Skip to main content

Abstract

It has been 50 years since Florey, Chain and their associates first described the treatment of staphylococcal and streptococcal infections with penicillin (49). This epoch-making discovery ushered in a new era of fruitful research culminating in the identification of the bacterial cell wall as the target of this β-lactam (222). Penicillin was found to act by inhibiting the cross-linking enzymes involved in the biosynthesis of peptidoglycan (PG), the major cell-wall polymer (298, 323). For many scientists, the design of β-lactams targeted specifically to these essential enzymes is the ultimate research goal in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Actor, P., L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman. 1988. Antibiotic inhibition of bacterial cell surface assembly and function, p. 1–657. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  2. Adachi, H., T. Ohta, and H. Matsuzawa. 1987. A water-soluble form of penicillin-binding protein 2 of Escherichia coli constructed by site-directed mutagenesis. FEBS Lett. 226:150–154.

    PubMed  CAS  Google Scholar 

  3. Adachi, H., T. Ohta, and H. Matsuzawa. 1991. Site-directed mutants, at position 166, of RTEM-1 β-lactamase that form a stable acyl-enzyme intermediate with penicillin. J. Biol. Chem. 266:3186–3191.

    PubMed  CAS  Google Scholar 

  4. Albrecht, H.A., G. Beskid, K.-K. Chan, J.G. Christenson, R. Cleeland, K.H. Deitcher, N.H. Georgopapadakou, D.D. Keith, D.L. Pruess, J. Sepinwall, A.C. Specian Jr., R.L. Then, M. Weigele, K.F. West, and R. Yang. 1990. Cephalosporin 3’-quinolone esters with a dual mode of action. J. Med. Chem. 33:77–86.

    PubMed  CAS  Google Scholar 

  5. Albrecht, H.A., G. Beskid, K.-K. Chan, J.G. Christenson, R. Cleeland, K.H. Deitcher, D.D. Keith, D.L. Pruess, J. Sepinwall, A. Specian Jr., R.L. Then, M. Weigele, and K.F. West. 1988. Dual-action cephalosporins: an idea whose time has come. 28th Intersci. Conf. Antimicrob. Agents Chemother., abstr. 441.

    Google Scholar 

  6. Albrecht, H.A., G. Beskid, N.H. Georgopapadakou, D.D. Keith, F.M. Konzelman, D.L. Pruess, P. Rossman, and C.C. Wei. 1990. Dual-action cephalosporins: cephalosporin 3’-quinolone carbamates. 30th Intersci. Conf. Antimicrob. Agents Chemother., abstr. 402.

    Google Scholar 

  7. Allen, N.E., D.B. Boyd, J.B. Campbell, J.B. Deeter, T.K. Elzey, B.J. Foster, L.D. Hatfield, J.N. Hobbs, Jr., W.J. Hornback, D.C. Hunden, N.D. Jones, M.D. Kinnick, J.M. Morin, Jr., J.E. Munroe, J.K. Swartzendruber, and D.G. Vogt. 1989. Molecular modeling of y-lactam analogues of β-lactam antibacterial agents: synthesis and biological evaluation of selected penem and carbapenem analogues. Tetrahedron 45:1905–1928.

    CAS  Google Scholar 

  8. Al-Obeid, S., E. Collatz, and L. Gutmann. 1990. Mechanism of resistance to vancomycin in Enterococcus faecium D366 and Enterococcus faecalis A256. Antimicrob. Agents Chemother. 34:252–256.

    CAS  Google Scholar 

  9. Ambler, R.P. 1980. The structure of β-lactamases. Phil. Trans. R. Soc. (Biol) 289:321–331.

    CAS  Google Scholar 

  10. Ambler, R.P., M. Daniel, J. Fleming, J.-M. Hermoso, C. Pang, and S.G. Waley. 1985. The amino acid sequence of the zinc-requiring β-lactamase II from the bacterium Bacillus cereus 569. FEBS Lett. 189:207–211.

    PubMed  CAS  Google Scholar 

  11. Aoki, H., H. Sakai, M. Kohsaka, T. Konomi, J. Hosoda, Y. Kubochi, E. Iguchi and H. Imanaka. 1976. Nocardicin A, a new monocyclic β-lactam antibiotic. I. Discovery, isolation and characterization. J. Antibiot. 29:492–500.

    PubMed  CAS  Google Scholar 

  12. Arakawa, Y., M. Ohta, N. Kido, Y. Fujii, T. Komatsu, and N. Kato. 1986. Close evolutionary relationship between the chromosomally encoded β-lactamase gene of Klebsiella pneumoniae and the TEM β-lactamase gene mediated by R plasmids. FEBS Lett. 207:69–74.

    PubMed  CAS  Google Scholar 

  13. Arakawa, Y., M. Ohta, N. Kido, M. Mori, H. Ito, T. Komatsu, Y. Fujii, and N. Kato. 1989. Chromosomal β-lactamase of Klebsiella oxytoca a new class A enzyme that hydrolyzes broad-spectrum β-lactam antibiotics. Antimicrob. Agents Chemother. 33:63–70.

    PubMed  CAS  Google Scholar 

  14. Arisawa, M., and R.L. Then. 1982. 6-Acetylmethylenepenicillanic acid (Ro 15903), a potent β-lactamase inhibitor. I. Inhibition of chromosomally and R-factormediated β-lactamases. J. Antibiot. 35:1578–1583.

    PubMed  CAS  Google Scholar 

  15. Arisawa, M., and R.L. Then. 1983. Inactivation of TEM-1 β-lactamase by 6acetylmethylenepenicillanic acid. Biochem. J. 209:609–615.

    PubMed  CAS  Google Scholar 

  16. Aronoff, S.C., M.R. Jacobs, S. Johenning, and S. Yamabe. 1984. Comparative activities of the β-lactamase inhibitors YTR 830, sodium clavulanate, and sulbactam combined with amoxicillin or ampicillin. Antimicrob. Agents Chemother. 26:580–582.

    PubMed  CAS  Google Scholar 

  17. Ator, M.A., and P.R. Ortiz de Montellano. 1990. Mechanism-based (suicide) enzyme inactivation, p. 213–282. In D.S. Sigman and P.D. Boyer (ed.), The enzymes, vol. 19. Mechanism of catalysis. 3rd edition. Academic Press, San Diego.

    Google Scholar 

  18. Barbour, A.G. 1981. Properties of the penicillin-binding proteins in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 19:316–322.

    PubMed  CAS  Google Scholar 

  19. Bauernfeind, A. 1986. Classification of β-lactamases. Rev. Infect. Dis. 8 (Suppl. 5):470–481.

    Google Scholar 

  20. Beise, F., H. Labischinski, and P. Giesbrecht. 1988. Role of the penicillin-binding proteins of Staphylococcus aureus in the induction of bacteriolysis by β-lactam antibiotics, p. 360–366. In P. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  21. Bentley, P.H., and R. Southgate. 1989. Recent advances in the chemistry of βlactam antibiotics, p. 1–380. Proceedings of the 4th International Symposium. Royal Society of Chemistry, Special Publication No. 70. London.

    Google Scholar 

  22. Bentley, P.H., and A.V. Stachulski. 1983. Synthesis and biological activity of some fused β-lactam peptidoglycan analogues. J. Chem. Soc. Perkin Trans. I:1187–1192.

    Google Scholar 

  23. Benz, R. Porin from bacterial and mitochondria) outer membranes. CRC Crit. Rev. Biochem. 19:145–190.

    Google Scholar 

  24. Berger-Bächi, B., and C. Ryffel. 1990. Control PBP 2’ synthesis in Staphylococci . In H. Kleinkauf and H. von Döhren (ed.), 50 Years of Penicillin Application, in press, Berlin.

    Google Scholar 

  25. Berger-Bachi, B., L. Barberis-Maino, A. Straessle, and F.H. Kayser. 1989. FemA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus: molecular cloning and characterization. Mol Gen. Genet. 219:263–269.

    PubMed  CAS  Google Scholar 

  26. . Bicknell, R., E.L. Emanuel, J. Gagnon, and S.G. Waley. 1985. The production and molecular properties of the zing β-lactamase of Pseudomonas maltophilia IID 1275. Biochem. J. 229:791-797.

    PubMed  CAS  Google Scholar 

  27. Blaszczak, L.C., R.F. Brown, G.K. Cook, W.J. Hornback, R.C. Hoying, J.M. Indelicato, C.L. Jordan, A.S. Katner, M.D. Kinnick, J.H. McDonald, III, J.M. Morin, Jr., J.E. Munroe, and C.E. Pasini. 1990. Comparative reactivity of 1-carba1-dethiacephalosporins with cephalosporins. J. Med. Chem. 33:1656–1662.

    PubMed  CAS  Google Scholar 

  28. Böhme, E.H.W., H.E. Applegate, B. Toeplitz, J.E. Dolfini, and J.Z. Gougoutas. 1971. 6-Methyl penicillins and 7-methyl cephalosporins. J. Am. Chem. Soc. 93:4324–4326.

    PubMed  Google Scholar 

  29. Boissinot, M., and R.C. Levesque. 1990. Nucleotide sequence of the PSE-4 carbenicillinase gene and correlations with the Staphylococcus aureus PC 1 β-lactamase crystal structure. J. Biol. Chem. 265:1225–1230.

    PubMed  CAS  Google Scholar 

  30. Botta, G.A., and J.T. Park. 1981. Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J. Bacteriol. 145:333–340.

    PubMed  CAS  Google Scholar 

  31. Bowler, L.D., and B.G. Spratt. 1989. Membrane topology of penicillin-binding protein 3 of Escherichia con. Molecular Microbiol. 3:1277–1286.

    CAS  Google Scholar 

  32. Deleted.

    Google Scholar 

  33. Boyd, D.B. 1979. Conformational analogy between β-lactam antibiotics and tetrahedral transition states of a dipeptide. J. Med. Chem. 22:533–537.

    PubMed  CAS  Google Scholar 

  34. Boyd, D.B. 1982. Theoretical and physicochemical studies on β-lactam antibiotics p. 437–545. In R.B. Morin and M. Gorman (ed.), Chemistry and biology of βlactam antibiotics: penicillins and cephalosporins, vol. 1. Academic Press, New York.

    Google Scholar 

  35. Boyd, D.B. 1983. Quantum mechanics in drug design: methods and applications. Drug Inform. J. 17:121–131.

    CAS  Google Scholar 

  36. Boyd, D.B. 1984. Electronic structures of cephalosporins and penicillins. 15. Inductive effect of the 3-position side chain in cephalosporins. J. Med. Chem. 27:63–66.

    PubMed  CAS  Google Scholar 

  37. Boyd, D.B. 1987. Computer-assisted molecular design studies of β-lactam antibiotics, p. 339–356. In H. Umezawa (ed.), Frontiers of antibiotic research. Proceedings of the 4th Takeda Science Foundation Symposium on Bioscience, Academic Press, Orlando, FL.

    Google Scholar 

  38. Boyd, D.B., J.D. Snoddy, and H.-S Lin. 1991. Molecular simulations of DD-peptidase a model β-lactam-binding protein: synergy between X-ray crystallography and computational chemistry. J. Computational Chemistry 12:635–644.

    CAS  Google Scholar 

  39. Boyd, D.B., D.K. Herron, W.H.W. Lunn, and W.A. Spitzer. 1980. Parabolic relationships between antibacterial activity of cephalosporins and β-lactam reactivity predicted from molecular orbital calculations. J. Am. Chem. Soc. 102:1812–1814.

    CAS  Google Scholar 

  40. Boyd, D.B., and J.L. Ott. 1986a. Lack of relevance of kinetic parameters for exocellular DD-peptidases to cephalosporin MICs. Antimicrob. Agents Chemother. 29:774–780.

    CAS  Google Scholar 

  41. Boyd, D.B. and J.L. Ott. 1986b. Examination of model enzyme and penetration systems in relation to antibacterial activity. J. Antibiot. 39:281–285.

    CAS  Google Scholar 

  42. Broom, N.J.P., K. Coleman, P.A. Hunter, and N.F. Osborne. 1990.6-(Substituted methylene)penems, potent broad spectrum inhibitors of bacterial β-lactamase. II. Racemic furyl and thienyl derivatives. J. Antibiot. 43:76–82.

    PubMed  CAS  Google Scholar 

  43. Broome-Smith, J.K. 1985. Construction of a mutant of Escherichia coli that has deletions of both the penicillin binding protein 5 and 6 genes. J. Gen. Microbiol. 131:2115–2118.

    PubMed  CAS  Google Scholar 

  44. Brown, M.R., W.D.G. Allison, and P. Gilbert. 1988. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J. Antimicrob. Chemother. 22:777–780.

    PubMed  CAS  Google Scholar 

  45. Brown, A.G., D. Butterworth, M. Cole, G. Hanscomb, J.D. Hood, C. Reading, and G.N. Rolinson. 1976. Naturally occurring β-lactamase inhibitors with antibacterial activity. J. Antibiot. 29:668–669.

    PubMed  CAS  Google Scholar 

  46. Brown, A.G., M.J. Pearson, and R. Southgate. 1990. Other β-lactam agents, p. 655–702. In C. Hansch, P.G. Sammes, and J.B. Taylor (ed.), Comprehensive medicinal chemistry; the rational design, mechanistic study and therapeutic application of chemical compounds, vol. 2. Enzymes and other molecular targets. Pergamon Press, Oxford.

    Google Scholar 

  47. Brown, A.G., and S.M. Roberts. 1984. Recent advances in the chemistry of βlactam antibiotics, p. 1–391. Royal Society of Chemistry, Special Publication No. 52. London.

    Google Scholar 

  48. Buchanan, C.E. 1981. Topographical distribution of penicillin-binding proteins in Escherichia coli membrane. J. Bacteriol. 145:1293–1298.

    PubMed  CAS  Google Scholar 

  49. Buckwell, S.C., M.I. Page, S.G. Waley, and J.L. Longridge. 1988. Hydrolysis of 7-substituted cephalosporins catalyzed by β-lactamases I and II from Bacillus cereus and by hydroxide ion. J. Chem. Soc. Perkin Trans. II:1815–1821.

    Google Scholar 

  50. Bugg, T.D.H., S. Dutka-Malen, M. Arthur, P. Courvalin, and C.T. Walsh. 1991. Identification of vancomycin resistance protein VanA as a D-alanine:D-alanine ligase of altered substrate specificity. Biochemistry 30:2017–2021.

    PubMed  CAS  Google Scholar 

  51. Büscher, K.-H., W. Cullmann, W. Dick, and W. Opferkuch. 1987. Imipenem resistance in Pseudomonas aeruginosa resulting from diminished expression of an outer membrane protein. Antimicrob. Agents Chemother. 31:703–708.

    PubMed  Google Scholar 

  52. Bush, K. 1989. Classification of β-lactamases: Groups 1,2a, 2b, and 2b’. Antimicrob. Agents Chemother. 33:264–270.

    PubMed  CAS  Google Scholar 

  53. Bush, K., and R.B. Sykes. 1984. Interaction of β-lactam antibiotics with β-lactamases as a cause for resistance, p. 1–31. In L.E. Bryan (ed.), Antimicrobial drug resistance. Academic Press, New York.

    Google Scholar 

  54. Bush, K., and R.B. Sykes. 1986. Methodology for the study of β-lactamases. Antimicrob. Agents Chemother. 30:6–10.

    PubMed  CAS  Google Scholar 

  55. Bycroft, B.W., R.E. Shute, and M.J. Begley. 1988. Novel β-lactamase inhibitory and antibacterial 6-spiro-epoxypenicillins. J. Chem. Soc., Chem. Commun. 5:274–276.

    Google Scholar 

  56. Cartwright, S.J., and S.G. Waley. 1983. Beta-lactamase inhibitors. Med. Res. Rev. 33:341–382.

    Google Scholar 

  57. Chain, E., H.W. Florey, A.D. Gardner, N.G. Heatley, M.A. Jennings, J. Orr-Ewing, and A.G. Sanders. 1940. Penicillin as a chemotherapeutic agent. Lancet 2:226–228.

    Google Scholar 

  58. Chambers, H.F. 1988. Methicillin-resistant Staphylococci. Clin. Microbiol. Rev. 1:173–186.

    PubMed  CAS  Google Scholar 

  59. Charlier, P.,O. Dideberg, J.-M Frère, P.C. Moews, and J.R. Knox. 1983. Crystallographic data for the β-lactamase from Enterobacter cloacae P99. J. Mol. Biol. 171:237–238.

    PubMed  CAS  Google Scholar 

  60. Christensen, B.G. 1981. Structure-activity relationships in β-lactam antibiotics, p. 101–122. In M.R.J. Salton and G.D. Shockman (ed.), β-Lactam antibiotics: mode of action, new developments, and future prospects. Academic Press, New York.

    Google Scholar 

  61. Christenson, J., N. Georgopapadakou, D. Keith, K.-C. Luk, V. Madison, R. Mook, D. Pruess, J. Roberts, P. Rossman, C.-C. Wei, M. Weigele, and K. West. 1988a. a-Cyclopropylpenams: the synthesis and activity of a new class of penam antibacterials, p. 33–48. In P.H. Bentley and R. Southgate (ed.), Recent advances in the chemistry of β-lactam antibiotics. Proceedings of the 4th international symposium. Royal Society of Chemistry, Special Publication No 70. London.

    Google Scholar 

  62. Christenson, J.G., D.L. Pruess, M.K. Talbot, and D.D. Keith. 1988b. Antibacterial properties of (2,3)-a-and (2,3)-β-methylene analogs of penicillin G. Antimicrob. Agents Chemother. 32:1005–1011.

    CAS  Google Scholar 

  63. Chung, S.K., and D.F. Chodosh. 1989. Computer graphics/molecular mechanics studies of β-lactam antibiotics. Geometry comparison with x-ray crystal structures. Bull. Korean Chem. Soc., 10:185–190.

    CAS  Google Scholar 

  64. Clayden, N.J., C.M. Dobson, L.-Y. Lian, and J.M. Twyman. 1986. A solid-state 13C nuclear magnetic resonance study of the conformational states of penicillins. J. Chem. Soc. Perkin Trans. 1I:1933–1940.

    Google Scholar 

  65. Cohen, N.C. 1983. β-Lactam antibiotics: geometrical requirements for antibacterial activities. J. Med. Chem. 26:259–264.

    PubMed  CAS  Google Scholar 

  66. Cohen, N.C. 1985. Drug design in three dimensions. Advances in Drug Research. 14:41–145.

    CAS  Google Scholar 

  67. Cohen, N.C., I. Ernest, H. Fritz, H. Fuhrer, G. Rihs, R. Scartazzini, and P. Wirz. 1987. 183. Are the known Δ2-cephems inactive as antibiotics because of an unfavourable steric orientation of their 4a-carboxylic group? Synthesis and biology of two Δ 2-cephem-4β-carboxylic acids. Heiv. Chim. Acta 70:1967–1979.

    CAS  Google Scholar 

  68. Cohen, S.A., and R.F. Pratt. 1980. Inactivation of Bacillus cereus β-lactamase I by 6-β-bromopenicillanic acid: mechanism. Biochemistry 19:3996–4003.

    PubMed  CAS  Google Scholar 

  69. Cohenford, M.A., J. Abraham, and A.A. Medeiros. 1988. A colorimetric procedure for measuring β-lactamase activity. Anal. Biochem. 168:252–258.

    CAS  Google Scholar 

  70. Coleman, K., D.R.J. Griffin, J.W.J. Page, and P.A. Upshon. 1989. In-vitro evaluation of BRL 42715, a novel β-lactamase inhibitor. Antimicrob. Agents Chemother. 33:1580–1587.

    PubMed  CAS  Google Scholar 

  71. Cook, G.K., J.H. McDonald, III, W. Alborn, Jr., D.B. Boyd, J.A. Eudaly, J.M. Indelicato, R. Johnson, J.S. Kasher, C.E. Pasini, D.A. Preston, and E.C.Y. Wu. 1989. 3-Quaternary ammonium 1-carba-l-dethiacephems. J. Med. Chem. 32:2442–2450.

    PubMed  CAS  Google Scholar 

  72. Costerouss, G., S. Gouindambr, J.G. Teutsch. March 1990. U.S. patent 4,908,359.

    Google Scholar 

  73. Coulson, A. 1985. β-Lactamase: molecular studies. Biotechnol. Gen. Eng. Rev. 3:219–253.

    CAS  Google Scholar 

  74. Coulton, J.W., P. Mason, and D. Dorrance. 1983. The permeability barrier of Haemophilus infiuenzae type b against β-lactam antibiotics. J. Antimicrob. Chemother. 12:435–449.

    PubMed  CAS  Google Scholar 

  75. Coyette, J., J.-M. Ghuysen, and R. Fontana. 1980. The penicillin-binding proteins in Streptococcus faecalis ATCC 9790. Eur. J. Biochem. 110:445–456.

    PubMed  CAS  Google Scholar 

  76. Cozens, R.M., E. Tuomanen, W. Tosch, O. Zak, J. Suter, and A. Tomasz. 1986. Evaluation of the bactericidal activity of β-lactam antibiotics on slowly growing bacteria cultured in the chemostat. Antimicrob. Agents Chemother. 29:797–802.

    PubMed  CAS  Google Scholar 

  77. Cuchural, G.J., S. Hurlbut, M.H. Malamy, and F.P. Tally. 1988. Permeability to β-lactams in Bacteroides fragilis. J. Antimicrob. Chemother. 22:785–790.

    PubMed  CAS  Google Scholar 

  78. Cullmann, W. 1990. Interaction of β-lactamase inhibitors with various β-lactamases. Chemotherapy 36:200–208.

    PubMed  CAS  Google Scholar 

  79. Curtis, N.A.C., R.L. Eisenstadt, S.J. East, R.J. Cornford, L.A. Walker, and A.J. White. 1988. Iron-regulated outer membrane proteins of Escherichia coli K-12 and mechanism of action of catechol-substituted cephalosporins. Antimicrob. Agents Chemother. 32:1879–1886.

    PubMed  CAS  Google Scholar 

  80. Curtis, N.A.C., and M.V. Hayes. 1981. A mutant of Staphylococcus aureus H deficient in penicillin-binding protein 1 is viable. FEMS Microbiol. Lett. 10:227229.

    CAS  Google Scholar 

  81. Curtis, N.A.C., M.V. Hayes, A.W. Wyke, and J.B. Ward. 1980. A mutant of Staphylococcus aureus H lacking penicillin-binding protein 4 and transpeptidase activity in vitro. FEMS Microbiol. Lett. 9:263–266.

    CAS  Google Scholar 

  82. Curtis, N.A.C., D. Orr, G.W. Ross, and M.G. Boulton. 1979a. Competition of β lactam antibiotics for the penicillin-binding proteins of Pseudomonas aeruginosa , Enterobacter cloacae , Klebsiella aerogenes , Proteus rettgeri , and Escherichia coli: comparison with antibacterial activity and effects upon bacterial morphology. Antimicrob. Agents Chemother. 16:325–328.

    CAS  Google Scholar 

  83. Curtis, N.A.C., D. Orr, G.W. Ross, and M.G. Boulton. 1979b. Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity. Antimicrob. Agents Chemother. 16:533–539.

    CAS  Google Scholar 

  84. Curtis, N.A.C., G.W. Ross, and M.G. Boulton. 1979c. Effect of 7a-methoxy substitution of cephalosporins upon their affinity for the penicillin-binding proteins of E. coli K12. Comparison with antibacterial activity and inhibition of membrane bound model transpeptidase activity. J. Antimicrob. Chemother. 5:391–398.

    CAS  Google Scholar 

  85. Datta, N., and P. Kontomichalou. 1965. Penicillinase synthesis controlled by infectious R-factors in Enterobacteriaceae. Nature 208:239–241.

    PubMed  CAS  Google Scholar 

  86. Demuth, T.P., R.E. White, R.A. Tietjen, F.H. Ebetino, W.G. Kraft, J.A. Andersen, C.C. McOsker, M.A. Walling, B.W. Davis, and F.J. Rourke. 1990. C-10 quinolylcephem carbamates: synthesis and evaluation of a new class of antibacterial agents. 200th ACS National Meeting, Div. Med. Chem., abstr. 154.

    Google Scholar 

  87. Demuth, T.P., R.E. White, R.A. Tietjen, R.J. Storrin, J.R. Skuster, J.A. Andersen, C.C. McOsker, R. Freedman, and F.J. Rourke. 1991. Synthesis and antibacterial activity of new C-10 quinolyl-cephem esters. J. Antibiot. 44:200–209.

    PubMed  CAS  Google Scholar 

  88. den Blaauwen, T., M. Aarsman, and N. Nanninga. 1990. Interaction of monoclonal antibodies with the enzymatic domains of penicillin-binding protein lb of Escherichia coll. J. Bacteriol. 172:63–70.

    PubMed  CAS  Google Scholar 

  89. den Blaauwen, T., and N. Nanninga. 1990. Topology of penicillin-binding protein lb of Escherichia coli and topography of four antigenic determinants studied by immunocolabeling electron microscopy. J. Bacteriol. 172:71–79.

    PubMed  CAS  Google Scholar 

  90. den Blaauwen, T., F.B. Wientjes, A.H.J. Kolk, B.G. Spratt, and N. Nanninga. 1989. Preparation and characterization of monoclonal antibodies against native membrane-bound penicillin-binding protein 1B of Escherichia coli. J. Bacteriol. 171:1394–1401.

    PubMed  Google Scholar 

  91. De Pedro, M.A., U. Schwarz, U. Nishimura, and Y. Hirota. 1980. On the biological role of penicillin-binding proteins 4 and 5. FEMS Microbiol. Lett. 9:219–221.

    CAS  Google Scholar 

  92. Dexter, D.D., and J.M. van der Veen. 1978. Conformations of penicillin G: crystal structure of procaine penicillin G monohydrate and a refinement of the structure of potassium penicillin G.J. Chem. Soc., Perkin Trans. I:185–190.

    Google Scholar 

  93. Dideberg, O., P. Charlier, J.-P Wéry, P. Dehottay, J. Dusart, T. Erpicum, J.-M. Frère, and J.-M Ghuysen. 1987. The crystal structure of the β-lactamase of Streptomyces albus G at 0.3 nm resolution. Biochem. J. 245:911–913.

    PubMed  CAS  Google Scholar 

  94. Dolinger, D.L., L. Daneo-Moore, and G.D. Shockman. 1989. The second peptidoglycan hydrolase of Streptococcus faecium ATCC 9790 covalently binds penicillin. J. Bacteriol. 171:4355–4361.

    PubMed  CAS  Google Scholar 

  95. Dougherty, T.J., A.E. Koller, and A. Tomasz. 1980. Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 18:730–737.

    PubMed  CAS  Google Scholar 

  96. Dougherty, T.J., A.E. Koller, and A. Tomasz. 1981. Competition of β-lactam antibiotics for the penicillin-binding proteins of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 20:109–114.

    PubMed  CAS  Google Scholar 

  97. Dürckheimer, W., F. Adam, G. Fischer, and R. Kirrstetter. 1987. Synthesis and biological properties of newer cephem antibiotics, p. 161–192. In H. Umezawa (ed.), Frontiers of antibiotic research. Proceedings of the 4th Takeda Science Foundation Symposium on Bioscience. Academic Press, Orlando, FL.

    Google Scholar 

  98. Dürckheimer, W., J. Blumbach, R. Lattrell, and K.H. Scheunemann. 1985. Recent developments in the field of β-lactam antibiotics. Angew. Chem. Int. Ed. Eng. 24:180–202.

    Google Scholar 

  99. Dutka-Malen, S., C. Molinas, M. Arthur, and P. Courvalin. 1990. The VanA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes. Mol. Gen. Genet. 224:364–372.

    PubMed  CAS  Google Scholar 

  100. Edelman, A., L. Bowler, J.K. Broome-Smith, and B.G. Spratt. 1987. Use of a βlactamase fusion vector to investigate the organisation of penicillin-binding protein 1B in the cytoplasmic membrane of Escherichia coll . Mol. Microbiol. 1:101–106.

    PubMed  CAS  Google Scholar 

  101. Eley, A., and D. Greenwood. 1986. Characterization of β-lactamases in clinical isolates of Bacteroides. J. Antimicrob. Chemother. 18:325–333.

    PubMed  CAS  Google Scholar 

  102. Ellerby, L.M., W.A. Escobar, A.L. Fink, C. Mitchinson, and J.A. Wells. 1990. The role of lysine-234 in β-lactamase catalysis probed by site-directed mutagenesis. Biochemistry 29:5797–5806.

    PubMed  CAS  Google Scholar 

  103. English, A.R., D. Girard, and S.L. Haskell. 1984. Pharmacokinetics of sultamicillin in mice, rats, and dogs. Antimicrob. Agents Chemother. 25:599–602.

    PubMed  CAS  Google Scholar 

  104. English, A.R., J.A. Retsema, A.E. Girard, J.E. Lynch, and W.E. Barth. 1978. CP45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of betalactams: initial bacteriological characterization. Antimicrob. Agents Chemother. 14:414–419.

    PubMed  CAS  Google Scholar 

  105. Faraci, W.S., and R.F. Pratt. 1986. Interactions of cephalosporins with the Streptomyces R61 DD-transpeptidase/carboxypeptidase. Influence of the 3’ substituents. Biochem. J. 238:309–312.

    PubMed  CAS  Google Scholar 

  106. Faraci, W.S., and R.F. Pratt. 1987. Nucleophilic re-activation of the PC1 βlactamase of Staphylococcus aureus and of the DD-peptidase of Streptomyces R61 after their inactivation by cephalosporins and cephamycins. Biochem. J. 246:651–658.

    PubMed  CAS  Google Scholar 

  107. Ferreira, L.C.S., U. Schwarz, W. Keck, P. Charlier, O. Dideberg, and J.-M. Ghuysen. 1988. Properties and crystallization of a genetically engineered, water-soluble derivative of penicillin-binding protein 5 of Escherichia coli K12. Eur. J. Biochem. 171:11–16.

    PubMed  CAS  Google Scholar 

  108. Fink, A. 1985. The molecular basis of β-lactamase catalysis and inhibition. Pharm. Res. 2:55–61.

    Google Scholar 

  109. Fontana, R., R. Cerini, P. Longoni, A. Grossato, and P. Canepari. 1983. Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J. Bacteriol. 155:1343–1350.

    PubMed  CAS  Google Scholar 

  110. Frère, J.-M., and B. Joris. 1985. Penicillin-sensitive enzymes in peptidoglycan biosynthesis. CRC Critical Rev. Microbiol. 11:299–396.

    Google Scholar 

  111. Frère, J.-M., B. Joris, O. Dideberg, P. Charlier, and J.-M. Ghuysen. 1988. Penicillin-recognizing enzymes. Biochemical Society Transactions. 16:934–938.

    PubMed  Google Scholar 

  112. Frère, J.-M., B. Joris, L. Varetto, and M. Crine. 1988. Structure-activity relationships in the β-lad= family: an impossible dream. Biochem. Pharmacol. 37:125–132 .

    PubMed  Google Scholar 

  113. Frère, J.-M., J.A. Kelly, D. Klein, J.-M. Ghuysen, P. Claes, and H. Vanderhaeghe. 1982. A2- and 03-cephalosporins, penicillinate and 6-unsubstituted penems; intrinsic reactivity and interaction with β-lactamases and D-alanyl-D-alanine-cleaving serine peptidases. Biochem. J. 203:223–234.

    PubMed  Google Scholar 

  114. Garcia-Bustos, J.F., B.T. Chait, and A. Tomasz. 1988. Altered peptidoglycan structure in a pneumococcal transformant resistant to penicillin. J. Bacteriol. 170:2143–2147.

    PubMed  CAS  Google Scholar 

  115. Garcia-Bustos, J.F., and A. Tomasz. 1990. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc. Natl. Acad. Sci. USA 87:5415–5419.

    PubMed  CAS  Google Scholar 

  116. Gensmantel, N.P., D. McLellan, J.J. Morris, M.I. Page, P. Proctor, and G.S. Randahawa. 1980. Mechanisms in the reactions of some β-lactam antibiotics and their derivatives, p. 227–239. In G.I. Gregory (ed.), Recent advances in the chemistry of β-lactam antibiotics. Royal Society of Chemistry, Special publication no. 38. London.

    Google Scholar 

  117. Georgopapadakou, N.H. 1988. Penicillin-binding proteins. p. 409–431 In P.K. Peterson and J. Verhoef (eds.), Antimicrobial agents annual 3. Elsevier Science Publishers BV. Amsterdam.

    Google Scholar 

  118. Georgopapadakou, N.H., A. Bertasso, K.K. Chan, J.S. Chapman, R. Cleeland, L.M. Cummings, B.A. Dix, and D.D. Keith. 1989. Mode of action of the dual-action cephalosporin Ro 23–9424. Antimicrob. Agents Chemother. 33:1067–1071.

    PubMed  CAS  Google Scholar 

  119. Georgopapadakou, N.H., L.M. Cummings, E.R. LaSala, J. Unowsky, and D.L. Pruess. 1988. Overproduction of penicillin-binding protein 4 in Staphylococcus aureus is associated with methicillin resistance, p. 597–602. In P.L. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, DC.

    Google Scholar 

  120. Georgopapadakou, N.H., B.A. Dix, and Y.R. Mauriz. 1986. Possible physiological functions of penicillin-binding proteins in Staphylococcus aureus. Antimicrob. Agents Chemother. 29:333–336.

    PubMed  CAS  Google Scholar 

  121. Georgopapadakou, N.H., and F.Y. Liu. 1980a. Penicillin-binding proteins in bacteria. Antimicrob. Agents Chemother. 18:148–157.

    CAS  Google Scholar 

  122. Georgopapadakou, N.H., and F.Y. Liu. 1980b. Binding of β-lactam antibiotics to penicillin-binding proteins of Staphylococcus aureus and Streptococcus faecalis: relation to antibacterial activity. Antimicrob. Agents Chemother. 18:834–836.

    CAS  Google Scholar 

  123. Georgopapadakou, N.H., D.A. Russo, A. Liebman, W. Burger, P. Rossman, and D. Keith. 1987. Interaction of (2,3)-methylenepenams with penicillin-binding proteins. Antimicrob. Agents Chemother. 31:1069–1074.

    PubMed  CAS  Google Scholar 

  124. Georgopapadakou, N.H., S.A. Smith, and R.B. Sykes. 1983. Penicillin-binding proteins in Bacteroides fragilis. J. Antibiot. 36:907–910.

    PubMed  CAS  Google Scholar 

  125. Georgopapadakou, N.H., and R.B. Sykes. 1983. Bacterial enzymes interacting with β-lactam antibiotics, p. 1–77. In A.L. Demain and N.A. Solomon (ed.), Antibiotics containing the beta-lactam structure II. Handbook of experimental pharmacology, vol. 67/II, Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  126. Ghuysen, J.-M. 1977. The bacterial DD-carboxypeptidase-transpeptidase enzyme system: a new insight into the mode of action of penicillin, p. 1–162. University of Tokyo Press, Tokyo.

    Google Scholar 

  127. Ghuysen, J.-M. 1984. Exploration of active sites of DD-peptidases, p. 115–123. In W. Paton, J. Mitchell, and P. Turner (ed.), Proceedings IUPHAR 9th International Congress of Pharmacology, Vol. 1. London.

    Google Scholar 

  128. Ghuysen, J.-M. 1988a. Bacterial active-site serine penicillin-interactive proteins and domains: mechanism, structure, and evolution. Rev. Infect. Dis. 10:726–732.

    CAS  Google Scholar 

  129. Ghuysen, J.-M. 1988b. Evolution of DD-peptidases and β-lactamases, p. 268–284. In P.L. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, DC.

    Google Scholar 

  130. Ghuysen, J.-M. 1991. Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45:37–67.

    PubMed  CAS  Google Scholar 

  131. Ghuysen, J.-M., J.-M. Frère, B. Joris, J. Dusart, C. Duez, M. Leyh-Bouille, M. Nguyen-Distèche, J. Coyette, O. Dideberg, P. Charlier, G. Dive, and J. LamotteBrasseur. 1989. Inhibition of enzymes involved in bacterial cell wall synthesis, p. 523–572. In M. Sandler and H.J. Smith (ed.), Design of enzyme inhibitors as drugs. Oxford University Press, New York.

    Google Scholar 

  132. Ghuysen, J.-M., J.-M. Frère, M. Leyh-Bouille, J. Coyette, J. Dusart, and M. Nguyen-Distèche. 1979. Use of model enzymes in the determination of the mode of action of penicillins and 03-cephalosporins. Ann. Rev. Biochem. 48:73–101.

    PubMed  CAS  Google Scholar 

  133. Ghuysen, J.-M., J.-M Frère, M. Leyh-Bouille, H.R. Perkins, and M. Nieto. 1980. The active centres in penicillin-sensitive enzymes. Phil. Trans. R. Soc. Lond. B289:285–301.

    Google Scholar 

  134. Ghuysen, J.-M., J.-M. Frère, M. Leyh-Bouille, M. Nguyen-Distèche, J. Coyette, J. Dusart, B. Joris, C. Duez, O. Dideberg, P. Charlier, G. Dive, and J. LamotteBrasseur. 1984. Bacterial wall peptidoglycan, DD-peptidases, and beta-lactam antibiotics. Scand. J. Infect. Dis., Suppl. 42:17–37 (1984).

    CAS  Google Scholar 

  135. Gibson, R.M., H. Christensen, and S.G. Waley. 1990. Site-directed mutagenesis of β-lactamase I. Biochem. J. 272:613–619.

    PubMed  CAS  Google Scholar 

  136. Giesbrecht, P. 1991. On the mechanism of β-lactam action: the majority of Staphylococci are killed via murosome-induced wall perforations both under “lytic” and under “non-lytic” doses of penicillin. In H. Kleinkauf and H. von Döhren (ed.), 50 Years of Penicillin Application, in press.

    Google Scholar 

  137. Giesbrecht, P., H. Labischinski, and J. Wecke. 1985. A special morphogenetic wall defect and the subsequent activity of “murosomes” as the very reason for penicillin-induced bacteriolysis in Staphylococci. Arch Microbiol. 141:315–324.

    PubMed  CAS  Google Scholar 

  138. Glauner, B., and U. Schwarz. 1983. The analysis of murein composition with highpressure-liquid chromatography, p. 29–34. In R. Hakenbeck, J.V. Höltje, and H. Labischinski (ed.), The target of penicillin: the murein sacculus of bacterial cell walls, architecture and growth. Walter de Gruyter and Co., Berlin.

    Google Scholar 

  139. Gordon, E.M., and R.B. Sykes. 1982. Cephamycin antibiotics, p. 199–370. In R.B. Morin and M. Gorman (ed.), Chemistry and biology of β-lactam antibiotics, vol. 1. Penicillins and cephalosporins. Academic Press, New York.

    Google Scholar 

  140. Gotoh, N., H. Wakebe, E. Yoshihara, T. Nakae, and T. Nishino. 1989. Role of protein F in maintaining structural integrity of the Pseudomonas aeruginosa outer membrane. J. Bacteriol. 171:983–990.

    PubMed  CAS  Google Scholar 

  141. Graham, M.N., and T.J. Mantle. 1989. Purification of a class C A-type β-lactamase from a derepressed strain of Enterobacter cloacae. Biochem. J. 260:705–710.

    PubMed  CAS  Google Scholar 

  142. Gutmann, L., S. Al-Obeid, D. Billot-Klein, J.F. Acar, E. Collatz, and J. van Heijenoort. 1990. Vancomycin (Van) resistance and synergy between penicillin (pen) involve an inducible carboxypeptidase (CPDase) in Van-resistant Enterococci (VRE). 30th Intersci. Conf. Antimicrob. Agents Chemother., abstr. 929.

    Google Scholar 

  143. Gutmann, L., S. Vincent, D. Billot-Klein, J.F. Acar, E. Mrèna, and R. Williamson. 1986. Involvement of penicillin-binding protein 2 with other penicillin-binding proteins in lysis of Escherichia con by some β-lactam antibiotics alone and in synergistic lytic effect of amdinocillin (mecillinam). Antimicrob. Agents Chemother. 30:906–912.

    PubMed  CAS  Google Scholar 

  144. Hakenbeck, R., M. Tarpay, and A. Tomasz. 1980. Multiple changes of penicillin-binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 17:364–371.

    PubMed  CAS  Google Scholar 

  145. Hakenbeck, R., J.-V. Holtje, and H. Labischinski. 1983. The target of penicillin: the murein sacculus of bacterial cell walls; architecture and growth, p. 1–663. Walter de Gruyter and Co., Berlin.

    Google Scholar 

  146. Hall, M.N., and T.J. Silhavy. 1979. The ompB locus and the regulation of the major outer membrane porin proteins of Escherichia coli K-12. J. Mol. Biol. 146:23–43.

    Google Scholar 

  147. Hamilton-Miller, J.M.T., and J.T. Smith (ed). 1979. Beta-lactamases, p. 1–500. Academic Press, New York.

    Google Scholar 

  148. Hancock, R.E.W., G.M. Decad, and H. Nikaido. 1979. Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa PA01. Biochim. Biophys. Acta 554:323–331.

    PubMed  CAS  Google Scholar 

  149. Handwerger, A., and A. Tomasz. 1986. Alterations in kinetic properties of penicillin-binding proteins of penicillin-resistant Streptococcus pneumoniae. Antimicrob. Agents Chemother. 30:57–63.

    PubMed  CAS  Google Scholar 

  150. Hanson, J.E., A.P. Kaplan, and P.A. Bartlett. 1989. Phosphonate analogues of carboxypeptidase A substrates are potent transition-state analogue inhibitors. Biochemistry 28:6294–6305.

    PubMed  CAS  Google Scholar 

  151. Harada, S., S. Tsubotani, T. Hida, H. Ono, and H. Okazaki. 1986. Structure of lactivicin, an antibiotic having a new nucleus and similar biological activities to βlactam antibiotics. Tetrahedron Lett. 27:6229–6232.

    CAS  Google Scholar 

  152. Hart, C.A., and A. Percival. 1982. Resistance to cephalosporins among gentamicinresistant Klebsiellae. J. Antimicrob. Chemother. 9:275–286.

    PubMed  CAS  Google Scholar 

  153. Hartman, B.J., and A. Tomasz. 1984. Low-affinity penicillin-binding protein associated with β-lactam resistance in Staphylococcus aureus . J. Bacteriol. 158:513–516.

    PubMed  CAS  Google Scholar 

  154. Hedges, R.W., and M. Matthew. 1979. Acquisition by Escherichia coli of plasmidborne beta-lactamases normally confined to Pseudomonas spp. Plasmid 2:269–278.

    PubMed  CAS  Google Scholar 

  155. Herzberg, O., and J. Moult. 1987. Bacterial resistance to β-lactam antibiotics: crystal structure of β-lactamase from Staphylococcus aureus PC 1 at 2.5 A resolution. Science 236:694–701.

    PubMed  CAS  Google Scholar 

  156. Herzberg, O. 1991. Refined crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.0 A resolution. J. Mol. Biol. 217:701–719.

    PubMed  CAS  Google Scholar 

  157. Hoover, J.R.E. 1983. β-Lactam antibiotics; structure-activity relationships, p. 119–245. In A.L. Demain and N.A. Solomon (ed.), Antibiotics containing the betalactam structure. II. Handbook of experimental pharmacology, vol. 67/II, Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  158. Hoover, J.R.E., and G.L. Dunn. 1979. The β-lactam antibiotics, p. 83–172. In M.E. Wolff (ed.), Burger’s medicinal chemistry. Part II. 4th ed. Wiley and Sons, Inc., New York.

    Google Scholar 

  159. Huovinen, P., S. Huovinen, and G.A. Jacoby. 1988. Sequence of PSE-2 β-lactamase. Antimicrob. Agents Chemother. 32:134–136.

    PubMed  CAS  Google Scholar 

  160. Hurlbut, S., G.J. Cuchural, and F.P. Tally. 1990. Imipenem resistance in Bacteroides distasonis mediated by a novel β-lactamase. Antimicrob. Agents Chemother. 34:117–120.

    PubMed  CAS  Google Scholar 

  161. Iida, K., S. Hirata, S. Nakamuta, and M. Koike. 1978. Inhibition of cell division in Escherichia coli by a new synthetic penicillin, piperacillin. Antimicrob. Agents Chemother. 14:257–266.

    PubMed  CAS  Google Scholar 

  162. Imada, A., K. Kitano, K. Kintaka, M. Muroi, and M. Asai. 1981. Sulfazecin and isosulfazecin, novel β-lactam antibiotics of bacterial origin. Nature 289:590–591.

    PubMed  CAS  Google Scholar 

  163. Indelicato, J.M., T.T. Norvilas, R.R. Pfeiffer, W.J. Wheeler, and W.L. Wilham. 1974. Substituent effects upon the base hydrolysis of penicillins and cephalosporins. Competitive intramolecular nucleophilic amino attack in cephalosporins. J. Med. Chem. 17:523–527.

    PubMed  CAS  Google Scholar 

  164. Indelicato, J.M., and W.L. Wilham 1974. Effect of 6-a substitution in penicillins and 7-a substitution in cephalosporins upon β-lactam reactivity. J. Med. Chem. 17:528–529.

    PubMed  CAS  Google Scholar 

  165. Ishino, F., W. Park, S. Tomioka, S. Tamaki, I. Takase, K. Kunugita, H. Matsuzawa, S. Asoh, T. Ohta, B.G. Spratt, and M. Matsuhashi. 1986. Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and rodA protein. J. Biol. Chem. 261:7024–7031.

    PubMed  CAS  Google Scholar 

  166. Ishino, F., M. Wachi, K.-H. Ueda, Y. Ito, R.A. Nicholas, J.L. Strominger, T. Senda, K. Ishikawa, Y. Mitsui, and M. Matsuhashi. 1988. Crystallization and preliminary crystallographic studies of the high-molecular-weight penicillin-binding protein 1B-8 of Escherichia coli , p. 285–291. In P. Actor, L. Daneo Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  167. Izaki, K., M. Matsuhashi, and J.L. Strominger. 1968. Biosynthesis of the peptidoglycan of bacterial cell walls. XIII. Peptidoglycan transpeptidase and walanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J. Biol. Chem. 243:3180–3192.

    PubMed  CAS  Google Scholar 

  168. Jacoby, G.A., and L. Sutton. 1985. β-Lactamases and f3-lactam resistance in Escherichia coli. Antimicrob. Agents Chemother. 28:703–705.

    PubMed  CAS  Google Scholar 

  169. Jansson, J.A.T. 1965. A direct spectrophotometric assay for penicillin f3-lactamase (penicillinase). Biochim. Biophys. Acta 99:171–172.

    PubMed  CAS  Google Scholar 

  170. Jaurin, B., and T. Grundström. 1981. AmpC cephalosporinase of Escherichia coli K12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc. Natl. Acad. Sci. USA 78:4897–4901.

    PubMed  CAS  Google Scholar 

  171. Johnson, J.R., R.B. Woodward, and R. Robinson. 1949. The constitution of the penicillins, p. 440–454. In H.T. Clarke, J.R. Johnson, and R. Robinson (ed.), The chemistry of penicillin. Princeton University Press, Princeton, NJ.

    Google Scholar 

  172. Joris, B., F. De Meester, M. Galleni, and J.-M. Frère, and J. van Beeumen. 1987. The Kl β-lactamase of Klebsiella pneumoniae. Biochem. J. 243:561–567.

    PubMed  CAS  Google Scholar 

  173. Joris, B., J.-M. Ghuysen, G. Dive, A. Renard, O. Dideberg, P. Charlier, J.-M. Frère, J.A. Kelly, J.C. Boyington, P.C. Moews, and J.R. Knox. 1988. The activesite-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem. J. 250:313–324.

    PubMed  CAS  Google Scholar 

  174. Jungheim, L.N., S.K. Sigmund, and J.W. Fisher. 1987. Bicyclic pyrazolidinones, a new class of antibacterial agent based on the β-lactam model. Tetrahedron Lett. 28: 285–288.

    CAS  Google Scholar 

  175. Juteau, J.-M., and R.C. Levesque. 1990. Sequence analysis and evolutionary perspectives of ROB-1 β-lactamase. Antimicrob. Agents Chemother. 34:1354–1359.

    PubMed  CAS  Google Scholar 

  176. Kahan, J.S., F.M. Kahan, R. Goegelman, S.A. Currie, M. Jackson, E.O. Stapley, T.W. Miller, A.K. Miller, D. Hendlin, S. Mochales, S. Hemadez, H.B. Woodruff, and J. Birnbaum. 1979. Thienamycin, a new β-lactam antibiotic. 1. Discovery, taxonomy, isolation and physical properties. J. Antibiot. 32:1–12.

    PubMed  CAS  Google Scholar 

  177. Kamiya, K., M. Takamoto, Y. Wada, and M. Asai. 1981. Structure of sulfazecinmethanol (1/1). Acta Crystallogr., Sect. B 37:1626–1628.

    Google Scholar 

  178. Keith, D.D., J. Tengi, P. Rossman, L. Todaro, and M. Weigele. 1983. A comparison of the antibacterial and β-lactamase inhibiting properties of penam and (2,3)-βmethylenepenam derivatives: the discovery of a new β-lactamase inhibitor. Conformational requirements for penicillin antibacterial activity. Tetrahedron 39:2445–2458.

    CAS  Google Scholar 

  179. Kelly, J.A., O. Dideberg, P. Charlier, J.P. Wery, M. Libert, P.C. Moews, J.R. Knox, C. Duez, C. Fraipont, B. Joris, J. Dusart, J.-M Frère, and J.-M. Ghuysen. 1986. On the origin of bacterial resistance to penicillin: Comparison of a β-lactamase and a penicillin target. Science 231:1429–1431.

    PubMed  CAS  Google Scholar 

  180. Kelly, J.A., J.R. Knox, P.C. Moews, J.-M. Frère, and J.-M. Ghuysen. 1988. Using X-ray diffraction results and computer graphics to design β-lactams. J. Japanese Assoc. Infectious Diseases 62:182–191.

    Google Scholar 

  181. Kelly, J.A., J.R. Knox, P.C. Moews, G.J. Hite, J.B. Bartolone, H. Zhao, B. Joris, J.-M. Frère, and J.-M. Ghuysen. 1985. 2.8 A structure of penicillin-sensitive D alanyl carboxypeptidase-transpeptidase from Streptomyces R61 and complexes with β-lactams. J. Biol. Chem. 260:6449–6458.

    PubMed  CAS  Google Scholar 

  182. Kelly, J.A., J.R. Knox, P.C. Moews, J. Moring, and H.C. Zhao. 1988b. Molecular graphics: studying β-lactam inhibition in three dimensions, p. 261–267. In P. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  183. Kelly, J.A., J.R. Knox, H. Zhao, J.-M. Frère, and J.-M. Ghuysen. 1989. Crystallographic mapping of β-lactams bound to a D-alanyl-D-alanine peptidase target enzyme. J. Mol. Biol. 209:281–295.

    PubMed  CAS  Google Scholar 

  184. Kiester, E. Jr. 1990. Penicillin and a revolution in world health. Smithsonian 21:172–187.

    Google Scholar 

  185. Knap, A.K., and R.F. Pratt. 1991. Inactivation of the RTEM-1 cysteine β-lactamase by iodoacetate. The nature of active-site functional groups and comparisons with the native enzyme. Biochem. J. 273:85–91.

    PubMed  CAS  Google Scholar 

  186. Knowles, J.R. 1985. Penicillin resistance: the chemistry of β-lactamase inhibition. Acct. Chem. Res. 18:97–104.

    CAS  Google Scholar 

  187. Knox, J.R., and J.A. Kelly. 1989. Crystallographic comparison of penicillin-recognizing enzymes, p. 46–55 In S.M. Roberts (ed.), Molecular recognition: chemical and biochemical problems. Special publication No. 78. Proceedings of an international symposium. Royal Society of Chemistry, London.

    Google Scholar 

  188. Knox, J.R., and R.F. Pratt. 1990. Different modes of vancomycin and D-alanyl-Dalanine peptidase binding to cell wall peptide and a possible role for the vancomycin resistance protein. Antimicrob. Agents Chemother. 34:1342–1347.

    PubMed  CAS  Google Scholar 

  189. Kozarich, J.W., and J.L. Strominger. 1978. A membrane enzyme from Staphylococcus aureus which catalyzes transpeptidase, carboxypeptidase, and penicillinase activities. J. Biol. Chem. 253:1272–1278.

    PubMed  CAS  Google Scholar 

  190. Kraus, W., and J.-V. Höltje. 1987. Two distinct transpeptidation reactions during murein synthesis in Escherichia coli. J. Bacteriol. 169:3099–3103.

    PubMed  CAS  Google Scholar 

  191. Kraut, J. 1977. Serine proteases: structure and mechanism of catalysis. Ann. Rev. Biochem. 46:331–358.

    PubMed  CAS  Google Scholar 

  192. Kraut, J. 1988. How do enzymes work? Science 242:533–540.

    PubMed  CAS  Google Scholar 

  193. Labia, R., P. Baron, J.M. Masson, G. Hill, and M. Cole. 1984. Affinity of temocillin for Escherichia coli K-12 penicillin-binding proteins. Antimicrob. Agents Chemother. 26:335–338.

    PubMed  CAS  Google Scholar 

  194. Labischinski, H., H. Maidhof, M. Franz, D. Krüger, T. Sidow, and P. Giesbrecht. 1988. Biochemical and biophysical investigations into the cause of penicillin-induced lytic death of Staphylococci: checking predictions of the murosome model, p. 242–257. In P. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  195. Lamotte-Brasseur, J., G. Dive, and J.-M. Ghuysen. 1984. On the structural analogy between D-alanyl-D-alanine terminated peptides and β-lactam antibiotics. Eur. J. Med. Chem.-Chim. Ther. 19:319–330.

    CAS  Google Scholar 

  196. Lamotte-Brasseur, J., G. Dive, and J.-M. Ghuysen. 1991. Conformational analysis of β and y-lactam antibiotics. Eur. J. Med. Chem. 26:43–50.

    Google Scholar 

  197. Lee, B. 1971. Conformation of penicillin as a transition-state analog of the substrate of peptidoglycan transpeptidase. J. Mol. Biol. 61:463–469.

    PubMed  CAS  Google Scholar 

  198. Deleted.

    Google Scholar 

  199. Lindberg, F., L. Westman, and S. Normark. 1985. Regulatory components in Citrobacter freundii ampC β-lactamase induction. Proc. Natl. Acad. Sci. USA 82:4620–4624.

    PubMed  CAS  Google Scholar 

  200. Lowe, G., and S. Swain. 1984. Do β-lactam antibiotics require a β-lactam ring? p. 209–221. In A.G. Brown and S.M. Roberts (ed.), Recent advances in the chemistry of β-lactam antibiotics. Proceedings of the 3rd international symposium. Special publication No 52. Royal Society of Chemistry, London.

    Google Scholar 

  201. Lugtenberg, B., and L. van Alphen. 1983. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim. Biophys. Acta 737:51–115.

    PubMed  CAS  Google Scholar 

  202. Lund, F., and L. Tybring. 1972. 6-β-Amidinopenicillanic acids-a new group of antibiotics. Nature New Biology 236:135–137.

    PubMed  CAS  Google Scholar 

  203. Mabilat, C., and P. Courvalin. 1990. Development of “oligotyping” for the characterization and molecular epidemiology of TEM-derived β-lactamases in members of the family Enterobacteriaceae. Antimicrob. Agents Chemother. 34:2210–2216.

    PubMed  CAS  Google Scholar 

  204. Madiraju, M. V.V.S., D.P. Brunner, B.J. Wilkinson. 1987. Effects of temperature, NaC1, and methicillin on penicillin-binding proteins, growth, peptidoglycan synthesis, and autolysis in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 31:1727–1733.

    PubMed  CAS  Google Scholar 

  205. Makover, S.D., R. Wright, and E. Telep. Penicillin-binding proteins in Haemophilus influenzae. Antimicrob. Agents Chemother. 19:584–588.

    Google Scholar 

  206. Mansford, K.R.L. 1987. Properties of recent penam antibiotics, p. 149–160. In H. Umezawa (ed.), Frontier of antibiotic research symposium in bioscience. Academic Press. Orlando, FL.

    Google Scholar 

  207. Marchand-Brynaert, J., Z. Bounkhala-Khrouz, J.S. Carretero, J. Davies, D. Ferroud, B.J. van Keulen, B. Serckx-Poncin, and L. Ghosez. 1989. Synthesis of potential inhibitors of bacterial DD-peptidases, p. 157–170. In P.H. Bentley and R. Southgate (ed.), Recent advances in the chemistry of β-lactam antibiotics. Proceedings of the 4th international symposium. Special Publication No 70. Royal Society of Chemistry, London.

    Google Scholar 

  208. Mastalerz, H., M. Menard, V. Vinet, J. Desiderio, J. Fung-Tomc, R. Kessler, and Y. Tsai. 1988. An examination of 0–2-isocephems as orally absorbable antibiotics. J. Med. Chem. 31:1190–1196.

    PubMed  CAS  Google Scholar 

  209. Matsuhashi, M., M.D. Song, F. Ishino, M. Wachi, M. Doi, M. Inoue, K. Ubukata, N. Yamashita, and M. Konno. 1986. Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to β-lactam antibiotics in Staphylococcus aureus. J. Bacteriol. 167:975–980.

    PubMed  CAS  Google Scholar 

  210. Matthew, M. 1978. Properties of the β-lactamase specified by the Pseudomonas plasmid R151. FEMS Microbiol. Lett. 4:241–244.

    CAS  Google Scholar 

  211. Matthew, M. 1979. Plasmid-mediated beta-lactamases of gram-negative bacteria: properties and distribution. J. Antimicrob. Chemother. 5:349–358.

    PubMed  CAS  Google Scholar 

  212. Medeiros, A.A., R. Levesque, and G.A. Jacoby. 1986. An animal source for the ROB-1 β-lactamase of Hemophilus influenzae type b. Antimicrob. Agents Chemother. 29:212–215.

    PubMed  CAS  Google Scholar 

  213. Medeiros, A.A., M. Cohenford, and G.A. Jacoby. 1985. Five novel plasmiddetermined β-lactamases. Antimicrob. Agents Chemother. 27:715–719.

    PubMed  CAS  Google Scholar 

  214. Mendelman, P.M., D.O. Chaffin, T.L. Stull, C.E. Rubens, K.D. Mack, and A.L. Smith. 1984. Characterization of non-β-lactamase-mediated ampicillin resistance in Haemophilus influenzae. Antimicrob. Agents Chemother. 26:235–244.

    PubMed  CAS  Google Scholar 

  215. Mett, H., B. Schacher, and L. Wegmann. 1988. Ultrasonic disintegration of bacteria may lead to irreversible inactivation of β-lactamase. J. Antimicrob. Chemother. 22:293–298.

    PubMed  CAS  Google Scholar 

  216. Mirelman, D.E. 1979. Biosynthesis and assembly of cell wall peptidoglycan, p. 115–166. In M. Inouye (ed.), Bacterial outer membrane: biogenesis and functions. John Wiley and Sons, New York.

    Google Scholar 

  217. Mirelman, D. 1981. Assembly of wall peptidoglycan polymers, p. 67–86. In M.R.J. Salton and G.D. Shockman (ed.), β-Lactam antibiotics: mode of action, new developments, and future prospects, Academic Press, New York.

    Google Scholar 

  218. Mitsuyama, J., R. Hiruma, A. Yamaguchi, and T. Sawai. 1987. Identification of porins in outer membrane of Proteus , Morganella , and Providencia spp. and their role in outer membrane permeation of β-lactams. Antimicrob. Agents Chemother. 31:379–384.

    PubMed  CAS  Google Scholar 

  219. Mochizuki, H., H.Yamada, Y. Oikawa, K. Murakami, J. Ishiguro, H. Kosuzume, N. Aizawa, and E. Mochida. 1988. Bactericidal activity of M14659 enhanced in low-iron environments. Antimicrob. Agents Chemother. 32:1648–1654.

    PubMed  CAS  Google Scholar 

  220. Moews, P.C., J.R. Knox, O. Dideberg, P. Charlier, and J.-M. Frère. 1990. βLactamase of Bacillus licheniformis 749/C. Proteins 7:156–171.

    PubMed  CAS  Google Scholar 

  221. Monks, J., and S.G. Waley. 1988. Imipenem as substrate and inhibitor of βlactamases. Biochem. J. 253:323–328.

    PubMed  CAS  Google Scholar 

  222. Morin, R.B., and M. Gorman. 1982. Chemistry and biology of β-lactam antibiotics, vol. 1, 2, and 3. Academic Press, New York.

    Google Scholar 

  223. Mossakowska, D., N.A. Ali, and J.W. Dale. 1989. Oxacillin-hydrolysing β-lactamases. A comparative analysis at nucleotide and amino acid sequence levels. Eur. J. Biochem. 180:309–318.

    PubMed  CAS  Google Scholar 

  224. Murakami, K., M. Doi, and T. Yoshida. 1982. Asparenomycins A, B and C, new carbapenem antibiotics. V. Inhibition of β-lactamases. J. Antibiot. 35:39–45.

    PubMed  CAS  Google Scholar 

  225. Murphy, B.P., and R.F. Pratt. 1991. N-(Phenylacetyl)glycyl-D-aziridine-2-carboxylate, an acyclic amide substrate of β-lactamases: importance of the shape of the substrate in β-lactamase evolution. Biochemistry. 30:3640–3649.

    PubMed  CAS  Google Scholar 

  226. Nagarajan, R., L.D. Boeck, M. Gorman, R.C. Hamill, C.E. Higgins, M.M. Hoehn, W.M. Stark, and J.G. Whitney. 1971. β-Lactam antibiotics from Streptomyces. J. Am. Chem. Soc. 93:2308–2310.

    PubMed  CAS  Google Scholar 

  227. Nakae, T., and J. Ishii. 1978. Transmembrane permeability channels in vesicles reconstituted from single species of porins from Salmonella typhimurium. J. Bacteriol. 133:1412–1418.

    PubMed  CAS  Google Scholar 

  228. Nakagawa, J., S. Tamaki, S. Tomioka, and M. Matsuhashi. 1984. Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein lBs of Escherichia coli with activities of transglycosylase and transpeptidase. J. Biol. Chem. 259:13937–13946.

    PubMed  CAS  Google Scholar 

  229. Newall, C.E., and P.D. Hallam. 1990. β-Lactam antibiotics: penicillins and cephalosporins, p. 609–653. In C. Hansch, P.G. Sammes, and J.B. Taylor (ed.), Comprehensive medicinal chemistry: the rational design, mechanistic study and therapeutic application of chemical compounds, vol. 2. Enzymes and other molecular targets. Pergamon Press, Oxford.

    Google Scholar 

  230. Nguyen-Distèche, M.M. Leyh-bouille, S. Pirlot, J.-M. Frère, and J.M. Ghuysen. 1986. Streptomyces K15 DD-peptidase-catalysed reactions with ester and amide carbonyl donors. Biochem. J. 235:167–176.

    PubMed  Google Scholar 

  231. Nicas, T.I., C.Y.E. Wu, J.N. Hobbs Jr., D.A. Preston, and N.E. Allen. 1989. Characterization of vancomycin resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother. 33:1121–1124.

    PubMed  CAS  Google Scholar 

  232. Nicholas, R.A., and J.L. Strominger. 1988. Site-directed mutants of a soluble form of penicillin-binding protein 5 from Escherichia coli and their catalytic properties. J. Biol. Chem. 263:2034–2040.

    PubMed  CAS  Google Scholar 

  233. Nikaido, H. 1985. Role of permeability barriers in resistance to β-lactam antibiotics. Pharmacol. Ther. 27:197–231.

    PubMed  CAS  Google Scholar 

  234. Nikaido, H., K. Nikaido, and S. Harayama. 1991. Identification and characterization of porins in Pseudomonas aeruginosa. J. Biol. Chem. 266:770–779.

    PubMed  CAS  Google Scholar 

  235. Nikaido, H., and S. Normark. 1987. Sensitivity of Escherichia coli to various βlactams is determined by the interplay of outer membrane permeability and degradation by periplasmic β-lactamases: a quantitative treatment. Mol. Microbiol. 1:29–36.

    PubMed  CAS  Google Scholar 

  236. Nikaido, H., and E.Y. Rosenberg. 1990. Cir and Fiu proteins in the outer membrane of Escherichia coli catalyze transport of monomeric catechols: study with β-lactam antibiotics containing catechol and analogous groups. J. Bacteriol. 172:1361–1367.

    PubMed  CAS  Google Scholar 

  237. Nikaido, H., E.Y. Rosenberg, and J. Foulds. 1983. Porin channels in Escherichia co li: studies with β-lactams in intact cells. J. Bacteriol. 153:232–240.

    PubMed  CAS  Google Scholar 

  238. Nikaido, H. and M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49:1–32.

    PubMed  CAS  Google Scholar 

  239. Noguchi, H., M. Matsuhashi, and S. Mitsuhashi. 1979. Comparative studies of penicillin-binding proteins in Pseudomonas aeruginosa and Escherichia coll. Eur. J. Biochem. 100:41–49.

    PubMed  CAS  Google Scholar 

  240. Novick, R.P. 1982. Micro-iodometric assay of penicillinase. Biochem. J. 83:236–240.

    Google Scholar 

  241. Nozaki, Y., N. Katayama, H. Ono, S. Tsubotani, S. Harada, H. Okazaki, and Y. Nakao. 1987. Binding of a non-β-lactam to penicillin-binding proteins. Nature 325:179–180.

    PubMed  CAS  Google Scholar 

  242. O’Callaghan, C.H., A. Morris, S.M. Kirby, and A.H. Shingler. 1972. Novel method for detection of β-lactamases by using a chromogenic cephalosporin substrate. Antimicrob. Agents Chemother. 1:283–288.

    PubMed  Google Scholar 

  243. Ohya, S., M. Yamazaki, S. Sugawara, and M. Mitsuhashi. 1979. Penicillin-binding proteins in Proteus species. J. Bacteriol. 137:474–479.

    PubMed  CAS  Google Scholar 

  244. Page, M.I. 1984. The mechanisms of reactions of β-lactam antibiotics. Acc. Chem. Res. 17:144–151.

    CAS  Google Scholar 

  245. Page, M.I. 1987. The mechanisms of reactions of β-lactam antibiotics. Adv. Phys. Org. Chem. 23:165–270.

    CAS  Google Scholar 

  246. Papanicolaou, G.A., and A.A. Medeiros. 1990. Discrimination of extended-spectrum β-lactamases by a novel nitrocefin competition assay. Antimicrob. Agents Chemother. 34:2184–2192.

    PubMed  CAS  Google Scholar 

  247. Park, J.T. 1987. Murein synthesis, p. 663–671. In F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium; cellular and molecular biology, vol. 1. American Society for Microbiology, Washington.

    Google Scholar 

  248. Park, J.T., and J.L. Strominger. 1957. Mode of action of penicillin Biochemical basis for the mechanism of action of penicillin and for its selective toxicity. Science 125:99–101.

    PubMed  CAS  Google Scholar 

  249. Park, W., and M. Matsuhashi. 1984. Staphylococcus aureus and Micrococcus luteus peptidoglycan transglycosylases that are not penicillin-binding proteins. J. Bacteriol. 157:538–544.

    PubMed  CAS  Google Scholar 

  250. Patrick, S., and D.A. Lutton. 1990. Outer membrane proteins of Bacteroides fragilis grown in vivo. FEMS Microbiol. Lett. 71:1–4.

    CAS  Google Scholar 

  251. Pazhanisamy, S., and R.F. Pratt. 1989. β-Lactamase-catalyzed aminolysis of depsipeptides: peptide inhibition and a new kinetic mechanism. Biochemistry 28:6875–6882.

    PubMed  CAS  Google Scholar 

  252. Perun, T.J., and C.L. Propst. 1989. Introduction to computer-aided drug design, p. 1–16. In T.J. Perun and C.L. Propst (ed.), Computer-aided drug design: methods and applications. Marcel Dekker, New York.

    Google Scholar 

  253. Petit, A., G. Gerbaud, D. Sirot, P. Courvalin, and J. Sirot. 1990. Molecular epidemiology of TEM-3 (CTX-1) β-lactamase. Antimicrob. Agents Chemother. 34:219–224.

    PubMed  CAS  Google Scholar 

  254. Petrocheilou, V., R.B. Sykes, and M.H. Richmond. 1977. Novel R-plasmid-mediated beta-lactamase from Klebsiella aerogenes. Antimicrob. Agents Chemother. 12:126–128.

    PubMed  CAS  Google Scholar 

  255. Pfaendler, H.R., J. Gosteli, R.B. Woodward, and G. Rihs. 1981. Structure, reactivity, and biological activity of strained bicyclic β-lactams. J. Am. Chem. Soc. 103:4526–4531.

    CAS  Google Scholar 

  256. Philippon, A., R. Labia, and G. Jacoby. 1989. Extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 33:1131–1136.

    PubMed  CAS  Google Scholar 

  257. . Piddock, L.J.V., and R. Wise. 1986. Cefoxitin resistance in Bacteroides species: evidence indicating two mechanisms causing decreasing susceptibility. J. Antimicrob. Chemother. 19:161–170.

    Google Scholar 

  258. Pisabarro, A.G., F.J. Canada, D. Vazquez, P. Arriaga, and A. Rodriguez-Tebar. 1986. Structural modification of Escherichia coli peptidoglycan induced by bicyclomycin. J. Antibiot. 39:914–921.

    PubMed  CAS  Google Scholar 

  259. Pitton, J.S. 1972. Mechanisms of bacterial resistance to antibiotics, p. 15–93. In R.H. Adirna (ed.), Review of physiology, vol. 65. Springer-Verlag, Berlin.

    Google Scholar 

  260. Pollock, M.R. 1965. Purification and properties of penicillinases from two strains of Bacillus licheniformis: a chemical, physicochemical and physiological comparison. Biochem. J. 94:666–675.

    PubMed  CAS  Google Scholar 

  261. Prats, R., M. Gomez, J. Pla, B. Blasco, and J.A. Ayala. 1989. A new β-lactambinding protein derived from penicillin-binding protein 3 of Escherichia coli. J. Bacteriol. 171:5194–5198.

    PubMed  CAS  Google Scholar 

  262. Pratt, R.F. 1989. β-Lactamase inhibitors, p. 178–205. In M. Sandler and H.J. Smith (ed.), Design of enzyme inhibitors as drugs. Oxford University Press, New York.

    Google Scholar 

  263. . Price, D.A. 1977. Structure-activity relationships of semisynthetic penicillins. Adv. Appl. Microbiol. 11:17–75.

    Google Scholar 

  264. Proctor, P., N.P. Gensmantel, and M.I. Page. 1982. The chemical reactivity of penicillins and other β-lactam antibiotics. J. Chem. Soc. Perkin Trans. 11:1185- 1192.

    Google Scholar 

  265. Pullman, B. 1974. Conformational studies in quantum biochemistry, p. 61–89. In R. Daudel and B. Pullman (ed.), The world of quantum chemistry. D. Reidel Publ., Dordrecht, Holland.

    Google Scholar 

  266. Quinn, J.P., E.J. Dudek, C.A. diVincenzo, D.A. Lucks, and S.A. Lerner. 1986. Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. J. Infect. Dis. 154:289–294.

    PubMed  CAS  Google Scholar 

  267. Rando, R.R. 1975. On the mechanism of action of antibiotics which act as irreversible enzyme inhibitors. Biochem. Pharmacol. 24:1153–1160.

    PubMed  CAS  Google Scholar 

  268. Rao, S.N., and R.A.M. O’Ferrall. 1990. A structure-reactivity relationship for base-promoted hydrolysis and methanolysis of monocyclic β-lactams. J. Am. Chem. Soc. 112:2729–2735.

    Google Scholar 

  269. Rao, V.S.R., and T.K. Vasudevan. 1979. Conformation and activity of β-lactam antibiotics. CRC Crit. Rev. Biochem. 14:172–206.

    Google Scholar 

  270. Rasmussen, B.A., Y. Gluzman, and F.P. Tally. 1990. Cloning and sequencing of the class B β-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob. Agents Chemother. 34:1590–1592.

    PubMed  CAS  Google Scholar 

  271. Ratcliffe, R.W., and G. Alberts-Schönberg. 1982. The chemistry of thienamycin and other carbapenam antibiotics. p. 227–313. In R.B. Morin and M. Gorman (ed.), Chemistry and biology of β-lactam antibiotics. Vol. 2. Nontraditional β-lactam antibiotics. Academic Press, New York.

    Google Scholar 

  272. Raviglione, M.C., J.F. Boyle, P. Mariuz, A. Pablos-Mendez, H. Cones, and A. Merlo. 1990. Ciprofloxacin-resistant methicillin-resistant Staphylococcus aureus in an acute-care hospital. Antimicrob. Agents Chemother. 34:2050–2054.

    PubMed  CAS  Google Scholar 

  273. Reading, C., and M. Cole. 1977. Clavulanic acid: a β-lactamase-inhibiting β-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11:852–857.

    PubMed  CAS  Google Scholar 

  274. Reguera, J.A., F. Baquero, J. Berenguer, M. Martinez-Ferrer, and J.L. Martinez. 1990. β-Lactam-fosfomycin antagonism involving modification of penicillin-binding protein 3 in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 34:2093–2096.

    PubMed  CAS  Google Scholar 

  275. Reinicke, B., P. Blümel, H. Labischinski, and P. Giesbrecht. 1985. Neither an enhancement of autolytic wall degradation nor an inhibition of the incorporation of cell wall material are pre-requisites for penicillin-induced bacteriolysis in Staphylococci . Arch. Microbiol. 141:309–314.

    PubMed  CAS  Google Scholar 

  276. Reusch, V. 1984. Lipopolymers, isoprenoids, and the assembly of the gram-positive cell wall. Crit. Rev. Microbiol. 11:129–155.

    PubMed  CAS  Google Scholar 

  277. Reynolds, P.E. 1988. The essential nature of staphylococcal penicillin-binding proteins, p. 343–351. In P. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington D.C.

    Google Scholar 

  278. Reynolds, P.E., and D.F.J. Brown. 1985. Penicillin-binding proteins of β-lactamresistant strains of Staphylococcus aureus . FEBS Lett. 192:28–32.

    PubMed  CAS  Google Scholar 

  279. Reynolds, P.E., and H. Chase. 1981. β-Lactam-binding proteins: identification as lethal targets and probes of β-lactam accessibility, p. 153–168. In M.R.J. Salton and G.D. Shockman (ed.), β-Lactam antibiotics: mode of action, new developments, and future prospects. Academic Press, New York.

    Google Scholar 

  280. Richmond, M.H. 1965. Wild-type variants of exopenicillinase from Staphylococcus aureus . Biochem. J. 94:584–593.

    PubMed  CAS  Google Scholar 

  281. Richmond, M.H., and R.B. Sykes. 1973. The β-lactamases of gram-negative bacteria and their possible physiological role. Adv. Microb. Physiol. 9:31–88.

    PubMed  CAS  Google Scholar 

  282. Rogers, H.J., H.R. Perkins, and J.B. Ward. 1980. Microbial cell walls and membranes, p. 1–564. Chapman and Hall, London.

    Google Scholar 

  283. Rolinson, G.N. 1986. β-Lactam antibiotics. J. Antimicrob. Chemother. 17:5–36.

    PubMed  CAS  Google Scholar 

  284. Rolinson, G.N. 1989. β-Lactamase induction and resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 23:1–2.

    PubMed  CAS  Google Scholar 

  285. Rosdahl, V.T. 1973. Naturally occurring constitutive β-lactamase of novel serotype in Staphylococcus aureus. J. Gen. Microbiol. 77:229–231.

    PubMed  CAS  Google Scholar 

  286. Rossi, L., E. Tonin, Y.R. Cheng, and R. Fontana. 1985. Regulation of penicillin-binding protein activity: description of a methicillin-inducible penicillin-binding protein in Staphylococcus aureus. Antimicrob. Agents Chemother. 27:828–831.

    PubMed  CAS  Google Scholar 

  287. Rubin, L.G., A.A. Medeiros, R.H. Yolken, and E.R. Moxon. 1981. Ampicillin treatment failure of apparently β-lactamase-negative Haemophilus influenzae type b meningitis due to novel β-lactamase. Lancet ii:1008–1010.

    Google Scholar 

  288. Sabath, L.D., M. Jago, and E.P. Abraham. 1965. Cephalosporinase and penicillinase activities of a β-lactamase from Pseudomonas pyocyanea. Biochem. J. 96:739–752.

    PubMed  CAS  Google Scholar 

  289. Saino, Y., F. Kobayashi, M. Inoue, and S. Mitsushashi. 1982. Purification and properties of inducible penicillin beta-lactamase isolated from Pseudomonas maltophilia. Antimicrob. Agents Chemother. 22:564–570.

    PubMed  CAS  Google Scholar 

  290. Salton, M.R.J., and G.D. Shockman. 1981. β-Lactam antibiotics: mode of action, new developments, and future prospects, p. 1–604. Academic Press, New York.

    Google Scholar 

  291. Samraoui, B., B.J. Sutton, R.J. Todd, P.J. Artymiuk, S.G. Waley, and D.C. Phillips. 1986. Tertiary structural similarity between a class A β-lactamase and a penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase. Nature (London) 320:378–380.

    CAS  Google Scholar 

  292. Samuni, A. 1975. A direct spectrophotometric assay and determination of Michaelis constants for the beta-lactamase reaction. Anal. Biochem. 63:17–26.

    PubMed  CAS  Google Scholar 

  293. Sargent, M.G. 1968. Rapid fixed-time assay for penicillinase. J. Bacteriol. 95:1493- 1494.

    CAS  Google Scholar 

  294. Sassiver, M.L., and A. Lewis. 1977. Structure-activity relationships among semi-synthetic cephalosporins. 1. The first generation compounds, p. 87. In D. Perlman (ed.), Structure-activity relationships among the semisynthetic antibiotics. Academic Press, New York.

    Google Scholar 

  295. Sawai, T., S. Hirano, and A. Yamaguchi. 1987. Repression of porin synthesis by salicylate in Escherichia coli , Klebsiella pneumoniae , and Serratia marcescens. FEMS Microbiol. Lett. 40:233–237.

    CAS  Google Scholar 

  296. Sawai, T., K. Matsuba, and S. Yamagishi. 1977. A method for measuring the outer membrane-permeability of β-lactam antibiotics in gram-negative bacteria. J. Antibiot. 30:1134–1136.

    PubMed  CAS  Google Scholar 

  297. Sawai, T., I. Takahashi, and S. Yamagishi. 1978. Iodometric assay method for betalactamase with various beta-lactam antibiotics as substrates. Antimicrob. Agents Chemother. 13:910–913.

    PubMed  CAS  Google Scholar 

  298. Schwarz, U., K. Seeger, F. Wengenmayer, and H. Strecker. 1981. Penicillin-binding proteins of Escherichia coli identified with a ’251-derivative of ampicillin. FEMS Microbiol. Lett. 10:107–109.

    CAS  Google Scholar 

  299. . Serfass, D.A., P.M. Mendelman, D.O. Chaffin, and C.A. Needham. 1986. Ampicillin-resistance and penicillin-binding proteins of Haemophilus influenzae. J. Gen. Microbiol. 132:2855–2861.

    PubMed  CAS  Google Scholar 

  300. Shaw, E. 1970. Chemical modification by active-site-directed reagents, p. 91–146. In P.D. Boyer (ed.), The enzymes: structure and control, vol. 1. 3 rd ed . Academic Press, New York.

    Google Scholar 

  301. Shepherd, S.T., H.A. Chase, and P.E. Reynolds. 1977. The separation and properties of two penicillin-binding proteins from Salmonella typhimurium. Eur. J. Biochem. 78:521–532.

    PubMed  CAS  Google Scholar 

  302. Shlaes, D.M., A. Bouvet, C. Devine, J.H. Shlaes, S. Al-Obeid, and R. Williamson. 1989. Inducible, transferable resistance to vancomycin on Enterococcus faecalis. A256. Antimicrob. Agents Chemother. 33:198–203.

    PubMed  CAS  Google Scholar 

  303. Shlaes, D.M., and L.M. Etter. 1990. Synergistic killing of vancomycin-resistant Enterococci of classes A, B, and C by vancomycin, penicillin, gentamicin combinations. 30th Intersci. Conf. Antimicrob. Agents Chemother., abstr. 692.

    Google Scholar 

  304. Shockman, G.D., and J.F. Barrett. 1983. Structure, function and assembly of cell walls of gram-positive bacteria. Ann. Rev. Microbiol. 37:501–527.

    CAS  Google Scholar 

  305. Shute, R.E., D.E. Jackson, and B.W. Bycroft. 1989. Highly conformationally constrained halogenated 6-spiroepoxypenicillins as probes for the bioactive side-chain conformation of benzylpenicillin. J. Computer-Aided Molecular Design 3:149–164.

    CAS  Google Scholar 

  306. . Simpson, C.N., J.P. Maskell, and J.D. Williams. 1984. The effect of clavulanic acid on the susceptibility of Bacteroides fragilis to three acyl-ureidopenicillins, ampicillin, and carbenicillin. J. Antimicrob. Chemother. 14:133–138.

    PubMed  CAS  Google Scholar 

  307. Slocombe, B., M.J. Basker, P.H. Bentley, J.P. Clayton, M. Cole, K.R. Comber, R.A. Dixon, R.A. Edmondson, D. Jackson, D.J. Merrikin, and R. Sutherland. 1981. BRL 17421, a novel β-lactam antibiotic, highly resistant to β-lactamases, giving high and prolonged serum levels in humans. Antimicrob. Agents Chemother. 20:38–46.

    PubMed  CAS  Google Scholar 

  308. Smith, S.M., R.H.K. Eng, P. Bais, P. Fan-Havard, and F. Tecson-Tumang. 1990. Epidemiology of ciprofloxacin resistance among patients with methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 26:567–572.

    PubMed  CAS  Google Scholar 

  309. Song, M.D., S. Maesaki, M. Wachi, T. Takahashi, M. Doi, F. Ishino, Y. Maeda, K. Okonogi, A. Imada, and M. Matsuhashi. 1988. Primary structure and origin of the gene encoding the β-lactam-inducible penicillin-binding protein responsible for methicillin resistance in Staphylococcus aureus , p. 352–359. In P. Actor, L. DaneoMoore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  310. Spratt, B.G. 1975. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 72:2999–3003.

    PubMed  CAS  Google Scholar 

  311. Spratt, B.G. 1977. Properties of the penicillin-binding proteins of Escherichia coli K12. Eur. J. Biochem. 72:341–352.

    PubMed  CAS  Google Scholar 

  312. Spratt, B.G. 1980. Biochemical and genetical approaches to the mechanism of action of penicillin. Phil. Trans. Royal Soc. B289:273–283.

    Google Scholar 

  313. Spratt, B.G. 1983. Penicillin-binding proteins and the future of β-lactam antibiotics. J. Gen. Microbiol. 129:1247–1260.

    PubMed  CAS  Google Scholar 

  314. Spratt, B.G., L.D. Bowler, A. Edelman, and J.K. Broome-Smith. 1988. Membrane topology of penicillin-binding proteins lb and 3 of Escherichia coli and the production of water-soluble forms of high-molecular-weight penicillin binding proteins, p. 292–305. In P. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (ed.), Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  315. Spratt, B.G., and K.D. Cromie. 1988. Penicillin-binding proteins of gram-negative bacteria. Rev. Infect. Dis. 10:699–711.

    PubMed  CAS  Google Scholar 

  316. Suginaka, H., P.M. Blumberg, and J.L. Strominger. 1972. Multiple penicillin-binding components in Bacillus subtilis , Bacillus cereus , Staphylococcus aureus , and Escherichia coli. J. Biol. Chem. 247:5279–5288.

    PubMed  CAS  Google Scholar 

  317. Suzuki, H., Y. Nishimura, and Y. Hirota. 1978. On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. Proc. Natl. Acad. Sci. USA 75:664–668.

    PubMed  CAS  Google Scholar 

  318. Sweet, R.M., and L.F. Dahl. 1970. Molecular architecture of the cephalosporins: insights into biological activity based on structural investigations. J. Am. Chem. Soc. 92:5489–5507.

    PubMed  CAS  Google Scholar 

  319. Sykes, R.B., D.P. Bonner, K. Bush, and N.H. Georgopapadakou. 1982. Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria. Antimicrob. Agents Chemother. 21:85–92.

    PubMed  CAS  Google Scholar 

  320. Sykes, R.B., D.P. Bonner, and E.A. Swabb. 1987. Modem β-lactam antibiotics, p. 171–202. In D.J. Tipper (ed.), Antibiotic inhibitors of bacterial cell wall biosynthesis. International Encyclopedia of Pharmacology and Therapeutics, Section 127. Pergamon Press, Oxford.

    Google Scholar 

  321. Sykes, R.B., C.M. Cimarusti, D.P. Bonner, K. Bush, D.M. Floyd, N.H. Georgopapadakou, W.H. Koster, W.C. Liu, W.L. Parker, P.A. Principe, M.L. Rathnum, W.A. Slusarchyk, W.H. Trejo, and J.S. Wells. 1981. Monocyclicβ-lactam antibiotics produced by bacteria. Nature (London) 291:489–491.

    CAS  Google Scholar 

  322. Sykes, R.B., and N.H. Georgopapadakou. 1981. Bacterial resistance to β-lactam antibiotics: an overview, p. 199–214. In M.R.J. Salton and G.D. Shockman (ed.), β-Lactam antibiotics: mode of action, new developments and future prospects. Academic Press, New York.

    Google Scholar 

  323. Sykes, R.B., and M. Matthew. 1976. The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 2:115–157.

    PubMed  CAS  Google Scholar 

  324. Temansky, R.J. and S.E. Draheim. 1989. The synthesis and biological evaluation of pyrazolidinone antibacterial agents, p. 139–156. In P.H. Bentley and R. Southgate (ed.), Recent advances in the chemistry of β-lactam antibiotics. Proceedings of the fourth international symposium. Special publication No. 70. Royal Society of Chemistry, London.

    Google Scholar 

  325. Then, R.L., and P. Angehrn. 1982. Trapping of nonhydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa as a possible resistance mechanism. Antimicrob. Agents Chemother. 21:711–717.

    PubMed  CAS  Google Scholar 

  326. Timewell, R., E. Taylor, and I. Phillips. 1981. The β-lactamases of Bacteroides species. J. Antimicrob. Chemother. 7:137–146.

    PubMed  CAS  Google Scholar 

  327. Tipper, D.J. 1987. Mode of action of β-lactam antibiotics, p. 133–170. In D.J. Tipper (ed.), Antibiotic inhibitors of bacterial cell wall biosynthesis. International Encyclopedia of Pharmacology and Therapeutics, Section 127. Pergamon Press, England.

    Google Scholar 

  328. Tipper, D.J., and J.L. Stromfinger. 1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc. Natl. Acad. Sci. USA 54:1133–1141.

    PubMed  CAS  Google Scholar 

  329. Deleted.

    Google Scholar 

  330. Tipper, D.J., and A. Wright. 1979. The structure and biosynthesis of bacterial cell walls, p. 291–426. In I.C. Gunsalus, J.R. Sokatch, and L.N. Ornston (ed.), The bacteria, vol. VII. Academic Press, New York.

    Google Scholar 

  331. Tomasz, A. 1979. The mechanism of the irreversible antimicrobial effects of penicillin: how the beta-lactam antibiotics kill and lyse bacteria. Annu. Rev. Microbiol. 33:113–137.

    PubMed  CAS  Google Scholar 

  332. Tomasz, A. 1983. Mode of action of β-lactam antibiotics-a microbiologist’s view, p. 15–96. In A.L. Demain and N.A. Solomon (ed.), Antibiotics containing the betalactam structure I. Handbook of experimental pharmacology, vol. 67/I. Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  333. Tomasz, A. 1986. Penicillin-binding proteins and the antibacterial effectiveness of beta-lactam antibiotics. Rev. Infect. Dis. 8(Suppl. 3):260–278.

    Google Scholar 

  334. Trias, J., and H. Nikaido. 1990. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 34:52–57.

    PubMed  CAS  Google Scholar 

  335. . Trias, J., and H. Nikaido. 1990. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J. Biol. Chem. 265:15680–15684.

    PubMed  CAS  Google Scholar 

  336. Tuomanen, E., and J. Schwartz. 1987. Penicillin-binding protein 7 and its relationship to lysis of nongrowing Escherichia coli . J. Bacteriol. 169:4912–4915.

    PubMed  CAS  Google Scholar 

  337. Ubukata, K., N. Yamashita, and M. Konno. 1985. Occurrence of a β-lactaminducible penicillin-binding protein in methicillin-resistant Staphylococci. Antfimicrob. Agents Chemother. 27:851–857.

    CAS  Google Scholar 

  338. Ubukata, K., R. Nonoguchi, M. Matsuhashi, and M. Konno. 1989. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. J. Bacteriol. 171:2882–2885.

    PubMed  CAS  Google Scholar 

  339. Umezawa, H. 1987. Frontiers of antibiotic research, p. 1–363. Proceedings of the 4th Takeda Science Foundation Symposium on Bioscience. Academic Press, Inc., Orlando, FL.

    Google Scholar 

  340. Utsui, Y., S. Ohya, T. Magaribuchi, M. Tajima, and T. Yokota. 1986. Antibacterial activity of cefmetazole alone and in combination with fosfomycin against methicillinand cephem-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 30:917–922.

    PubMed  CAS  Google Scholar 

  341. Vachon, V., D.J. Lyew, and J.W. Coulton. 1985. Transmembrane permeability channels across the outer membrane of Haemophilus infiuenzae type b. J. Bacteriol. 162:918–924.

    PubMed  CAS  Google Scholar 

  342. Varetto, L., J.-M. Frère, M. Nguyen-Distèche, J.-M. Ghuysen, and C. Houssier. 1987. The pH dependence of the active-site serine DD-peptidase of Streptomyces R61. Eur. J. Biochem. 162:525–531.

    PubMed  CAS  Google Scholar 

  343. Vu, H., and H. Nikaido. 1985. Role of β-lactam hydrolysis in the mechanism of resistance of a β-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum β-lactams. Antimicrob. Agents Chemother. 27:393–398.

    PubMed  CAS  Google Scholar 

  344. Waley, S.G. 1987. An explicit model for bacterial resistance: application to βlactam antibiotics. Microbiol. Sci. 4:143–146.

    PubMed  CAS  Google Scholar 

  345. Ward, J.B. 1984. Biosynthesis of peptidoglycan: points of attack by wall inhibitors. Pharmac. Ther. 25:327–369.

    CAS  Google Scholar 

  346. Watanabe, N., T. Nagasu, K. Katsu, and K. Kitoh. 1987. E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob. Agents Chemother. 31:497–504.

    PubMed  CAS  Google Scholar 

  347. Waxman, D.J., and J.L. Strominger. 1982. β-Lactam antibiotics; biochemical modes of action, p. 210–285. In R.B. Morin and M. Gorman (ed.), Chemistry and biology of β-lactam antibiotics, vol. 3. The biology of β-lactam antibiotics. Academic Press, New York.

    Google Scholar 

  348. Waxman, D.J., and J.L. Strominger. 1983. Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Ann. Rev. Biochem. 52:825–869.

    PubMed  CAS  Google Scholar 

  349. Waxman, D.J., R.R. Yocum, and J.L. Strominger. 1980. Penicillins and cephalosporins are active site-directed acylating agents: evidence in support of the substrate analogue hypothesis. Phil. Trans. R. Soc. Lond. B 289:257–271.

    CAS  Google Scholar 

  350. Webber, J.A., and J.L. Ott. 1977. Structure-activity relationships in the cephalosporins. II. Recent developments, p. 161–237. In D. Perlman (ed.), Structure-activity relationships among the semisynthetic antibiotics. Academic Press, New York.

    Google Scholar 

  351. Wiedemann, B., C. Kliebe, and M. Kresken. 1989. The epidemiology of β-lactamases. J. Antimicrob. Chemother. 24(Suppl. B):1–22.

    PubMed  CAS  Google Scholar 

  352. Williamson, R. S.B. Calderwood, R.C. Moellering, and A. Tomasz. 1983. Studies on the mechanism of intrinsic resistance to β-lactam antibiotics in group D streptococci. J. Gen. Microbiol. 129:813–822.

    PubMed  CAS  Google Scholar 

  353. Williamson, R., R. Hakenbeck, and A. Tomasz. 1980. The penicillin-binding proteins of Streptococcus pneumoniae grown under lysis-permissive and lysis-protective (tolerant) conditions. FEMS Microbiol. Lett. 7:127–131.

    CAS  Google Scholar 

  354. Williamson, R., C. Le Bouguénec, L. Gutmann, and T. Horaud. 1985. One or two low affinity penicillin-binding proteins may be responsible for the range of susceptibility of Enterococcus faecium to benzylpenicillin. J. Gen. Microbiol. 131:1933–1940.

    PubMed  CAS  Google Scholar 

  355. Wise, E.M., Jr., and J.T. Park. 1965. Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall muropeptide synthesis. Proc. Natl. Acad. Sci. USA 54:75–81.

    PubMed  CAS  Google Scholar 

  356. Wolfe, S., M. Khalil, and D.F. Weaver. 1988a. MMPEN: development and evaluation of penicillin parameters for Allinger’s MMP2(85) programme. Can. J. Chem. 66:2715–2732.

    CAS  Google Scholar 

  357. Wolfe, S., K. Yang, and M. Khalil. 1988b. Conformation-activity relationships and the mechanism of action of penicillin. Can. J. Chem. 66:2733–2750.

    CAS  Google Scholar 

  358. Woodruff, W.A., and R.E.W. Hancock. 1989. Pseudomonas aeruginosa outer membrane protein F: structural role and relationship to the Escherichia coli OmpA protein. J. Bacteriol. 171:3304–3309.

    PubMed  CAS  Google Scholar 

  359. Woodward, R.B. 1980. Penems and related substances. Phil. Trans. R. Soc. Lond. B 289:239–250.

    CAS  Google Scholar 

  360. Wrezel, P. W., L.F. Ellis, and F.C. Neuhaus. 1986. In vivo target of benzylpenicillin in Gaffkya homari. Antimicrob. Agents Chemother. 29:432–439.

    PubMed  CAS  Google Scholar 

  361. Wyke, A.W., J.B. Ward, M.V. Hayes, and N.A.C. Curtis. 1981. A role in vivo for penicillin-binding protein-4 of Staphylococcus aureus. Eur. J. Biochem. 119:389–393.

    PubMed  CAS  Google Scholar 

  362. Yoshihara, E., and T. Nakae. 1989. Identification of porins in the outer membrane of Pseudomonas aeruginosa that form small diffusion pores. J. Biol. Chem. 264:6297–6301

    PubMed  CAS  Google Scholar 

  363. Yoshimura, F., and H. Nikaido. 1985. Diffusion of β-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob. Agents Chemother. 27:84– 92.

    PubMed  CAS  Google Scholar 

  364. Yotsuji, A., S. Minami, M. Inoue, and S. Mitsuhashi. 1983. Properties of a novel beta-lactamase produced by Bacteroides fragilis. Antimicrob. Agents Chemother. 24:925–929.

    PubMed  CAS  Google Scholar 

  365. Yotsuji, A., J. Mitsuyama, R. Hori, T. Yasuda, I. Saikawa, M. Inoue, and S. Mitsuhashi. 1988. Outer membrane permeation of Bacteroides fragilis by cephalosporins. Antimicrob. Agents Chemother. 32:1097–1099.

    PubMed  CAS  Google Scholar 

  366. Young, J.D.E., M. Blake, A. Mauro, and Z.A. Cohn. 1983. Properties of the major outer membrane protein from Neisseria gonorrhoeae incorporated into model lipid membranes. Proc. Natl. Acad. Sci. USA 80:3831–3835.

    PubMed  CAS  Google Scholar 

  367. Zighelboim, S., and A. Tomasz. 1980. Penicillin-binding proteins of multiply antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 17:434–442.

    PubMed  CAS  Google Scholar 

  368. Zimmerman, W., and A. Rosselet. 1977. Function of the outer membrane of Escherichia coli as a permeability barrier to β-lactam antibiotics. Antimicrob. Agents Chemother. 12:368–372.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Neuhaus, F.C., Georgopapadakou, N. (1992). Strategies in β-lactam Design. In: Sutcliffe, J.A., Georgopapadakou, N.H. (eds) Emerging Targets in Antibacterial and Antifungal Chemotherapy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3274-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3274-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6440-5

  • Online ISBN: 978-1-4615-3274-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics