, Y. Wada, and M. Asai. 1981. Structure of sulfazecinmethanol (1/1). Acta Crystallogr., Sect. B 37:1626–1628. Google Scholar
  178. 155.
    Keith, D.D., J. Tengi, P. Rossman, L. Todaro, and M. Weigele. 1983. A comparison of the antibacterial and β-lactamase inhibiting properties of penam and (2,3)-βmethylenepenam derivatives: the discovery of a new β-lactamase inhibitor. Conformational requirements for penicillin antibacterial activity. Tetrahedron 39:2445–2458.Google Scholar
  179. 156.
    Kelly, J.A., O. Dideberg, P. Charlier, J.P. Wery, M. Libert, P.C. Moews, J.R. Knox, C. Duez, C. Fraipont, B. Joris, J. Dusart, J.-M Frère, and J.-M. Ghuysen. 1986. On the origin of bacterial resistance to penicillin: Comparison of a β-lactamase and a penicillin target. Science 231:1429–1431.PubMedGoogle Scholar
  180. 157.
    Kelly, J.A., J.R. Knox, P.C. Moews, J.-M. Frère, and J.-M. Ghuysen. 1988. Using X-ray diffraction results and computer graphics to design β-lactams. J. Japanese Assoc. Infectious Diseases 62:182–191.Google Scholar
  181. 158.
    Kelly, J.A., J.R. Knox, P.C. Moews, G.J. Hite, J.B. Bartolone, H. Zhao, B. Joris, J.-M. Frère, and J.-M. Ghuysen. 1985. 2.8 A structure of penicillin-sensitive D alanyl carboxypeptidase-transpeptidase from Streptomyces R61 and complexes with β-lactams. J. Biol. Chem. 260:6449–6458.PubMedGoogle Scholar
  182. 159.
    Kelly, J.A., J.R. Knox, P.C. Moews, J. Moring, and H.C. Zhao. 1988b. Molecular graphics: studying β-lactam inhibition in three dimensions, p. 261–267. In P. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.Google Scholar
  183. 160.
    Kelly, J.A., J.R. Knox, H. Zhao, J.-M. Frère, and J.-M. Ghuysen. 1989. Crystallographic mapping of β-lactams bound to a D-alanyl-D-alanine peptidase target enzyme. J. Mol. Biol. 209:281–295.PubMedGoogle Scholar
  184. 161.
    Kiester, E. Jr. 1990. Penicillin and a revolution in world health. Smithsonian 21:172–187.Google Scholar
  185. 162.
    Knap, A.K., and R.F. Pratt. 1991. Inactivation of the RTEM-1 cysteine β-lactamase by iodoacetate. The nature of active-site functional groups and comparisons with the native enzyme. Biochem. J. 273:85–91.PubMedGoogle Scholar
  186. 163.
    Knowles, J.R. 1985. Penicillin resistance: the chemistry of β-lactamase inhibition. Acct. Chem. Res. 18:97–104.Google Scholar
  187. 164.
    Knox, J.R., and J.A. Kelly. 1989. Crystallographic comparison of penicillin-recognizing enzymes, p. 46–55 In S.M. Roberts (ed.), Molecular recognition: chemical and biochemical problems. Special publication No. 78. Proceedings of an international symposium. Royal Society of Chemistry, London.Google Scholar
  188. 165.
    Knox, J.R., and R.F. Pratt. 1990. Different modes of vancomycin and D-alanyl-Dalanine peptidase binding to cell wall peptide and a possible role for the vancomycin resistance protein. Antimicrob. Agents Chemother. 34:1342–1347. PubMedGoogle Scholar
  189. 166.
    Kozarich, J.W., and J.L. Strominger. 1978. A membrane enzyme from Staphylococcus aureus which catalyzes transpeptidase, carboxypeptidase, and penicillinase activities. J. Biol. Chem. 253:1272–1278. PubMedGoogle Scholar
  190. 167.
    Kraus, W., and J.-V. Höltje. 1987. Two distinct transpeptidation reactions during murein synthesis in Escherichia coli. J. Bacteriol. 169:3099–3103.PubMedGoogle Scholar
  191. 168.
    Kraut, J. 1977. Serine proteases: structure and mechanism of catalysis. Ann. Rev. Biochem. 46:331–358. PubMedGoogle Scholar
  192. 169.
    Kraut, J. 1988. How do enzymes work? Science 242:533–540.PubMedGoogle Scholar
  193. 170.
    Labia, R., P. Baron, J.M. Masson, G. Hill, and M. Cole. 1984. Affinity of temocillin for Escherichia coli K-12 penicillin-binding proteins. Antimicrob. Agents Chemother. 26:335–338.PubMedGoogle Scholar
  194. 171.
    Labischinski, H., H. Maidhof, M. Franz, D. Krüger, T. Sidow, and P. Giesbrecht. 1988. Biochemical and biophysical investigations into the cause of penicillin-induced lytic death of Staphylococci: checking predictions of the murosome model, p. 242–257. In P. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.Google Scholar
  195. 172.
    Lamotte-Brasseur, J., G. Dive, and J.-M. Ghuysen. 1984. On the structural analogy between D-alanyl-D-alanine terminated peptides and β-lactam antibiotics. Eur. J. Med. Chem.-Chim. Ther. 19:319–330.Google Scholar
  196. 172a.
    Lamotte-Brasseur, J., G. Dive, and J.-M. Ghuysen. 1991. Conformational analysis of β and y-lactam antibiotics. Eur. J. Med. Chem. 26:43–50.Google Scholar
  197. 173.
    Lee, B. 1971. Conformation of penicillin as a transition-state analog of the substrate of peptidoglycan transpeptidase. J. Mol. Biol. 61:463–469.PubMedGoogle Scholar
  198. 174.
  199. 175.
    Lindberg, F., L. Westman, and S. Normark. 1985. Regulatory components in Citrobacter freundii ampC β-lactamase induction. Proc. Natl. Acad. Sci. USA 82:4620–4624.PubMedGoogle Scholar
  200. 176.
    Lowe, G., and S. Swain. 1984. Do β-lactam antibiotics require a β-lactam ring? p. 209–221. In A.G. Brown and S.M. Roberts (ed.), Recent advances in the chemistry of β-lactam antibiotics. Proceedings of the 3rd international symposium. Special publication No 52. Royal Society of Chemistry, London.Google Scholar
  201. 177.
    Lugtenberg, B., and L. van Alphen. 1983. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim. Biophys. Acta 737:51–115. PubMedGoogle Scholar
  202. 178.
    Lund, F., and L. Tybring. 1972. 6-β-Amidinopenicillanic acids-a new group of antibiotics. Nature New Biology 236:135–137. PubMedGoogle Scholar
  203. 178a.
    Mabilat, C., and P. Courvalin. 1990. Development of “oligotyping” for the characterization and molecular epidemiology of TEM-derived β-lactamases in members of the family Enterobacteriaceae. Antimicrob. Agents Chemother. 34:2210–2216.PubMedGoogle Scholar
  204. 178b.
    Madiraju, M. V.V.S., D.P. Brunner, B.J. Wilkinson. 1987. Effects of temperature, NaC1, and methicillin on penicillin-binding proteins, growth, peptidoglycan synthesis, and autolysis in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 31:1727–1733. PubMedGoogle Scholar
  205. 179.
    Makover, S.D., R. Wright, and E. Telep. Penicillin-binding proteins in Haemophilus influenzae. Antimicrob. Agents Chemother. 19:584–588.Google Scholar
  206. 180.
    Mansford, K.R.L. 1987. Properties of recent penam antibiotics, p. 149–160. In H. Umezawa (ed.), Frontier of antibiotic research symposium in bioscience. Academic Press. Orlando, FL.Google Scholar
  207. 181.
    Marchand-Brynaert, J., Z. Bounkhala-Khrouz, J.S. Carretero, J. Davies, D. Ferroud, B.J. van Keulen, B. Serckx-Poncin, and L. Ghosez. 1989. Synthesis of potential inhibitors of bacterial DD-peptidases, p. 157–170. In P.H. Bentley and R. Southgate (ed.), Recent advances in the chemistry of β-lactam antibiotics. Proceedings of the 4th international symposium. Special Publication No 70. Royal Society of Chemistry, London.Google Scholar
  208. 181a.
    Mastalerz, H., M. Menard, V. Vinet, J. Desiderio, J. Fung-Tomc, R. Kessler, and Y. Tsai. 1988. An examination of 0–2-isocephems as orally absorbable antibiotics. J. Med. Chem. 31:1190–1196.PubMedGoogle Scholar
  209. 182.
    Matsuhashi, M., M.D. Song, F. Ishino, M. Wachi, M. Doi, M. Inoue, K. Ubukata, N. Yamashita, and M. Konno. 1986. Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to β-lactam antibiotics in Staphylococcus aureus. J. Bacteriol. 167:975–980.PubMedGoogle Scholar
  210. 183.
    Matthew, M. 1978. Properties of the β-lactamase specified by the Pseudomonas plasmid R151. FEMS Microbiol. Lett. 4:241–244.Google Scholar
  211. 184.
    Matthew, M. 1979. Plasmid-mediated beta-lactamases of gram-negative bacteria: properties and distribution. J. Antimicrob. Chemother. 5:349–358.PubMedGoogle Scholar
  212. 185.
    Medeiros, A.A., R. Levesque, and G.A. Jacoby. 1986. An animal source for the ROB-1 β-lactamase of Hemophilus influenzae type b. Antimicrob. Agents Chemother. 29:212–215.PubMedGoogle Scholar
  213. 186.
    Medeiros, A.A., M. Cohenford, and G.A. Jacoby. 1985. Five novel plasmiddetermined β-lactamases. Antimicrob. Agents Chemother. 27:715–719.PubMedGoogle Scholar
  214. 187.
    Mendelman, P.M., D.O. Chaffin, T.L. Stull, C.E. Rubens, K.D. Mack, and A.L. Smith. 1984. Characterization of non-β-lactamase-mediated ampicillin resistance in Haemophilus influenzae. Antimicrob. Agents Chemother. 26:235–244.PubMedGoogle Scholar
  215. 188.
    Mett, H., B. Schacher, and L. Wegmann. 1988. Ultrasonic disintegration of bacteria may lead to irreversible inactivation of β-lactamase. J. Antimicrob. Chemother. 22:293–298.PubMedGoogle Scholar
  216. 189.
    Mirelman, D.E. 1979. Biosynthesis and assembly of cell wall peptidoglycan, p. 115–166. In M. Inouye (ed.), Bacterial outer membrane: biogenesis and functions. John Wiley and Sons, New York.Google Scholar
  217. 190.
    Mirelman, D. 1981. Assembly of wall peptidoglycan polymers, p. 67–86. In M.R.J. Salton and G.D. Shockman (ed.), β-Lactam antibiotics: mode of action, new developments, and future prospects, Academic Press, New York.Google Scholar
  218. 191.
    Mitsuyama, J., R. Hiruma, A. Yamaguchi, and T. Sawai. 1987. Identification of porins in outer membrane of Proteus , Morganella , and Providencia spp. and their role in outer membrane permeation of β-lactams. Antimicrob. Agents Chemother. 31:379–384.PubMedGoogle Scholar
  219. 192.
    Mochizuki, H., H.Yamada, Y. Oikawa, K. Murakami, J. Ishiguro, H. Kosuzume, N. Aizawa, and E. Mochida. 1988. Bactericidal activity of M14659 enhanced in low-iron environments. Antimicrob. Agents Chemother. 32:1648–1654.PubMedGoogle Scholar
  220. 193.
    Moews, P.C., J.R. Knox, O. Dideberg, P. Charlier, and J.-M. Frère. 1990. βLactamase of Bacillus licheniformis 749/C. Proteins 7:156–171.PubMedGoogle Scholar
  221. 194.
    Monks, J., and S.G. Waley. 1988. Imipenem as substrate and inhibitor of βlactamases. Biochem. J. 253:323–328.PubMedGoogle Scholar
  222. 195.
    Morin, R.B., and M. Gorman. 1982. Chemistry and biology of β-lactam antibiotics, vol. 1, 2, and 3. Academic Press, New York.Google Scholar
  223. 196.
    Mossakowska, D., N.A. Ali, and J.W. Dale. 1989. Oxacillin-hydrolysing β-lactamases. A comparative analysis at nucleotide and amino acid sequence levels. Eur. J. Biochem. 180:309–318. PubMedGoogle Scholar
  224. 197.
    Murakami, K., M. Doi, and T. Yoshida. 1982. Asparenomycins A, B and C, new carbapenem antibiotics. V. Inhibition of β-lactamases. J. Antibiot. 35:39–45.PubMedGoogle Scholar
  225. 198.
    Murphy, B.P., and R.F. Pratt. 1991. N-(Phenylacetyl)glycyl-D-aziridine-2-carboxylate, an acyclic amide substrate of β-lactamases: importance of the shape of the substrate in β-lactamase evolution. Biochemistry. 30:3640–3649.PubMedGoogle Scholar
  226. 199.
    Nagarajan, R., L.D. Boeck, M. Gorman, R.C. Hamill, C.E. Higgins, M.M. Hoehn, W.M. Stark, and J.G. Whitney. 1971. β-Lactam antibiotics from Streptomyces. J. Am. Chem. Soc. 93:2308–2310.PubMedGoogle Scholar
  227. 200.
    Nakae, T., and J. Ishii. 1978. Transmembrane permeability channels in vesicles reconstituted from single species of porins from Salmonella typhimurium. J. Bacteriol. 133:1412–1418.PubMedGoogle Scholar
  228. 201.
    Nakagawa, J., S. Tamaki, S. Tomioka, and M. Matsuhashi. 1984. Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein lBs of Escherichia coli with activities of transglycosylase and transpeptidase. J. Biol. Chem. 259:13937–13946. PubMedGoogle Scholar
  229. 202.
    Newall, C.E., and P.D. Hallam. 1990. β-Lactam antibiotics: penicillins and cephalosporins, p. 609–653. In C. Hansch, P.G. Sammes, and J.B. Taylor (ed.), Comprehensive medicinal chemistry: the rational design, mechanistic study and therapeutic application of chemical compounds, vol. 2. Enzymes and other molecular targets. Pergamon Press, Oxford.Google Scholar
  230. 203.
    Nguyen-Distèche, M.M. Leyh-bouille, S. Pirlot, J.-M. Frère, and J.M. Ghuysen. 1986. Streptomyces K15 DD-peptidase-catalysed reactions with ester and amide carbonyl donors. Biochem. J. 235:167–176.PubMedGoogle Scholar
  231. 204.
    Nicas, T.I., C.Y.E. Wu, J.N. Hobbs Jr., D.A. Preston, and N.E. Allen. 1989. Characterization of vancomycin resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother. 33:1121–1124.PubMedGoogle Scholar
  232. 205.
    Nicholas, R.A., and J.L. Strominger. 1988. Site-directed mutants of a soluble form of penicillin-binding protein 5 from Escherichia coli and their catalytic properties. J. Biol. Chem. 263:2034–2040.PubMedGoogle Scholar
  233. 206.
    Nikaido, H. 1985. Role of permeability barriers in resistance to β-lactam antibiotics. Pharmacol. Ther. 27:197–231. PubMedGoogle Scholar
  234. 207.
    Nikaido, H., K. Nikaido, and S. Harayama. 1991. Identification and characterization of porins in Pseudomonas aeruginosa. J. Biol. Chem. 266:770–779.PubMedGoogle Scholar
  235. 208.
    Nikaido, H., and S. Normark. 1987. Sensitivity of Escherichia coli to various βlactams is determined by the interplay of outer membrane permeability and degradation by periplasmic β-lactamases: a quantitative treatment. Mol. Microbiol. 1:29–36.PubMedGoogle Scholar
  236. 210.
    Nikaido, H., and E.Y. Rosenberg. 1990. Cir and Fiu proteins in the outer membrane of Escherichia coli catalyze transport of monomeric catechols: study with β-lactam antibiotics containing catechol and analogous groups. J. Bacteriol. 172:1361–1367. PubMedGoogle Scholar
  237. 211.
    Nikaido, H., E.Y. Rosenberg, and J. Foulds. 1983. Porin channels in Escherichia co li: studies with β-lactams in intact cells. J. Bacteriol. 153:232–240.PubMedGoogle Scholar
  238. 212.
    Nikaido, H. and M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49:1–32. PubMedGoogle Scholar
  239. 213.
    Noguchi, H., M. Matsuhashi, and S. Mitsuhashi. 1979. Comparative studies of penicillin-binding proteins in Pseudomonas aeruginosa and Escherichia coll. Eur. J. Biochem. 100:41–49. PubMedGoogle Scholar
  240. 214.
    Novick, R.P. 1982. Micro-iodometric assay of penicillinase. Biochem. J. 83:236–240.Google Scholar
  241. 215.
    Nozaki, Y., N. Katayama, H. Ono, S. Tsubotani, S. Harada, H. Okazaki, and Y. Nakao. 1987. Binding of a non-β-lactam to penicillin-binding proteins. Nature 325:179–180. PubMedGoogle Scholar
  242. 216.
    O’Callaghan, C.H., A. Morris, S.M. Kirby, and A.H. Shingler. 1972. Novel method for detection of β-lactamases by using a chromogenic cephalosporin substrate. Antimicrob. Agents Chemother. 1:283–288.PubMedGoogle Scholar
  243. 217.
    Ohya, S., M. Yamazaki, S. Sugawara, and M. Mitsuhashi. 1979. Penicillin-binding proteins in Proteus species. J. Bacteriol. 137:474–479.PubMedGoogle Scholar
  244. 218.
    Page, M.I. 1984. The mechanisms of reactions of β-lactam antibiotics. Acc. Chem. Res. 17:144–151. Google Scholar
  245. 219.
    Page, M.I. 1987. The mechanisms of reactions of β-lactam antibiotics. Adv. Phys. Org. Chem. 23:165–270.Google Scholar
  246. 220.
    Papanicolaou, G.A., and A.A. Medeiros. 1990. Discrimination of extended-spectrum β-lactamases by a novel nitrocefin competition assay. Antimicrob. Agents Chemother. 34:2184–2192.PubMedGoogle Scholar
  247. 221.
    Park, J.T. 1987. Murein synthesis, p. 663–671. In F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium; cellular and molecular biology, vol. 1. American Society for Microbiology, Washington.Google Scholar
  248. 222.
    Park, J.T., and J.L. Strominger. 1957. Mode of action of penicillin Biochemical basis for the mechanism of action of penicillin and for its selective toxicity. Science 125:99–101.PubMedGoogle Scholar
  249. 223.
    Park, W., and M. Matsuhashi. 1984. Staphylococcus aureus and Micrococcus luteus peptidoglycan transglycosylases that are not penicillin-binding proteins. J. Bacteriol. 157:538–544.PubMedGoogle Scholar
  250. 224.
    Patrick, S., and D.A. Lutton. 1990. Outer membrane proteins of Bacteroides fragilis grown in vivo. FEMS Microbiol. Lett. 71:1–4. Google Scholar
  251. 225.
    Pazhanisamy, S., and R.F. Pratt. 1989. β-Lactamase-catalyzed aminolysis of depsipeptides: peptide inhibition and a new kinetic mechanism. Biochemistry 28:6875–6882.PubMedGoogle Scholar
  252. 226.
    Perun, T.J., and C.L. Propst. 1989. Introduction to computer-aided drug design, p. 1–16. In T.J. Perun and C.L. Propst (ed.), Computer-aided drug design: methods and applications. Marcel Dekker, New York.Google Scholar
  253. 226a.
    Petit, A., G. Gerbaud, D. Sirot, P. Courvalin, and J. Sirot. 1990. Molecular epidemiology of TEM-3 (CTX-1) β-lactamase. Antimicrob. Agents Chemother. 34:219–224.PubMedGoogle Scholar
  254. 227.
    Petrocheilou, V., R.B. Sykes, and M.H. Richmond. 1977. Novel R-plasmid-mediated beta-lactamase from Klebsiella aerogenes. Antimicrob. Agents Chemother. 12:126–128.PubMedGoogle Scholar
  255. 228.
    Pfaendler, H.R., J. Gosteli, R.B. Woodward, and G. Rihs. 1981. Structure, reactivity, and biological activity of strained bicyclic β-lactams. J. Am. Chem. Soc. 103:4526–4531.Google Scholar
  256. 229.
    Philippon, A., R. Labia, and G. Jacoby. 1989. Extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 33:1131–1136.PubMedGoogle Scholar
  257. 230.
    . Piddock, L.J.V., and R. Wise. 1986. Cefoxitin resistance in Bacteroides species: evidence indicating two mechanisms causing decreasing susceptibility. J. Antimicrob. Chemother. 19:161–170. Google Scholar
  258. 231.
    Pisabarro, A.G., F.J. Canada, D. Vazquez, P. Arriaga, and A. Rodriguez-Tebar. 1986. Structural modification of Escherichia coli peptidoglycan induced by bicyclomycin. J. Antibiot. 39:914–921.PubMedGoogle Scholar
  259. 232.
    Pitton, J.S. 1972. Mechanisms of bacterial resistance to antibiotics, p. 15–93. In R.H. Adirna (ed.), Review of physiology, vol. 65. Springer-Verlag, Berlin.Google Scholar
  260. 233.
    Pollock, M.R. 1965. Purification and properties of penicillinases from two strains of Bacillus licheniformis: a chemical, physicochemical and physiological comparison. Biochem. J. 94:666–675.PubMedGoogle Scholar
  261. 234.
    Prats, R., M. Gomez, J. Pla, B. Blasco, and J.A. Ayala. 1989. A new β-lactambinding protein derived from penicillin-binding protein 3 of Escherichia coli. J. Bacteriol. 171:5194–5198.PubMedGoogle Scholar
  262. 235.
    Pratt, R.F. 1989. β-Lactamase inhibitors, p. 178–205. In M. Sandler and H.J. Smith (ed.), Design of enzyme inhibitors as drugs. Oxford University Press, New York.Google Scholar
  263. 236.
    . Price, D.A. 1977. Structure-activity relationships of semisynthetic penicillins. Adv. Appl. Microbiol. 11:17–75. Google Scholar
  264. 237.
    Proctor, P., N.P. Gensmantel, and M.I. Page. 1982. The chemical reactivity of penicillins and other β-lactam antibiotics. J. Chem. Soc. Perkin Trans. 11:1185- 1192.Google Scholar
  265. 238.
    Pullman, B. 1974. Conformational studies in quantum biochemistry, p. 61–89. In R. Daudel and B. Pullman (ed.), The world of quantum chemistry. D. Reidel Publ., Dordrecht, Holland.Google Scholar
  266. 239.
    Quinn, J.P., E.J. Dudek, C.A. diVincenzo, D.A. Lucks, and S.A. Lerner. 1986. Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. J. Infect. Dis. 154:289–294.PubMedGoogle Scholar
  267. 240.
    Rando, R.R. 1975. On the mechanism of action of antibiotics which act as irreversible enzyme inhibitors. Biochem. Pharmacol. 24:1153–1160.PubMedGoogle Scholar
  268. 241.
    Rao, S.N., and R.A.M. O’Ferrall. 1990. A structure-reactivity relationship for base-promoted hydrolysis and methanolysis of monocyclic β-lactams. J. Am. Chem. Soc. 112:2729–2735.Google Scholar
  269. 242.
    Rao, V.S.R., and T.K. Vasudevan. 1979. Conformation and activity of β-lactam antibiotics. CRC Crit. Rev. Biochem. 14:172–206. Google Scholar
  270. 243.
    Rasmussen, B.A., Y. Gluzman, and F.P. Tally. 1990. Cloning and sequencing of the class B β-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob. Agents Chemother. 34:1590–1592. PubMedGoogle Scholar
  271. 244.
    Ratcliffe, R.W., and G. Alberts-Schönberg. 1982. The chemistry of thienamycin and other carbapenam antibiotics. p. 227–313. In R.B. Morin and M. Gorman (ed.), Chemistry and biology of β-lactam antibiotics. Vol. 2. Nontraditional β-lactam antibiotics. Academic Press, New York.Google Scholar
  272. 245.
    Raviglione, M.C., J.F. Boyle, P. Mariuz, A. Pablos-Mendez, H. Cones, and A. Merlo. 1990. Ciprofloxacin-resistant methicillin-resistant Staphylococcus aureus in an acute-care hospital. Antimicrob. Agents Chemother. 34:2050–2054.PubMedGoogle Scholar
  273. 246.
    Reading, C., and M. Cole. 1977. Clavulanic acid: a β-lactamase-inhibiting β-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11:852–857.PubMedGoogle Scholar
  274. 247.
    Reguera, J.A., F. Baquero, J. Berenguer, M. Martinez-Ferrer, and J.L. Martinez. 1990. β-Lactam-fosfomycin antagonism involving modification of penicillin-binding protein 3 in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 34:2093–2096.PubMedGoogle Scholar
  275. 248.
    Reinicke, B., P. Blümel, H. Labischinski, and P. Giesbrecht. 1985. Neither an enhancement of autolytic wall degradation nor an inhibition of the incorporation of cell wall material are pre-requisites for penicillin-induced bacteriolysis in Staphylococci . Arch. Microbiol. 141:309–314. PubMedGoogle Scholar
  276. 249.
    Reusch, V. 1984. Lipopolymers, isoprenoids, and the assembly of the gram-positive cell wall. Crit. Rev. Microbiol. 11:129–155. PubMedGoogle Scholar
  277. 250.
    Reynolds, P.E. 1988. The essential nature of staphylococcal penicillin-binding proteins, p. 343–351. In P. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington D.C.Google Scholar
  278. 251.
    Reynolds, P.E., and D.F.J. Brown. 1985. Penicillin-binding proteins of β-lactamresistant strains of Staphylococcus aureus . FEBS Lett. 192:28–32.PubMedGoogle Scholar
  279. 252.
    Reynolds, P.E., and H. Chase. 1981. β-Lactam-binding proteins: identification as lethal targets and probes of β-lactam accessibility, p. 153–168. In M.R.J. Salton and G.D. Shockman (ed.), β-Lactam antibiotics: mode of action, new developments, and future prospects. Academic Press, New York.Google Scholar
  280. 253.
    Richmond, M.H. 1965. Wild-type variants of exopenicillinase from Staphylococcus aureus . Biochem. J. 94:584–593.PubMedGoogle Scholar
  281. 253a.
    Richmond, M.H., and R.B. Sykes. 1973. The β-lactamases of gram-negative bacteria and their possible physiological role. Adv. Microb. Physiol. 9:31–88.PubMedGoogle Scholar
  282. 254.
    Rogers, H.J., H.R. Perkins, and J.B. Ward. 1980. Microbial cell walls and membranes, p. 1–564. Chapman and Hall, London.Google Scholar
  283. 255.
    Rolinson, G.N. 1986. β-Lactam antibiotics. J. Antimicrob. Chemother. 17:5–36.PubMedGoogle Scholar
  284. 255a.
    Rolinson, G.N. 1989. β-Lactamase induction and resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 23:1–2.PubMedGoogle Scholar
  285. 256.
    Rosdahl, V.T. 1973. Naturally occurring constitutive β-lactamase of novel serotype in Staphylococcus aureus. J. Gen. Microbiol. 77:229–231.PubMedGoogle Scholar
  286. 257.
    Rossi, L., E. Tonin, Y.R. Cheng, and R. Fontana. 1985. Regulation of penicillin-binding protein activity: description of a methicillin-inducible penicillin-binding protein in Staphylococcus aureus. Antimicrob. Agents Chemother. 27:828–831.PubMedGoogle Scholar
  287. 258.
    Rubin, L.G., A.A. Medeiros, R.H. Yolken, and E.R. Moxon. 1981. Ampicillin treatment failure of apparently β-lactamase-negative Haemophilus influenzae type b meningitis due to novel β-lactamase. Lancet ii:1008–1010. Google Scholar
  288. 259.
    Sabath, L.D., M. Jago, and E.P. Abraham. 1965. Cephalosporinase and penicillinase activities of a β-lactamase from Pseudomonas pyocyanea. Biochem. J. 96:739–752.PubMedGoogle Scholar
  289. 260.
    Saino, Y., F. Kobayashi, M. Inoue, and S. Mitsushashi. 1982. Purification and properties of inducible penicillin beta-lactamase isolated from Pseudomonas maltophilia. Antimicrob. Agents Chemother. 22:564–570.PubMedGoogle Scholar
  290. 261.
    Salton, M.R.J., and G.D. Shockman. 1981. β-Lactam antibiotics: mode of action, new developments, and future prospects, p. 1–604. Academic Press, New York.Google Scholar
  291. 262.
    Samraoui, B., B.J. Sutton, R.J. Todd, P.J. Artymiuk, S.G. Waley, and D.C. Phillips. 1986. Tertiary structural similarity between a class A β-lactamase and a penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase. Nature (London) 320:378–380.Google Scholar
  292. 263.
    Samuni, A. 1975. A direct spectrophotometric assay and determination of Michaelis constants for the beta-lactamase reaction. Anal. Biochem. 63:17–26.PubMedGoogle Scholar
  293. 264.
    Sargent, M.G. 1968. Rapid fixed-time assay for penicillinase. J. Bacteriol. 95:1493- 1494.Google Scholar
  294. 265.
    Sassiver, M.L., and A. Lewis. 1977. Structure-activity relationships among semi-synthetic cephalosporins. 1. The first generation compounds, p. 87. In D. Perlman (ed.), Structure-activity relationships among the semisynthetic antibiotics. Academic Press, New York.Google Scholar
  295. 266.
    Sawai, T., S. Hirano, and A. Yamaguchi. 1987. Repression of porin synthesis by salicylate in Escherichia coli , Klebsiella pneumoniae , and Serratia marcescens. FEMS Microbiol. Lett. 40:233–237.Google Scholar
  296. 267.
    Sawai, T., K. Matsuba, and S. Yamagishi. 1977. A method for measuring the outer membrane-permeability of β-lactam antibiotics in gram-negative bacteria. J. Antibiot. 30:1134–1136. PubMedGoogle Scholar
  297. 268.
    Sawai, T., I. Takahashi, and S. Yamagishi. 1978. Iodometric assay method for betalactamase with various beta-lactam antibiotics as substrates. Antimicrob. Agents Chemother. 13:910–913. PubMedGoogle Scholar
  298. 269.
    Schwarz, U., K. Seeger, F. Wengenmayer, and H. Strecker. 1981. Penicillin-binding proteins of Escherichia coli identified with a ’251-derivative of ampicillin. FEMS Microbiol. Lett. 10:107–109. Google Scholar
  299. 270.
    . Serfass, D.A., P.M. Mendelman, D.O. Chaffin, and C.A. Needham. 1986. Ampicillin-resistance and penicillin-binding proteins of Haemophilus influenzae. J. Gen. Microbiol. 132:2855–2861. PubMedGoogle Scholar
  300. 271.
    Shaw, E. 1970. Chemical modification by active-site-directed reagents, p. 91–146. In P.D. Boyer (ed.), The enzymes: structure and control, vol. 1. 3 rd ed . Academic Press, New York.Google Scholar
  301. 272.
    Shepherd, S.T., H.A. Chase, and P.E. Reynolds. 1977. The separation and properties of two penicillin-binding proteins from Salmonella typhimurium. Eur. J. Biochem. 78:521–532.PubMedGoogle Scholar
  302. 27.
    Shlaes, D.M., A. Bouvet, C. Devine, J.H. Shlaes, S. Al-Obeid, and R. Williamson. 1989. Inducible, transferable resistance to vancomycin on Enterococcus faecalis. A256. Antimicrob. Agents Chemother. 33:198–203. PubMedGoogle Scholar
  303. 274.
    Shlaes, D.M., and L.M. Etter. 1990. Synergistic killing of vancomycin-resistant Enterococci of classes A, B, and C by vancomycin, penicillin, gentamicin combinations. 30th Intersci. Conf. Antimicrob. Agents Chemother., abstr. 692.Google Scholar
  304. 275.
    Shockman, G.D., and J.F. Barrett. 1983. Structure, function and assembly of cell walls of gram-positive bacteria. Ann. Rev. Microbiol. 37:501–527.Google Scholar
  305. 276.
    Shute, R.E., D.E. Jackson, and B.W. Bycroft. 1989. Highly conformationally constrained halogenated 6-spiroepoxypenicillins as probes for the bioactive side-chain conformation of benzylpenicillin. J. Computer-Aided Molecular Design 3:149–164.Google Scholar
  306. 277.
    . Simpson, C.N., J.P. Maskell, and J.D. Williams. 1984. The effect of clavulanic acid on the susceptibility of Bacteroides fragilis to three acyl-ureidopenicillins, ampicillin, and carbenicillin. J. Antimicrob. Chemother. 14:133–138. PubMedGoogle Scholar
  307. 278.
    Slocombe, B., M.J. Basker, P.H. Bentley, J.P. Clayton, M. Cole, K.R. Comber, R.A. Dixon, R.A. Edmondson, D. Jackson, D.J. Merrikin, and R. Sutherland. 1981. BRL 17421, a novel β-lactam antibiotic, highly resistant to β-lactamases, giving high and prolonged serum levels in humans. Antimicrob. Agents Chemother. 20:38–46.PubMedGoogle Scholar
  308. 279.
    Smith, S.M., R.H.K. Eng, P. Bais, P. Fan-Havard, and F. Tecson-Tumang. 1990. Epidemiology of ciprofloxacin resistance among patients with methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 26:567–572.PubMedGoogle Scholar
  309. 280.
    Song, M.D., S. Maesaki, M. Wachi, T. Takahashi, M. Doi, F. Ishino, Y. Maeda, K. Okonogi, A. Imada, and M. Matsuhashi. 1988. Primary structure and origin of the gene encoding the β-lactam-inducible penicillin-binding protein responsible for methicillin resistance in Staphylococcus aureus , p. 352–359. In P. Actor, L. DaneoMoore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.Google Scholar
  310. 281.
    Spratt, B.G. 1975. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 72:2999–3003.PubMedGoogle Scholar
  311. 282.
    Spratt, B.G. 1977. Properties of the penicillin-binding proteins of Escherichia coli K12. Eur. J. Biochem. 72:341–352.PubMedGoogle Scholar
  312. 283.
    Spratt, B.G. 1980. Biochemical and genetical approaches to the mechanism of action of penicillin. Phil. Trans. Royal Soc. B289:273–283.Google Scholar
  313. 284.
    Spratt, B.G. 1983. Penicillin-binding proteins and the future of β-lactam antibiotics. J. Gen. Microbiol. 129:1247–1260.PubMedGoogle Scholar
  314. 285.
    Spratt, B.G., L.D. Bowler, A. Edelman, and J.K. Broome-Smith. 1988. Membrane topology of penicillin-binding proteins lb and 3 of Escherichia coli and the production of water-soluble forms of high-molecular-weight penicillin binding proteins, p. 292–305. In P. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.Google Scholar
  315. 286.
    Spratt, B.G., and K.D. Cromie. 1988. Penicillin-binding proteins of gram-negative bacteria. Rev. Infect. Dis. 10:699–711.PubMedGoogle Scholar
  316. 287.
    Suginaka, H., P.M. Blumberg, and J.L. Strominger. 1972. Multiple penicillin-binding components in Bacillus subtilis , Bacillus cereus , Staphylococcus aureus , and Escherichia coli. J. Biol. Chem. 247:5279–5288.PubMedGoogle Scholar
  317. 288.
    Suzuki, H., Y. Nishimura, and Y. Hirota. 1978. On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. Proc. Natl. Acad. Sci. USA 75:664–668.PubMedGoogle Scholar
  318. 289.
    Sweet, R.M., and L.F. Dahl. 1970. Molecular architecture of the cephalosporins: insights into biological activity based on structural investigations. J. Am. Chem. Soc. 92:5489–5507.PubMedGoogle Scholar
  319. 290.
    Sykes, R.B., D.P. Bonner, K. Bush, and N.H. Georgopapadakou. 1982. Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria. Antimicrob. Agents Chemother. 21:85–92.PubMedGoogle Scholar
  320. 291.
    Sykes, R.B., D.P. Bonner, and E.A. Swabb. 1987. Modem β-lactam antibiotics, p. 171–202. In D.J. Tipper (ed.), Antibiotic inhibitors of bacterial cell wall biosynthesis. International Encyclopedia of Pharmacology and Therapeutics, Section 127. Pergamon Press, Oxford.Google Scholar
  321. 292.
    Sykes, R.B., C.M. Cimarusti, D.P. Bonner, K. Bush, D.M. Floyd, N.H. Georgopapadakou, W.H. Koster, W.C. Liu, W.L. Parker, P.A. Principe, M.L. Rathnum, W.A. Slusarchyk, W.H. Trejo, and J.S. Wells. 1981. Monocyclicβ-lactam antibiotics produced by bacteria. Nature (London) 291:489–491.Google Scholar
  322. 293.
    Sykes, R.B., and N.H. Georgopapadakou. 1981. Bacterial resistance to β-lactam antibiotics: an overview, p. 199–214. In M.R.J. Salton and G.D. Shockman (ed.), β-Lactam antibiotics: mode of action, new developments and future prospects. Academic Press, New York.Google Scholar
  323. 293a.
    Sykes, R.B., and M. Matthew. 1976. The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 2:115–157.PubMedGoogle Scholar
  324. 294.
    Temansky, R.J. and S.E. Draheim. 1989. The synthesis and biological evaluation of pyrazolidinone antibacterial agents, p. 139–156. In P.H. Bentley and R. Southgate (ed.), Recent advances in the chemistry of β-lactam antibiotics. Proceedings of the fourth international symposium. Special publication No. 70. Royal Society of Chemistry, London.Google Scholar
  325. 295.
    Then, R.L., and P. Angehrn. 1982. Trapping of nonhydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa as a possible resistance mechanism. Antimicrob. Agents Chemother. 21:711–717.PubMedGoogle Scholar
  326. 296.
    Timewell, R., E. Taylor, and I. Phillips. 1981. The β-lactamases of Bacteroides species. J. Antimicrob. Chemother. 7:137–146. PubMedGoogle Scholar
  327. 297.
    Tipper, D.J. 1987. Mode of action of β-lactam antibiotics, p. 133–170. In D.J. Tipper (ed.), Antibiotic inhibitors of bacterial cell wall biosynthesis. International Encyclopedia of Pharmacology and Therapeutics, Section 127. Pergamon Press, England.Google Scholar
  328. 298.
    Tipper, D.J., and J.L. Stromfinger. 1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc. Natl. Acad. Sci. USA 54:1133–1141. PubMedGoogle Scholar
  329. 299.
  330. 300.
    Tipper, D.J., and A. Wright. 1979. The structure and biosynthesis of bacterial cell walls, p. 291–426. In I.C. Gunsalus, J.R. Sokatch, and L.N. Ornston (ed.), The bacteria, vol. VII. Academic Press, New York.Google Scholar
  331. 301.
    Tomasz, A. 1979. The mechanism of the irreversible antimicrobial effects of penicillin: how the beta-lactam antibiotics kill and lyse bacteria. Annu. Rev. Microbiol. 33:113–137.PubMedGoogle Scholar
  332. 302.
    Tomasz, A. 1983. Mode of action of β-lactam antibiotics-a microbiologist’s view, p. 15–96. In A.L. Demain and N.A. Solomon (ed.), Antibiotics containing the betalactam structure I. Handbook of experimental pharmacology, vol. 67/I. Springer-Verlag, Berlin/Heidelberg.Google Scholar
  333. 303.
    Tomasz, A. 1986. Penicillin-binding proteins and the antibacterial effectiveness of beta-lactam antibiotics. Rev. Infect. Dis. 8(Suppl. 3):260–278.Google Scholar
  334. 304.
    Trias, J., and H. Nikaido. 1990. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 34:52–57.PubMedGoogle Scholar
  335. 305.
    . Trias, J., and H. Nikaido. 1990. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J. Biol. Chem. 265:15680–15684. PubMedGoogle Scholar
  336. 306.
    Tuomanen, E., and J. Schwartz. 1987. Penicillin-binding protein 7 and its relationship to lysis of nongrowing Escherichia coli . J. Bacteriol. 169:4912–4915.PubMedGoogle Scholar
  337. 307.
    Ubukata, K., N. Yamashita, and M. Konno. 1985. Occurrence of a β-lactaminducible penicillin-binding protein in methicillin-resistant Staphylococci. Antfimicrob. Agents Chemother. 27:851–857.Google Scholar
  338. 307a.
    Ubukata, K., R. Nonoguchi, M. Matsuhashi, and M. Konno. 1989. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. J. Bacteriol. 171:2882–2885.PubMedGoogle Scholar
  339. 308.
    Umezawa, H. 1987. Frontiers of antibiotic research, p. 1–363. Proceedings of the 4th Takeda Science Foundation Symposium on Bioscience. Academic Press, Inc., Orlando, FL.Google Scholar
  340. 309.
    Utsui, Y., S. Ohya, T. Magaribuchi, M. Tajima, and T. Yokota. 1986. Antibacterial activity of cefmetazole alone and in combination with fosfomycin against methicillinand cephem-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 30:917–922.PubMedGoogle Scholar
  341. 310.
    Vachon, V., D.J. Lyew, and J.W. Coulton. 1985. Transmembrane permeability channels across the outer membrane of Haemophilus infiuenzae type b. J. Bacteriol. 162:918–924.PubMedGoogle Scholar
  342. 310a.
    Varetto, L., J.-M. Frère, M. Nguyen-Distèche, J.-M. Ghuysen, and C. Houssier. 1987. The pH dependence of the active-site serine DD-peptidase of Streptomyces R61. Eur. J. Biochem. 162:525–531.PubMedGoogle Scholar
  343. 311.
    Vu, H., and H. Nikaido. 1985. Role of β-lactam hydrolysis in the mechanism of resistance of a β-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum β-lactams. Antimicrob. Agents Chemother. 27:393–398.PubMedGoogle Scholar
  344. 312.
    Waley, S.G. 1987. An explicit model for bacterial resistance: application to βlactam antibiotics. Microbiol. Sci. 4:143–146. PubMedGoogle Scholar
  345. 313.
    Ward, J.B. 1984. Biosynthesis of peptidoglycan: points of attack by wall inhibitors. Pharmac. Ther. 25:327–369.Google Scholar
  346. 314.
    Watanabe, N., T. Nagasu, K. Katsu, and K. Kitoh. 1987. E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob. Agents Chemother. 31:497–504.PubMedGoogle Scholar
  347. 315.
    Waxman, D.J., and J.L. Strominger. 1982. β-Lactam antibiotics; biochemical modes of action, p. 210–285. In R.B. Morin and M. Gorman (ed.), Chemistry and biology of β-lactam antibiotics, vol. 3. The biology of β-lactam antibiotics. Academic Press, New York.Google Scholar
  348. 316.
    Waxman, D.J., and J.L. Strominger. 1983. Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Ann. Rev. Biochem. 52:825–869.PubMedGoogle Scholar
  349. 317.
    Waxman, D.J., R.R. Yocum, and J.L. Strominger. 1980. Penicillins and cephalosporins are active site-directed acylating agents: evidence in support of the substrate analogue hypothesis. Phil. Trans. R. Soc. Lond. B 289:257–271.Google Scholar
  350. 318.
    Webber, J.A., and J.L. Ott. 1977. Structure-activity relationships in the cephalosporins. II. Recent developments, p. 161–237. In D. Perlman (ed.), Structure-activity relationships among the semisynthetic antibiotics. Academic Press, New York.Google Scholar
  351. 319.
    Wiedemann, B., C. Kliebe, and M. Kresken. 1989. The epidemiology of β-lactamases. J. Antimicrob. Chemother. 24(Suppl. B):1–22. PubMedGoogle Scholar
  352. 320.
    Williamson, R. S.B. Calderwood, R.C. Moellering, and A. Tomasz. 1983. Studies on the mechanism of intrinsic resistance to β-lactam antibiotics in group D streptococci. J. Gen. Microbiol. 129:813–822. PubMedGoogle Scholar
  353. 321.
    Williamson, R., R. Hakenbeck, and A. Tomasz. 1980. The penicillin-binding proteins of Streptococcus pneumoniae grown under lysis-permissive and lysis-protective (tolerant) conditions. FEMS Microbiol. Lett. 7:127–131.Google Scholar
  354. 322.
    Williamson, R., C. Le Bouguénec, L. Gutmann, and T. Horaud. 1985. One or two low affinity penicillin-binding proteins may be responsible for the range of susceptibility of Enterococcus faecium to benzylpenicillin. J. Gen. Microbiol. 131:1933–1940. PubMedGoogle Scholar
  355. 323.
    Wise, E.M., Jr., and J.T. Park. 1965. Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall muropeptide synthesis. Proc. Natl. Acad. Sci. USA 54:75–81.PubMedGoogle Scholar
  356. 325.
    Wolfe, S., M. Khalil, and D.F. Weaver. 1988a. MMPEN: development and evaluation of penicillin parameters for Allinger’s MMP2(85) programme. Can. J. Chem. 66:2715–2732.Google Scholar
  357. 327.
    Wolfe, S., K. Yang, and M. Khalil. 1988b. Conformation-activity relationships and the mechanism of action of penicillin. Can. J. Chem. 66:2733–2750.Google Scholar
  358. 328.
    Woodruff, W.A., and R.E.W. Hancock. 1989. Pseudomonas aeruginosa outer membrane protein F: structural role and relationship to the Escherichia coli OmpA protein. J. Bacteriol. 171:3304–3309. PubMedGoogle Scholar
  359. 329.
    Woodward, R.B. 1980. Penems and related substances. Phil. Trans. R. Soc. Lond. B 289:239–250.Google Scholar
  360. 330.
    Wrezel, P. W., L.F. Ellis, and F.C. Neuhaus. 1986. In vivo target of benzylpenicillin in Gaffkya homari. Antimicrob. Agents Chemother. 29:432–439.PubMedGoogle Scholar
  361. 331.
    Wyke, A.W., J.B. Ward, M.V. Hayes, and N.A.C. Curtis. 1981. A role in vivo for penicillin-binding protein-4 of Staphylococcus aureus. Eur. J. Biochem. 119:389–393.PubMedGoogle Scholar
  362. 332.
    Yoshihara, E., and T. Nakae. 1989. Identification of porins in the outer membrane of Pseudomonas aeruginosa that form small diffusion pores. J. Biol. Chem. 264:6297–6301PubMedGoogle Scholar
  363. 333.
    Yoshimura, F., and H. Nikaido. 1985. Diffusion of β-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob. Agents Chemother. 27:84– 92.PubMedGoogle Scholar
  364. 334.
    Yotsuji, A., S. Minami, M. Inoue, and S. Mitsuhashi. 1983. Properties of a novel beta-lactamase produced by Bacteroides fragilis. Antimicrob. Agents Chemother. 24:925–929.PubMedGoogle Scholar
  365. 335.
    Yotsuji, A., J. Mitsuyama, R. Hori, T. Yasuda, I. Saikawa, M. Inoue, and S. Mitsuhashi. 1988. Outer membrane permeation of Bacteroides fragilis by cephalosporins. Antimicrob. Agents Chemother. 32:1097–1099. PubMedGoogle Scholar
  366. 336.
    Young, J.D.E., M. Blake, A. Mauro, and Z.A. Cohn. 1983. Properties of the major outer membrane protein from Neisseria gonorrhoeae incorporated into model lipid membranes. Proc. Natl. Acad. Sci. USA 80:3831–3835.PubMedGoogle Scholar
  367. 337.
    Zighelboim, S., and A. Tomasz. 1980. Penicillin-binding proteins of multiply antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 17:434–442.PubMedGoogle Scholar
  368. 338.
    Zimmerman, W., and A. Rosselet. 1977. Function of the outer membrane of Escherichia coli as a permeability barrier to β-lactam antibiotics. Antimicrob. Agents Chemother. 12:368–372.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Francis C. Neuhaus
  • Nafsika Georgopapadakou

There are no affiliations available

Personalised recommendations