Cytosolic Enzymes in Peptidoglycan Biosynthesis as Potential Antibacterial Targets

  • W. Stephen Faraci


The bacterial cell wall provides structural integrity necessary to prevent osmotic-induced cell lysis. The peptidoglycan layer is the primary structural component which gives the cell wall its rigid structure. Peptidoglycan is composed of glycan chains with alternating N-acetylglucosamine and N-acetylmuramic acid residues that are cross-linked through a peptide bridge (89). As shown in Figure 8.1, crosslinking occurs via nucleophilic attack of the meso-diaminopimelate (meso-A2pm) amino group of one glycan strand on the penultimate D-ala-D-ala group on another glycan strand. Gram-positive bacteria ( e.g. , S. aureus ) differ in strand crosslinking in that they utilize a pentaglycine bridge instead of meso-A2pm. The β-lactam antibiotics irreversibly acylate proteins present in the cell membrane which catalyze transpeptidation and D,D-carboxypeptidation of the peptidoglycan. (For review, see 79.) Inability to crosslink the different glycan chains leads to cell wall degradation by bacterial autolysins, thus leading to cell death.


Bacillus Vancomycin Uridine Borohydride Corynebacterium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abo-Ghalia, M., C. Michaud, D. Blanot, and J. van Heijenoort. 1985. Specificity of the uridine-diphosphate-N-acetylmuramyl-L-alanyl-D-glutamate: meso-2,6-diaminopimelate synthetase from Escherichia coll. Eur. J. Biochem. 153:81–87.PubMedCrossRefGoogle Scholar
  2. 2.
    Adams, E. 1976. Catalytic aspects of enzymatic racemization. Adv. Enzymol. Relat. Areas Mol. Biol. 44:69–138.PubMedGoogle Scholar
  3. 3.
    Antia, M., D.S. Hoare, and E. Work. 1957. The stereoisomers of a, s-diaminopimelic acid. Biochem. J. 65:448–459.PubMedGoogle Scholar
  4. 4.
    Atherton, F.R., M.J. Hall, C.H. Hassall, R.W. Lambert, W.J. Lloyd, and P.S. Ringrose. 1979. Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin. Antimicrob. Ag. Chemother. 15:696–705.CrossRefGoogle Scholar
  5. 5.
    Ayengar, P., and E. Roberts. 1952. Utilization of D-glutamic acid by Lactobacillus arabinosus: glutamic racemase. J. Biol. Chem. 197:453–459.PubMedGoogle Scholar
  6. 6.
    Badet, B., and C.T. Walsh. 1985. Purification of an alanine racemase from Streptococcus faecalis and analysis of its inactivation by (1-aminoethyl)phosphonic acid enantiomers. Biochemistry 24:1333–1341.PubMedCrossRefGoogle Scholar
  7. 7.
    Badet, B., K. Inagaki, K. Soda, and C.T. Walsh. 1986. Time-dependent inhibition of Bacillus stearothermophilus alanine racemase by (1-aminoethyl)phosphonate isomers by isomerization to noncovalent slowly dissociating enzyme-(1-aminoethyl) phosphonate complexes. Biochemistry 25:3275–3282.PubMedCrossRefGoogle Scholar
  8. 8.
    Badet, B., D. Roise, and C.T. Walsh. 1984. Inactivation of the dadB Salmonella typhimurium alanine racemase by D and L isomers of ß-substituted alanines: kinetics, stoichiometry, active site peptide sequencing, and reaction mechanism. Biochemistry 23:5188–5194.PubMedCrossRefGoogle Scholar
  9. 9.
    Baumann, R.J., E.H. Bohme, J.S. Wiseman, M. Vaal, and J.S. Nichols. 1988. Inhibition of Escherichia coli growth and diaminopimelic acid epimerase by 3chlorodiaminopimelic acid. Antimicrob. Ag. Chemother. 32:1119–1123.CrossRefGoogle Scholar
  10. 10.
    Bugg, T.D.H., S. Dutka-Malen, M. Arthur, P. Courvalin, and C.T. Walsh. 1991. Identification of vancomycin resistance protein VanA as a D-alanine:D-alanine ligase of altered substrate specificity. Biochemistry 30:2017–2021.PubMedCrossRefGoogle Scholar
  11. 11.
    Cardinale, G.J., and R.H. Abeles. 1968. Purification and mechanism of action of proline racemase. Biochemistry 7:3970–3978.PubMedCrossRefGoogle Scholar
  12. 12.
    Chakravarty, P.K., W.J. Greenlee, W.H. Parsons, A.A. Patchett, P. Combs, A. Roth, R.D. Busch, and T.N. Mellin. 1989. (3-Amino-2-oxoalkyl)phosphonic acids and their analogues as novel inhibitors of A-alanine:D-alanine ligase. J. Med. Chem. 32:1886–1890.PubMedCrossRefGoogle Scholar
  13. 13.
    Colanduoni, J.A., and J.J. Villafranca. 1986. Inhibition of Escherichia coli glutamine synthetase by phosphinotherin. Bioorg. Chem. 14:163–169.CrossRefGoogle Scholar
  14. 14.
    Copie, V., W.S. Faraci, C.T. Walsh, and R.G. Griffin. 1988. Inhibition of alanine racemase by alanine phosphonate: detection of an inne linkage to pridoxal 5’-phosphate in the enzyme-inhibitor complex by solid state “N nuclear magnetic resonance. Biochemistry 27:4966–4969.PubMedCrossRefGoogle Scholar
  15. 15.
    Daub, E., L.E. Zawadzke, D. Botstein, and C.T. Walsh. 1988. Isolation, cloning, and sequencing of the Salmonella typhimurium ddlA gene with purification and characterization of its product, D-alanine: D-alanine ligase (ADP forming). Biochemistry 27:3701–3708.PubMedCrossRefGoogle Scholar
  16. 16.
    del Pozo, A.M., M. Merola, H. Ueno, J.M. Manning, K. Tanizawa, K. Nishimura., S. Asano, H. Tanaka, K. Soda, D. Ringe, and G.A. Petsko. 1989. Activity and spectroscopic properties of bacterial D-amino acid transaminase after multiple site-directed mutagenesis of a single tryptophan residue. Biochemistry 28:510–516.CrossRefGoogle Scholar
  17. 17.
    Dulaney, E.L. 1970. 1-Aminoethylphosphonic acid, an inhibitor of bacterial cell wall synthesis. J. Antibiotics 23:567–568.CrossRefGoogle Scholar
  18. 18.
    Duncan, K., W.S. Faraci, D.S. Matteson, and C.T. Walsh. 1989. (1-Aminoethyl) boronic acid: a novel inhibitor for Bacillus stearothermophilus alanine racemase and Salmonella typhimurium D-alanine: D-alanine ligase (ADP forming). Biochemistry 28:3541–3549.PubMedCrossRefGoogle Scholar
  19. 19.
    Duncan, K., J. van Heijenoort, and C.T. Walsh. 1990. Purification and characterization of the D-alanyl-D-alanine-adding enzyme from Escherichia coll . Biochemistry 29:2379–2386.PubMedCrossRefGoogle Scholar
  20. 20.
    Duncan, K., and C.T. Walsh. 1988. ATP-dependent inactivation and slow binding inhibition of Salmonella typhimurium D-alanine: D-alanine ligase (ADP) by (aminoalkyl)phosphinate and aminophosphonate analogues of D-alanine. Biochemistry 27:3709–3714.PubMedCrossRefGoogle Scholar
  21. 21.
    Dutka-Malan, S., C. Molinas, M. Arthur, and P. Courvalin. 1990. The VanA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes. Mol. Gen. Genet. 224:364–372.Google Scholar
  22. 22.
    Erion, M.D., and C.T. Walsh. 1987. 1-Aminocyclopropanephosphonate: time-dependent inactivation of 1-aminocyclopropanecarboxylate deaminase and Bacillus stearothermophilus: alanine racemase by slow dissociation behavior. Biochemistry 26:3417–3425.PubMedCrossRefGoogle Scholar
  23. 23.
    Esaki, N., and C.T. Walsh. 1986. Biosynthetic alanine racemase of Salmonella typhimurium: purification and characterization of the enzyme encoded by the alr gene. Biochemistry 25:3261–2367.PubMedCrossRefGoogle Scholar
  24. 24.
    Faraci, W. S., and C.T. Walsh. 1988. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles. Biochemistry 27:3267–3276.PubMedCrossRefGoogle Scholar
  25. 25.
    Faraci, W.S., and C.T. Walsh. 1989. Mechanism of inactivation of alanine racemase by ß,ß,ß-trifluoroalanine. Biochemistry 28:431–437.PubMedCrossRefGoogle Scholar
  26. 26.
    Fisher, L.M., J.G. Belasco, T.W. Bruice, W.J. Albery, and J.R. Knowles. 1986. Proline racemase: oversaturation and interconversion of enzyme forms. p. 205–216. In: P.A. Frey (ed.), Mechanisms of Enzymic Reactions: Stereochemistry. Elsevier Scientific, Amsterdam.Google Scholar
  27. 27.
    Galakatos, N.G., E. Daub, D. Botstein, and C.T. Walsh. 1986. Biosynthetic alr alanine racemase from Salmonella typhimurium: DNA and protein sequence determination. Biochemistry 25:3255–3260.PubMedCrossRefGoogle Scholar
  28. 28.
    Gerhart, F., W. Higgins, C. Tardif, and J. Ducep. 1990.2-(4-Amino-4-carboxybutyl) aziridine-2-carboxylic acid. A potent irreversible inhibitor of diaminopimelic acid epimerase. Spontanious formation from a-(halomethyl) diaminopimelic acids. J. Med. Chem. 33:2157–2162.PubMedCrossRefGoogle Scholar
  29. 29.
    Griffin, R.G., W.P. Aue, R.A. Haberkorn, G.S. Harbison, J.H. Herzfeld, E.M. Menger, M.G. Munowitz, E.T. Olejniczak, D.P. Raleigh, J.E. Roberts, D.J. Ruben, A. Schmidt, S.O. Smith, and S. Vega. 1988. Magic-angle sample spinning. p. 203–266. In B. Maraviglia (ed.), Physics of NMR Spectroscopy in Biology and Medicine. Soc. Etal. de Fisicia, Rome.Google Scholar
  30. 30.
    Hishinuma, F., K. Izaki, and H. Takahashi. 1971. Inhibition of L-alanine adding enzyme by glycine. Agric. Biol. Chem. 35:2050–2058.CrossRefGoogle Scholar
  31. 31.
    Inagaki, K., K. Tanizawa, B. Badet, C.T. Walsh, H. Tanaka, and K. Soda. 1986. Thermostable alanine racemase from Bacillus stearothermophilus: molecular cloning of the gene, enzyme purification, and characterization. Biochemistry 25:3268–3274.PubMedCrossRefGoogle Scholar
  32. 32.
    Ito, E., and J.L. Strominger. 1964. Enzymatic synthesis of the peptide in bacterial uridine nucleotides, J. Biol. Chem. 239:210–214.PubMedGoogle Scholar
  33. 33.
    Ito, E., and J.L. Strominger. 1973. Enzymatic synthesis of the peptide in bacterial uridine nucleotides. J. Biol. Chem. 248:3131–3136.PubMedGoogle Scholar
  34. 34.
    Jones, W.M., T.S. Soper, H. Ueno, and J.M. Manning. 1985. D-Glutamate D-amino acid transaminase from bacteria. Methods in Enzymol. 113:108–113.CrossRefGoogle Scholar
  35. 35.
    Kahan, F.M., and H. Kropp. 1975. MK641/MK642 A fixed-ratio combination (1): rationale; The sequential blockade of bacterial cell wall biosynthesis. Abstracts, 15th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, D.C., Sept. 1975, No. 103.Google Scholar
  36. 36.
    Knox, J.R., H. Liu, C.T. Walsh, and L.E. Zawadzke. 1989. D-alanine-D-alanine ligase (ADP) from Salmonella typhimurium. Overproduction, purification, crystallization and preliminary X-ray analysis. J. Mol. Biol. 205:461–463.PubMedCrossRefGoogle Scholar
  37. 37.
    Lam, L.K.P., L.D. Arnold, T.H. Kalantar, J.G. Kelland, P.M. Lane-Bell, M.M. Palcic, M.A. Pickard, and J.C. Vederas. 1988. Analogs of diaminopimelic acid as inhibitors of meso-diaminopimelate dehydrogenase and L,L-diaminopimelate epimerase. J. Bio. Chem. 263:11814–11819.Google Scholar
  38. 38.
    Lambert, M.P., and F.C. Neuhaus. 1972. Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W. J. Bacteriol. 110:978–987.PubMedGoogle Scholar
  39. 39.
    LeClerq, R., E. Derlot, J. Duval, and P. Courvalin. 1988. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium . New Engl. J. Med. 319:157–161.CrossRefGoogle Scholar
  40. 40.
    Likos, J.J., H. Ueno, R.W. Feldhaus, and D.E. Metzler. 1982. A novel reaction of the coenzyme of glutamate decarboxylase with serine O-sulfate. Biochemistry 21:43774386.Google Scholar
  41. 41.
    Lugtenberg, E.J.J., and A.S. van Dam. 1972. Temperature-sensitive mutants of Escherichia coli K-12 with low activities of the L-alanine adding enzyme and the Dalanyl-D-alanine adding enzyme. J. Bacteriol. 110:35–40.PubMedGoogle Scholar
  42. 42.
    Martinez-Carrion, M., and W.T. Jenkins. 1965. D-alanine-D-glutamate transaminase. Inhibitors and the mechanism of transamination of D-amino acids. J. Biol. Chem. 240:3547–3552.PubMedGoogle Scholar
  43. 43.
    McDermott, A.E., F. Creuzet, R.G. Griffin, L.E. Zawadzke, Q. Ye, and C.T. Walsh. 1990. Rotational resonance determination of the structure of an enzyme-inhibitor complex: phosphorylation of an (aminoalkyl)phosphinate inhibitor of D-alanyl-Dalanine ligase by ATP. Biochemistry. 29:5767–5775.PubMedCrossRefGoogle Scholar
  44. 44.
    Merola, M., A.M. del Pozo, H. Ueno, P., Recsei, A. DiDonato, J.M. Manning, K. Tanizawa, Y. Masu, S. Asano, H. Tanaka, K. Soda, D. Ringe, and G.A. Petsko. 1989. Site-directed mutagenesis of the cysteinyl residues and the active site residue of bacterial D-amino acrid transaminase. Biochemistry 28:505–509.PubMedCrossRefGoogle Scholar
  45. 45.
    Michaud, C., D. Blanot, B. Flouret, and J. van Heijenoort. 1987. Partial purification and specificity studies of the D-glutamate-adding and D-alanyl-D-alanine-adding enzymes from Escherichia coli K12. Eur. J. Biochem. 166:631–637.PubMedCrossRefGoogle Scholar
  46. 46.
    Misono, H., H. Togawa, T. Yamamoto, and K. Soda. 1979. meso-a,e-Diaminopimelate D-dehydrogenase: distribution and the reaction product. J. Bacteriol. 137:2227.Google Scholar
  47. 47.
    Morrison, J.F., and C.T. Walsh. 1988. The behavior and significance of slow-binding enzyme inhibitors. Adv. Enzymol. Relat. Areas Mol. Biol. 61:201–301.PubMedGoogle Scholar
  48. 48.
    Nakajima, N., K. Tanizawa, H. Tanaka, and K. Soda. 1986. Cloning and expression in Escherichia coli of the glutamate racemase gene from Pediococcus pentosaceus . Agric. Biol. Chem. 50:2823–2830.CrossRefGoogle Scholar
  49. 49.
    Nakajima, N., K. Tanizawa, H. Tanaka, and K. Soda. 1988. Distribution of glutamate racemase in lactic acid bacteria and further characterization of the enzyme from Pediococcus pentosaceus . Agric. Biol. Chem. 52:3099–3104.CrossRefGoogle Scholar
  50. 50.
    Neidhart, D.J., M.D. Distefano, K. Tanizawa, K. Soda, C.T. Walsh, and G.A. Petsko. 1987. X-ray crystallographic studies of the alanine-specific racemase from Bacillus stearothermophilus. J. Biol. Chem. 262:15323–15326.PubMedGoogle Scholar
  51. 51.
    Neuhaus, F.C. 1962. The enzymatic synthesis of D-alanyl-D-alanine. I. Purification and properties of D-alanyl-D-alanine synthetase. J. Biol. Chem. 237:778–786.PubMedGoogle Scholar
  52. 52.
    Neuhaus, F.C. 1962. The enzymatic synthesis of D-alanyl-D-alanine. II. Kinetic studies on D-alanyl-D-alanine synthetase. J. Biol. Chem. 237:3128–3135.PubMedGoogle Scholar
  53. 53.
    Neuhaus, F.C., and W.P. Hammes. 1987. Inhibition of cell wall biosynthesis by analogues of alanine. p. 45–99. In D.J. Tipper (ed.), Antibiotic Inhibitors of Bacterial Cell Wall Biosynthesis. Pergamon Press, New York.Google Scholar
  54. 54.
    Neuhaus, F.C., and W.P. Hammes. 1981. Inhibition of cell wall biosynthesis by analogues of alanine. Pharmacol. Ther. 14:265–319.PubMedCrossRefGoogle Scholar
  55. 55.
    Neuhaus, F.C., and J.L. Lynch. 1964. The enzymatic synthesis of D-alanyl-Dalanine. Ill. On the inhibition of D-alanyl-D-alanine synthetase by the antibiotic Dcycloserine. Biochemistry 3:471–480.PubMedCrossRefGoogle Scholar
  56. 56.
    Neuhaus, F.C., and W.G. Struve. 1965. Enzymatic synthesis of analogues of the cell wall precursor. I. Kinetics and specificity of uridine diphospho-N-acetylmuramyl-Lalanyl-D-glutamyl-L-lysine:D-alanyl-D-alanine ligase (adenosine diphosphate) from Streptococcus faecalis R. Biochemistry 4:120–131.PubMedCrossRefGoogle Scholar
  57. 57.
    Palfreyman, M.G., P.J. Schechter, W.R. Buckett, G.P. Tell, and J. Koch-Weser. 1981. The pharmacology of GABA-transaminase inhibitors. Biochem. Pharm. 30:817–824.PubMedCrossRefGoogle Scholar
  58. 58.
    Parsons, W.H., A.A. Patchett, H.G. Bull, W.R. Schoen, D. Taub, J. Davidson, P.L. Combs, J.P. Springer, H. Gadebusch, B. Weissberger, M.E. Valiant, T.N. Mellin, and R.D. Busch. 1988. Phosphinic acid inhibitors of D-analyl-D-alanine ligase. J. Med. Chem. 31:1772–1778.PubMedCrossRefGoogle Scholar
  59. 59.
    Patchett, A.A., D. Taub, B. Weissberger, M.E. Valiant, H. Gadebusch, N.A. Thomberry, and H.G. Bull. 1988. Antibacterial activities of fluorovinyl-and chlorovinylglycine and several derived dipeptides. Antimicrob. Agents Chem. 32:319–323.CrossRefGoogle Scholar
  60. 60.
    Rando, R.R. 1977. Mechanism of the irreversible inhibition of y-aminobutyric acid aketoglutaric acid transaminase by the neurotoxin gabaculine. Biochemistry. 16:46044610.Google Scholar
  61. 61.
    Rando, R.R., and R.W. Bangerter. 1976. The irreversible inhibition of mouse brain y-aminobutyric acid (GABA)-a-ketoglutaric acid transaminase by gabaculine. J. Am. Chem. Soc. 98:6762–6764.PubMedCrossRefGoogle Scholar
  62. 62.
    Richaud, C., W. Higgins, D. Mengin-Lecreulx, and P. Stragier. 1987. Molecular cloning, characterization, and chromosomal localization of dapF , the Escherichia coli gene for diaminopimelate epimerase. J. Bacteriol. 169:1454–1459.PubMedGoogle Scholar
  63. 63.
    Robinson, A.E., D. Kenan, J. Sweeney, and W. Donachie. 1986. Further evidence for overlapping transcriptional units in an Escherichia coli cell envelope-cell division gene cluster: DNA sequence and transcriptional organization of the ddl ftsQ region. J. Bacteriol. 167:809–817.PubMedGoogle Scholar
  64. 64.
    Rogers, H.J., H.R. Perkins, and J.B. Ward. 1980. Microbial cell walls and membranes, p. 239–297. Chapman and Hall, London.CrossRefGoogle Scholar
  65. 65.
    Roise, D., K. Soda, T. Yagi, and C.T. Walsh. 1984. Inactivation of the Pseudomonas striata broad specificity amino acid racemase by D and L isomers of ß-substituted alanines: kinetics, stoichiometry, active site peptide, and mechanistic studies. Biochemistry 23:5195–5201.PubMedCrossRefGoogle Scholar
  66. 66.
    Roze, U., and J. Strominger. 1966. Alanine racemase from Staphylococcus aureus: conformation of its substrates and its inhibitor, D-cycloserine. Mol. Pharmacol. 2:92–98.Google Scholar
  67. 67.
    Salton, M.R.J. 1964. In The bacterial cell wall, p. 293. Elsevier Scientific, Amsterdam.Google Scholar
  68. 68.
    Schechter, P.J., Y. Tranier, and J. Grove. 1979. Gabaculine and isogabaculine: in vivo biochemistry and pharmacology in mice. Life Sciences 24:1173–1182.PubMedCrossRefGoogle Scholar
  69. 69.
    Shen, S., H.G. Floss, H. Kumagai, H. Yamada, N. Esaki, K. Soda, S.A. Wasserman, and C. Walsh. 1983. Mechanism of pyridoxal-phosphate-dependent enzymatic amino-acid racemization. J. Chem. Soc. Chem. Commun. 82–83.Google Scholar
  70. 70.
    Silverman, R.B., and R.H. Abeles. 1976. Inactivation of pyridoxal phosphate dependent enzymes by mono and polyhaloalanines. Biochemistry 15:4718–4723.PubMedCrossRefGoogle Scholar
  71. 71.
    Silverman, R.B., and R.H. Abeles. 1977. Mechanism of inactivation of y-cystathionase by ß,ß,ß-trifluoroalanine. Biochemistry 16:5515–5520.PubMedCrossRefGoogle Scholar
  72. 72.
    Soda, K., H. Tanaka, and K. Tanizawa. 1986. Mechanism and inhibition of alanine racemase p. 223–251. In D. Dolphin, R. Poulson, and O. Avramovic (eds.), Vitamin B6 Pyridoxal-Phosphate; Part B. J. Wiley, New York.Google Scholar
  73. 73.
    Soper, T.S., and J.M. Manning. 1978. ß-Elimination of ß-halo substrates by D-amino acid trasaminase associated with inactivation of the enzyme. Trapping of a key intermediate in the reaction. Biochemistry 17:3377–3384.PubMedCrossRefGoogle Scholar
  74. 74.
    Soper, T.S., and J.M. Manning. 1981. Different modes of action of bacterial D-amino acid transaminases. J. Biol. Chem. 256:4263–4268.PubMedGoogle Scholar
  75. 75.
    Soper, T.S., and J.M. Manning. 1982. Inactivation of pyridoxal-phosphate enzymes by gabaculine. J. Biol. Chem. 257:13930–13936.PubMedGoogle Scholar
  76. 76.
    Soper, T.S., J.M. Manning, P.A. Marcotte, and C.T. Walsh. 1977. Inactivation of bacterial D-amino acid transaminases by the olefinic amino acid D-vinylglycine. J. Biol. Chem. 252:1571–1575.PubMedGoogle Scholar
  77. 77.
    Tanizawa, K., A. Ohshima, A. Scheidegger, K. Inagaki, H. Tanaka, and K. Soda. 1988. Thermostable alanine racemase from Bacillus stearothermophilus: DNA and protein sequence determination and secondary structure prediction. Biochemistry 27:1311–1316.PubMedCrossRefGoogle Scholar
  78. 78.
    Thomberry, N.A., H.G. Bull, D. Taub, W.J. Greenlee, A.A. Patchett, and E.H. Cordes. 1987. 3-Halovinylglycines. Efficient irreversible inhibitors of E. coli alanine racemase. J. Am. Chem. Soc. 109:7543–7544.CrossRefGoogle Scholar
  79. 79.
    Tipper, D.J. 1987. Mode of action of ß-lactam antibiotics, p. 133–170. In Antibiotic Inhibitors of Bacterial Cell Wall Biosynthesis. D.J. Tipper (ed.). Pergamon Press, New York.Google Scholar
  80. 80.
    Ueno, H., J.J. Likos, and D.E. Metzler. 1982. Chemistry of the inactivation of cytosolic aspartate aminotransferase by serine O-sulfate. Biochemistry 21:4387–4394.PubMedCrossRefGoogle Scholar
  81. 81.
    Vicario, P.P., B.G. Green, and H.M. Katzen. 1987. A single assay for simultaneously testing effectors of alanine racemase and/or D-alanine: D-alanine ligase. J. Antibiot. 40:209–216.PubMedCrossRefGoogle Scholar
  82. 82.
    Vo-Quang, Y., D. Carniato, L. Vo-Quang, A. Lacoste, E. Neuzil, and F. LeGoffic. 1986. (ß-Chloro-a-aminoethyl)phosphonic acids as inhibitors of alanine racemase and D-alanine: D-alanine ligase. J. Med. Chem. 29:148–151.PubMedCrossRefGoogle Scholar
  83. 83.
    Walsh, C. 1979. Enzymatic reactions requiring pyridoxal phosphate. p. 781–797. In: C. Walsh (ed.), Enzymatic Reaction Mechanisms. W.H. Freeman, San Francisco.Google Scholar
  84. 84.
    Walsh, C.T. 1989. Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J. Biol. Chem. 264:2393–2396.PubMedGoogle Scholar
  85. 85.
    Walsh, C.T., E. Daub, L.E. Zawadzke, and K. Duncan. 1988. Enzymes of D-alanine metabolism: cloning, expression, purification, and characterization of Salmonella typhimurium D-alanyl-D-alanine ligase, p. 531–540. In P. Actor, L. Daneo-Moore, M.L. Higgins, M.R.J. Salton, and G.D. Shockman (eds.), Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function. American Society for Microbiology, Washington, D.C.Google Scholar
  86. 86.
    Wang, E., and C.T. Walsh. 1978. Suicide substrates for the alanine racemase of Escherichia coli B. Biochemistry 17:1313–1321.PubMedCrossRefGoogle Scholar
  87. 87.
    Wang, E., and C.T. Walsh. 1981. Characteristics of ß,ß-difluoroalanine and ß ß ß trifluoroalanine as suicide substrates for Escherichia coli B alanine racemase. Biochemistry 20:7539–7546.PubMedCrossRefGoogle Scholar
  88. 88.
    Ward J.B. 1981. Teichoic and teichuronic acids: biosynthesis assembly and location. Microbiol. Rev. 45:211–243.PubMedGoogle Scholar
  89. 89.
    Ward, J.B. 1987. Biosynthesis of peptidoglycan: points of attack by wall inhibitors, p. 1–43. In: D.J. Tipper (ed.), Antibiotic Inhibitors of Bacterial Cell Wall Biosynthesis. Pergamon Press, New York.Google Scholar
  90. 90.
    Wasserman, S.A., E. Daub, P. Grasafi, D. Botstein, and C.T. Walsh. 1984. Catabolic alanine racemase from Salmonella typhimurium: DNA sequence, enzyme purification, and characterization. Biochemistry 23:5182–5187. PubMedCrossRefGoogle Scholar
  91. 91.
    Wasserman, S.A., C.T. Walsh, and D. Botstein, 1983. Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J. Bacteriol. 153 :1439–1450.PubMedGoogle Scholar
  92. 92.
    Wild, J., J. Hennig, M. Lobocka, W. Walczak, and T. Klopotowski. 1985. Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia colt K12 . Mol. Gen. Genet. 198:315–322.PubMedCrossRefGoogle Scholar
  93. 93.
    Wiseman, J.S., and J.S. Nichols. 1984. Purification and properties of diaminopimelic acid epimerase from Escherichia colt. J. Biol. Chem. 259:8907–8914.Google Scholar
  94. 94.
    Wyke, A.W., and H.R. Perkins. 1975. The specificity of enzymes adding amino acids in the synthesis of the peptidoglycan precursors of Corynebacterium poinsettiae and Corynebacterium insidiosum. J. Gen. Microbiol. 88:159–168.PubMedCrossRefGoogle Scholar
  95. 95.
    Yonaha, K., K. Misono, T. Yamamoto, and K. Soda. 1975. D-Amino acid aminotransferase of Bacillus sphaericus. Enzymologic and spectrometric properties. J. Biol. Chem. 250:579–587.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • W. Stephen Faraci

There are no affiliations available

Personalised recommendations