Advertisement

Protein secretion in bacteria: a chemotherapeutic target?

  • Rajeev Misra
  • Thomas J. Silhavy

Abstract

The Escherichia coli cell is composed of four distinct compartments: the cytoplasm, an inner membrane, an outer membrane, and the periplasm, an aqueous compartment sandwiched between the two membranes. All proteins are synthesized in the cytoplasm and a subset of these are exported to noncytoplasmic locations. This process of protein export from the cytoplasm is an essential cellular function performed by a set of proteins discovered primarily through genetic studies. All proteins destined for the outer membrane or periplasmic space are first synthesized as precursors bearing an amino-terminal signal sequence of about 20 amino acids. Cleavage of the signal sequence by signal peptidase at the outer face of the inner membrane precedes proper localization of these exported protein.

Keywords

Signal Sequence Protein Translocation Hybrid Protein Signal Peptidase Protein Export 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akiyama, Y., and K. Ito. 1987. Topology analysis of the SecY, an integral membrane protein involved in protein export in Escherichia coli. EMBO J. 6:3465–3470.PubMedGoogle Scholar
  2. 2.
    Bankaitis, V.A., and P.J. Bassford, Jr. 1985. Proper interaction between at least two components is required for efficient export of proteins to the Escherichia coli cell envelope. J. Bacteriol. 161:169–178.PubMedGoogle Scholar
  3. 3.
    Bassford, P.J., and J. Beckwith. 1979. Escherichia coli mutants accumulating the precursor of a secreted protein in the cytoplasm. Nature (London) 277:538–541.CrossRefGoogle Scholar
  4. 4.
    Bassford, P.J. Jr., T.J. Silhavy, and J.R. Beckwith. 1979. Use of gene fusions to study secretion of maltose-binding protein into Escherichia coli periplasm. J. Bacteriol. 139:19–31.PubMedGoogle Scholar
  5. 5.
    Bedouelle, H., P.J. Bassford, Jr., A.V. Flower, I. Zabin, and J. Beckwith. 1980. The nature of mutational alterations in the signal sequence of maltose-binding protein of Escherichia coli. Nature (London) 285:78–81.CrossRefGoogle Scholar
  6. 6.
    Bieker, K.L., G.P. Phillips, and T.J. Silhavy. 1990. The sec and prl genes of Escherichia coli. J. Bioenerg. Biomem. 22:291–310.CrossRefGoogle Scholar
  7. 7.
    Bieker, K.L., and T.J. Silhavy. 1989. Pr1A is important for the translocation of exported proteins across the cytoplasmic membrane of Escherichia coli. Proc. Nail. Acad. Sci. USA 78:968–972.CrossRefGoogle Scholar
  8. 8.
    Bieker, K.L., and T.J. Silhavy. 1990. Pr1A (SecY) and Pr1G (SecE) interact directly and function sequentially during protein translocation in E. coli. Cell 61:833–842.PubMedCrossRefGoogle Scholar
  9. 9.
    Bochkareva, E.S., N.M. Lissin, and A.S. Girshovich. 1988. Transient association of newly synthesized unfolded proteins with the heat shock GroEL protein. Nature (London) 336:254–157.CrossRefGoogle Scholar
  10. 10.
    Brundage, L., J.P. Handrick, E. Schiebel, A.J.M. Driessen, and W. Wickner. 1990. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62:649–657.PubMedCrossRefGoogle Scholar
  11. 11.
    Cabelli, R.J., L. Chen, P.C. Tai, and D.B. Oliver. 1988. SecA protein is required for secretory protein translocation into E. coli membrane vesicles. Cell 55:683–692.PubMedCrossRefGoogle Scholar
  12. 12.
    Collier, D.N., V.A. Bankaitis, J.B. Weiss, and P.J. Bassford, Jr. 1988. The antifolding activity of secB promotes the export of the E. coli maltose-binding protein. Cell 53:273–283.PubMedCrossRefGoogle Scholar
  13. 13.
    Cunningham, K., R. Lill, E. Crooke, M. Rice, and K. Moore. 1989. SecA protein, a peripheral membrane of the Escherichia coli plasma membrane, is essential for the functional binding and translocation of proOmpA. EMBO J. 8:955–959.PubMedGoogle Scholar
  14. 14.
    Downing, W.L., S.L. Sullivan, M.E. Gottesman, and P.P. Dennis. 1990. Sequence and transcriptional pattern of the essential Escherichia coli secE-nusG operon. J. Bacteriol. 172:1621–1627.PubMedGoogle Scholar
  15. 15.
    Emr, S.D., S. Hanley-Way, and T.J. Silhavy. 1981. Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 23:79–88.PubMedCrossRefGoogle Scholar
  16. 16.
    Emr, S.D., J. Hedgpeth, J. -M. Clement, T.J. Silhavy, and M. Hofnung. 1980. Sequence analysis of mutations that prevent export of lambda receptor, an Escherichia coli outer membrane protein. Nature (London) 285:82–85.CrossRefGoogle Scholar
  17. 17.
    Emr, S.D., M. Schwartz, and T.J. Silhavy. 1978. Mutations altering the cellular localization of the phage lambda receptor of Escherichia coli. Proc. Natl. Acad. Sci. USA 75:5802–5806.PubMedCrossRefGoogle Scholar
  18. 18.
    Emr, S.D., and T.J. Silhavy, 1980. Mutations affecting localization of Escherichia coli outer membrane protein, the bacteriophage lambda receptor. J. Mol. Biol. 141:63–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Fortin, Y., P. Phoenix, and G.R. Drapeau. 1990. Mutations conferring resistance to azide in Escherichia coli occur primarily in the secA gene. J. Bacteriol. 171:6607–6610.Google Scholar
  20. 20.
    Gannon, P.M., P. Li, and C.A. Kumamoto. 1989. The mature portion of Escherichia coli maltose-binding protein (MBP) determines the dependence of MBP on SecB for export. J. Bacteriol. 171:813–818.PubMedGoogle Scholar
  21. 21.
    Gardel, C., S.A. Benson, J. Hunt, S. Michaelis, and J. Beckwith. 1987. secD , a new gene involved in protein export in Escherichia coli. J. Bacteriol. 169:1286–1290.PubMedGoogle Scholar
  22. 22.
    Gardel, C., K. Johnson, A. Jacq, and J. Beckwith. 1990. The secD locus of E. coli codes for two membrane proteins required for protein export. EMBO J. 9:3209–3216.PubMedGoogle Scholar
  23. 23.
    Gennity, J., J. Goldstein, and M. Inouye. 1990. Signal peptide mutants of Escherichia coli. J. Bioenrg. Biomem. 22:233–269.CrossRefGoogle Scholar
  24. 24.
    Halegoua, S., and M. Inouye. 1979. Translocation and assembly of the outer membrane proteins of Escherichia coli: selective accumulation of precursors and novel assembly intermediates caused by phenethyl alcohol. J. Mol. Biol. 130:39–61.PubMedCrossRefGoogle Scholar
  25. 25.
    Hall, M.N., M. Schwartz, and T.J. Silhavy. 1982. Sequence information within the lamB gene is required for proper routing of the bacteriophage lambda receptor protein to the outer membrane of Escherichia coli K-12. J. Mol. Biol. 156:93–112.PubMedCrossRefGoogle Scholar
  26. 26.
    Hartl, F. -U., S. Lecker, E. Schiebel, J.P. Hendrick, and W. Wickner. 1990. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63:269–279.PubMedCrossRefGoogle Scholar
  27. 27.
    Ito, K., M. Wittekind, M. Nomura, K. Shiba, and T. Yura. 1983. A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins. Cell 32:789–797.PubMedCrossRefGoogle Scholar
  28. 28.
    Kumamoto, C.A., and J. Beckwith. 1983. Mutations in a new gene, secB , cause defective protein localization in Escherichia coli. J. Bacteriol. 154:254–260.Google Scholar
  29. 29.
    Kumamoto, C.A., and J. Beckwith. 1985. Evidence for specificity at an early step in protein export in Escherichia coli. J. Bacteriol. 163:267–274.PubMedGoogle Scholar
  30. 30.
    Kumamoto, C.A., L. Chen, J. Fandl, and P.C. Tai. 1989. Purification of the Escherichia coli secB gene product and demonstration of its activity in an in vitro protein translocation system. J. Biol. Chem. 264:2242–2249.PubMedGoogle Scholar
  31. 31.
    Kumamoto, C.A., and P.M. Gannon. 1989. Effects of Escherichia coli secB mutations on pre-maltose binding protein conformation and export kinetics. J. Biol. Chem. 263:11554–11558.Google Scholar
  32. 32.
    Kumamoto, C.A., and A.K. Nault. 1989. Characterization of the Escherichia coli protein-export gene secB. Gene 75:167–175.PubMedCrossRefGoogle Scholar
  33. 33.
    Lederberg, J. 1950. The selection of genetic recombinations with bacterial growth inhibitors. J. Bacteriol. 59:211–215.PubMedGoogle Scholar
  34. 34.
    Lill, R., K. Cunningham, L.A. Brundage, K. Ito, and D.B. Oliver. 1989. SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. EMBO J. 8:961–966.PubMedGoogle Scholar
  35. 35.
    Lill, R., W. Dowhan, and W. Wickner. 1990. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60:271–280.PubMedCrossRefGoogle Scholar
  36. 36.
    Menzel, R. 1989. A microtitre plate-based system for semiautomated growth and assay for bacterial cell’s β-galactosidase activity. Anal. Biochem. 181:40–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Oliver, D.B., and J. Beckwith. 1981. E. coli mutants pleitropically defective in the export of secreted proteins. Cell 25:2765–2772.CrossRefGoogle Scholar
  38. 38.
    Oliver, D.B., and J. Beckwith. 1982. Regulation of a membrane component required for protein secretion in Escherichia coli. Cell 30:311–319.PubMedCrossRefGoogle Scholar
  39. 39.
    Oliver, D.B., R.J. Cabelli, K.M. Dolan, and G.P. Jarosik. 1990. Azide-resistant mutants of E. coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Proc. Natl. Acad. Sci. USA 87:8227–8231.PubMedCrossRefGoogle Scholar
  40. 40.
    Quillardet, P., and M. Hofnung. 1985. The SOS chromotest, a colorimetric bacterial assay for genotoxins: procedures. Mutation Res. 147:65–78.PubMedCrossRefGoogle Scholar
  41. 41.
    Randall, L.L., T.B. Topping, and S.J.S. Hardy. 1990. No specific recognition of leader peptide by SecB, a chaperone involved in protein export. Science 248:860–863.PubMedCrossRefGoogle Scholar
  42. 42.
    Riggs, P.D.A., I. Denman, and J. Beckwith. 1988. A mutation affecting the regulation of a secA-lacZ fusion defines a new sec gene. Genetics 118:571–579.PubMedGoogle Scholar
  43. 43.
    Rollo, E.E., and D.B. Oliver. 1988. Regulation of the Escherichia coli secA gene by protein secretion defects: analysis of secA , secB , secD , and secY mutants. J. Bacteriol. 170:3281–3280.PubMedGoogle Scholar
  44. 44.
    Ryan, J.P., and P.J. Bassford, Jr. 1985. Post-translational export of maltose-binding protein in Escherichia coli strains harboring malE signal sequence mutations and either prl + or prl suppressor alleles. J. Biol. Chem. 260:14832–14837.PubMedGoogle Scholar
  45. 45.
    Schatz, P.J., and J. Beckwith. 1990. Genetic analysis of protein export in Escherichia coli. Ann. Rev. Genet. 24:215–248.PubMedCrossRefGoogle Scholar
  46. 46.
    Schatz, P.J., P.D. Riggs, A. Jacq, M.J. Fath, and J. Beckwith. 1989. The secE gene encodes an integral membrane protein required for protein export in E. coli. Genes Dev. 3:1035–1044.PubMedCrossRefGoogle Scholar
  47. 47.
    Schmidt, M.G., E.E. Rollo, J. Grodberg, and D.B. Oliver. 1988. Nucleotide sequence of the secA gene and secA(ts) mutations preventing protein export in Escherichia coli. J. Bacteriol. 170:3404–3414.PubMedGoogle Scholar
  48. 48.
    Schultz, J., T.J. Silhavy, M.L. Berman, N. Fiil, and S.D. Emr. 1982. A previously unidentified gene in the spc operon of Escherichia coli K-12 specifies a component of the protein export machinery. Cell 31:227–235.CrossRefGoogle Scholar
  49. 49.
    Silhavy, T.J., and J.R. Beckwith. 1985. Uses of lac fusions for the study of biological problems. Microbiol. Rev. 49:398–418.PubMedGoogle Scholar
  50. 50.
    Stader, J., L.J. Gansheroff, and T.J. Silhavy. 1989. New suppressors of signal-sequence mutations, prlG , are linked to the secE gene of Escherichia coli. Genes Dev. 3:1045–1052.PubMedCrossRefGoogle Scholar
  51. 51.
    Suh, J. -W., S.A. Boylan, S.M. Thomas, K.M. Dolan, D.B. Oliver, and C.W. Price. 1990. Isolation of a secY homolog from Bacillus subtilis: Evidence for a common protein export pathway in Eubacteria. Mol Microbiol. 4:305–314.PubMedCrossRefGoogle Scholar
  52. 52.
    Talmadge, K, S. Stahl, and W. Gilbert. 1980. Eukaryotic signal sequence transports insulin antigen in Escherichia coli. Proc. Natl. Acad. Sci. USA 77:3369–3373.PubMedCrossRefGoogle Scholar
  53. 53.
    Watanabe, M., and G. Blobel. 1989. SecB functions as a cytosolic signal recognition factor for protein export in E. coli. Cell 58:695–705.PubMedCrossRefGoogle Scholar
  54. 54.
    Weiss, J.B., P.H. Ray, and P.J. Bassford, Jr. 1988. Purified SecB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro. Proc. Natl. Acad. Sci. USA 85:8978–8982.PubMedCrossRefGoogle Scholar
  55. 55.
    Wiedman, M., A. Huth, and T. Rapoport. 1984. Xenopus oocytes can secrete bacterial β-lactamase. Nature (London) 309:637–639.CrossRefGoogle Scholar
  56. 56.
    Yamada, H., H. Tokuda, and S. Mizushima. 1989. Proton motive force-dependent and -independent protein translocation revealed by an efficient in vitro assay system of Escherichia coli. J. Biol. Chem. 264:1723–1728.PubMedGoogle Scholar
  57. 57.
    Yura, T, and C. Wada. 1968. Phenethyl alcohol resistance in Escherichia coli I. Resistance of strain C600 and its relation to azide resistance. Genetics 59:177–190.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Rajeev Misra
  • Thomas J. Silhavy

There are no affiliations available

Personalised recommendations