The process of cell division is necessary for the growth of all cells. The mechanism by which eubacteria divide has so far shown little homology to the mechanisms employed by eukaryotic cells. Although this lack of similarity may be a result of our lack of knowledge about these processes it may also be that different mechanisms are involved. If so, it would make cell division a selective target for antimicrobial agents.


Cell Division Nonpermissive Temperature Chromosome Replication Division Site Bacterial Cell Division 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, H.I., W. Fisher, A. Cohen, and A. Hardigree. 1967. Miniature E. coli cells deficient in DNA. Proc. Natl. Acad. Sci. USA 57:321–326.PubMedCrossRefGoogle Scholar
  2. 2.
    Aldea, M., T. Garrido, J. Pla, and M. Vicente, 1990. Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters. EMBO J. 8:3923–3931.Google Scholar
  3. 3.
    Asoh, S., H. Matsuzawa, F. Ishinmo, J.L. Strominger, M. Matsuhashi, and T. Ohta. 1986. Nucleotide sequence of the pbpA gene and characteristics of the deduced amino acid sequence of penicillin-binding protein 2 of Escherichia coli K12. Eur. J. Biochem. 160:231–238.PubMedCrossRefGoogle Scholar
  4. 4.
    Bartholome-De Beider, J., M. Nguyen-Disteche, N. Houba-Herin, J.M. Ghuysen, I.N. Maruyama, H. Hara, Y. Hirota, and M. Inouye. 1988. Overexpression, solubilization and refolding of a genetically engineered derivative of the penicillin-binding protein 3 of Escherichia coli K12. Mol. Microbiol. 2:519–525.CrossRefGoogle Scholar
  5. 5.
    Beall, B., and J. Lutkenhaus. 1987. Sequence analysis, transcriptional organization, and insertional mutagenesis of the envA gene of Escherichia coli. J. Bacteriol. 169:5408–5415.PubMedGoogle Scholar
  6. 6.
    Beall, B., and J. Lutkenhaus. 1989. Nucleotide sequence and insertional inactivation of a Bacillus subtilis gene that affects cell division, sporulation, and temperature sensitivity. J. Bacteriol. 171:6821–6834.PubMedGoogle Scholar
  7. 7.
    Beall, B., and J. Lutkenhaus. 1991. FtsZ in Bacillus subtilis is required for vegetative septation and asymmetric septation during sporulation. Genes and Develop. 5:447–455.CrossRefGoogle Scholar
  8. 8.
    Beall, B., M. Lowe, and J. Lutkenhaus. 1988. Cloning and characterization of Bacillus subtilis homologs of Escherichia coli cell division genes ftsZ and ftsA. J. Bacteriol. 170:4855–4864.PubMedGoogle Scholar
  9. 9.
    Beck, B.D., and J.T. Park. 1976. Activity of three murein hydrolases during the cell division cycle of Escherichia coli K-12 as measured in toluene-treated cells. J. Bacteriol. 126:1250–1260.PubMedGoogle Scholar
  10. 10.
    Begg, K.J., and W.D. Donachie. 1985. Cell shape and division in Escherichia coli: experiments with shape and division mutants. J. Bacteriol. 163:615–622.PubMedGoogle Scholar
  11. 11.
    Begg, K.J., A. Takasuga, D.H. Edwards, S.J. Dewar, B.G. Spratt, H. Aduchi, T. Ohta, H. Matsuzawa, and W.D. Donachie. 1990. The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J. Bacteriol. 172:6697–6703.PubMedGoogle Scholar
  12. 12.
    Begg, K.J., G.F. Hatfull, and W.D. Donachie, 1980. Identification of new genes in a cell envelope-cell division gene cluster in Escherichia coli: cell division gene ftsQ. J. Bacteriol. 144:435–437.PubMedGoogle Scholar
  13. 13.
    Begg, K.J., B.G. Spratt, and W.D. Donachie, 1986. Interaction between membrane proteins PBP3 and RodA is required for normal cell shape and division in Escherichia coli. J. Bacteriol. 167:1004–1008.PubMedGoogle Scholar
  14. 14.
    Bejar, S., and J.P. Bouche. 1985. A new dispensable genetic locus of the terminus region involved in control of cell division in Escherichia coli. Mol. Gen. Genet. 201:146–150.PubMedCrossRefGoogle Scholar
  15. 15.
    Bejar, S., F. Bouche, and J.P. Bouche. 1988. Cell division inhibition gene dicB is regulated by a locus similar to lambdoid bacteriophage immunity loci. Mol. Gen. Genet. 212:11–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Berlander, R., and Kurt Nordstrom. Chromosome replication does not trigger cell division in E. coli. Cell 60:365–374.Google Scholar
  17. 17.
    Bernstein, H.D., M.A. Poritz, K. Strub, P.J. Hoben, S. Brenner, and P. Walter. 1989. Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Nature 340:482–486.PubMedCrossRefGoogle Scholar
  18. 18.
    Bi, E., and J. Lutkenhaus. 1990. FtsZ regulates the frequency of cell division in Escherichia coli. J. Bacteriol. 172:2765–2768.PubMedGoogle Scholar
  19. 19.
    Bi, E., and J. Lutkenhaus, 1990. Analysis of ftsZ mutations that confer resistance to the cell division inhibitor, sulA. J. Bacteriol. 172:5602–5609.PubMedGoogle Scholar
  20. 20.
    Bi, E., and J. Lutkenhaus. 1990. Interaction between the min locus and ftsZ. J. Bacteriol. 172:5610–5616.PubMedGoogle Scholar
  21. 21.
    Bi, E., K. Dai, S. Subbarao, B. Beall, and J. Lutkenhaus. 1991. FtsZ and cell division. Research in Microbiol. (in press).Google Scholar
  22. 22.
    Botta, G.A., and J.T. Park. 1981. Evidence for the involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J. Bacteriol. 145:333–340.PubMedGoogle Scholar
  23. 23.
    Bouloc, P., A. Jaffe, and R. D’An. 1989. The Escherichia coli lov gene product connects peptidoglycan synthesis, ribosomes and growth rate. EMBO J. 8:317–323.PubMedGoogle Scholar
  24. 24.
    Bowler, L.D., and B.G. Spratt. 1989. Membrane topology of penicillin binding protein 3 of Escherichia coli. Mol. Microbiol. 3:1277–1286.PubMedCrossRefGoogle Scholar
  25. 25.
    Bukau, B., and G.C. Walker. 1989. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J. Bacteriol. 171:2337–2346.PubMedGoogle Scholar
  26. 26.
    Bukau, B., and G.C. Walker. 1989. AdnaK52 mutants of Escherichia coli have defects in chromosome segregation and plasmid maintenance at normal growth temperatures. J. Bacteriol. 171:6030–6038.PubMedGoogle Scholar
  27. 27.
    Burdett, I.D.J., and R.G.E. Murray. 1974. Septum formation in Escherichia coli: characterization of septal structure and the effects of antibiotics on cell division. J. Bacteriol. 119:303–324.PubMedGoogle Scholar
  28. 28.
    Burdett, I.D.J., and R.G.E. Murray. 1974. Electron microscope study of septum formation in Escherichia coli strains B and B/r during synchronous growth. J. Bacteriol. 119:1039–1056.PubMedGoogle Scholar
  29. 29.
    Burton, P., and I.B. Holland. 1983. Two pathways of divison inhibition in UV-irradiated E. coli. Mol. Gen. Genet. 190:128–132.PubMedCrossRefGoogle Scholar
  30. 30.
    Canepari, P., G. Botta, and G. Salta. 1984. Inhibition of lateral wall elongation by mecillinam stimulates cell division in certain cell division conditional mutants of Escherichia coli. J. Bacteriol. 157:130–133.PubMedGoogle Scholar
  31. 31.
    Chakraborti, A.S., K. Ishidate, W.R. Cook, J. Zrike, and L.I. Rothfield. 1986. Accumulation of a murein-membrane attachment site fraction when cell division is blocked in lkyD and cha mutants of Salmonella typhimurium and Escherichia coli. J. Bacteriol. 168:1422–1429.PubMedGoogle Scholar
  32. 32.
    Chon, Y., and R. Gayda. 1988. Studies with FtsA-LacZ protein fusions reveal FtsA-located inner-outer membrane junctions. Biochem. Biophys. Res. Commun. 152:1023–1030.PubMedCrossRefGoogle Scholar
  33. 33.
    Cook, W.R., T.J. MacAlister, and L.I. Rothfield. 1986. Compartmentalization of the periplasmic space at division sites in gram-negative bacteria. J. Bacteriol. 168:1430–1438.PubMedGoogle Scholar
  34. 34.
    Corton, J.C., J.E. Ward, Jr., and J. Lutkenhaus. 1987. Analysis of cell division gene ftsZ (sulB) from gram-negative and gram-positive bacteria. J. Bacteriol. 169:1–7.PubMedGoogle Scholar
  35. 35.
    D’An, R. 1985. The SOS system. Biochimie 67:343–347.Google Scholar
  36. 36.
    D’An, R., and O. Huisman. 1983. Novel mechanism of cell division inhibition associated with the SOS response in Escherichia coli. J. Bacteriol. 156:243–250.Google Scholar
  37. 37.
    D’An, R., A. Jaffe, P. Bouloc, and A. Robin. 1988. Cyclic AMP and cell division in Escherichia coli. 1988. J. Bacteriol. 170:65–70.Google Scholar
  38. 38.
    Davie, E., K. Syndor, and L.I. Rothfield. 1984. Genetic basis of minicell formation in Escherichia coli K-12. J. Bacteriol. 158:1202–1203.PubMedGoogle Scholar
  39. 39.
    de Boer, P.A.J., R.E. Crossely, L.I. Rothfield. 1989. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641–649.PubMedCrossRefGoogle Scholar
  40. 40.
    de Boer, P.A.J., R.E. Crossley, and L.I. Rothfield. 1990. Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc. Natl. Acad. Sci. USA 87:1129–1133.PubMedCrossRefGoogle Scholar
  41. 41.
    de Boer, P.A.J., W.R. Cook, and L.I. Rothfield. 1990. Bacterial cell division. Ann. Rev. Genet. 24:249–274.PubMedCrossRefGoogle Scholar
  42. 42.
    deJonge, B.L.M., F.B. Wientjes, I. Jurida, F. Driehuis, J.T.M. Wouters, and N. Nanninga. 1989. Peptidoglycan synthesis during the cell cycle of Escherichia coli: composition and mode of insertion. J. Bacteriol. 171:5783–5794.Google Scholar
  43. 43.
    del Portillo, F.G., M.A. de Pedro, D. Joseleau-Petit, and R. D’An. 1989. Lytic response of Escherichia coli cells to inhibitors of penicillin-binding proteins la and lb as a timed event related to cell division. J. Bacteriol. 171:4217–4221.Google Scholar
  44. 44.
    Descoteaux, A., and G.R. Drapeau. 1987. Regulation of cell division in Escherichia coli K-12: probable interactions among proteins FtsQ, FtsA and FtsZ.J. Bacteriol. 169:1938–1942.PubMedGoogle Scholar
  45. 45.
    Dewar, S.J., V. kagen-Zur, K.J. Begg, and W.D. Donachie. 1989. Transcriptional regulation of cell division gene in Escherichia coli. Mol. Microbiol. 3:1371–1377.PubMedCrossRefGoogle Scholar
  46. 46.
    Doi, M., M. Wachi, F. Ishino, S. Tomika, M. Ito, Y. Sakagami, A. Suzuki, and M. Matsuhashi. 1988. Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells. J. Bacteriol. 170:4619–4624.PubMedGoogle Scholar
  47. 47.
    Donachie, W.D., and A.C. Robinson. 1987. Cell division: parameter values and the process, p. 1578–1593. In F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C.Google Scholar
  48. 48.
    Donachie, W.D., and K.J. Begg, 1970. Growth of the bacterial cell. Nature (London) 227:1220–1224.CrossRefGoogle Scholar
  49. 49.
    Donachie, W.D., and K.J. Begg. 1989. Cell length, nucleoid separation, and cell division of rod-shaped and spherical cells of Escherichia coli. J. Bacteriol. 171:4633–4639.PubMedGoogle Scholar
  50. 50.
    Donachie, W.D., and K.J. Begg. 1989. Chromosome partition in Excherichia coli requires postreplication protein synthesis. J. Bacteriol. 171:5405–5409.PubMedGoogle Scholar
  51. 51.
    Donachie, W.D., K.J. Begg, and N.F. Sullivan. 1984. Morphogenes of Escherichia coli, p. 27–62. In R. Losick and L. Shapiro (ed.), Microbial development. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  52. 52.
    Donachie, W.D., K.J. Begg, J.F. Lutkenhaus, G.P.C. Salmond, E. Martinez-Salas, and M. Vicente. 1979. Role of the ftsA gene product in control of Escherichia coli cell division. J. Bacteriol. 140:388–394.PubMedGoogle Scholar
  53. 53.
    Dorman, C.J., A.S. Lynch, N.N. Bhriain, and C.F. Higgins. 1989. DNA supercoiling in Escherichia coli: topA mutations can be suppressed by DNA amplifications involving the tolC locus. Mol. Microbiol. 3:531–540.PubMedCrossRefGoogle Scholar
  54. 54.
    Ferreira, L.C.S., W. Keck, A. Betzner, and U. Schwarz. In vivo cell division gene product interaction in Escherichia coli K-12. J. Bacteriol. 169:5776–5781.Google Scholar
  55. 55.
    Fletcher, G., C.A. Irwin, J.M. Henson, C. Fillingim, M.M. Malone, and J.R. Walker. 1978. Identification of the Escherichia coli cell division gene sep and organization of the cell division-cell envelope genes in the sep-mur-ftsA-envA cluster as determined with specialized transducing lambda bacteriophages. J. Bacteriol. 133:91–100.PubMedGoogle Scholar
  56. 56.
    Foley, M., J.M. Brass, J. Birmingham, W.R. Cook, P.B. Garland, C.F. Higgins, and L.I. Rothfield. 1989. Compartmentalization of the periplasm at cell division sites in Escherichia coli as shown by fluorescence photobleaching experiments. Mol. Microbiol. 3:1329–1336.PubMedCrossRefGoogle Scholar
  57. 57.
    Frazer, A.C., and R. Curtiss III. 1975. Production, purification and utility of bacterial minicells. Cur. Top. Microbiol. Immunol. 69:1–84.CrossRefGoogle Scholar
  58. 58.
    Freundl, R., G. Braun, N. Honore, and S.T. Cole. 1987. Evolution of the enterobacterial sulA gene: a component of the SOS system encoding an inhibitor of cell division. Gene 52:31–40.CrossRefGoogle Scholar
  59. 59.
    Gayda, R.C., L.T. Yamamoto, and A. Markovitz. 1976. Second-site mutations in capR (lon) strains of Escherichia coli K-12 that prevent radiation sensitivity and allow bacteriophage lambda to lysogenize. J. Bacteriol. 127:1208–1216.PubMedGoogle Scholar
  60. 60.
    George, J., M. Castellazzi, and G. Buttin. 1975. Prophage induction and cell division in E. coli. III. Mutations sfiA and sfiB restore division in tif and Ion strains and permit the expression of mutator properties of tif. Mol. Gen. Genet. 140:309–322.PubMedGoogle Scholar
  61. 61.
    Gill, D.R., G.F. Hatfull, and G.P.C. Salmond. 1986. A new cell division operon in Escherichia coli. Mol. Gen. Genet. 205:134–145.PubMedCrossRefGoogle Scholar
  62. 62.
    Gill, D.R., and G.P.C. Salmond. 1990. The identification of the Escherichia coli ftsY gene product: an unusual protein. Mol. Microbiol. 4:575–583.PubMedCrossRefGoogle Scholar
  63. 63.
    Gottesman, S., E. Halpern, and P. Trisler. 1981. Role of sulA and sulB in filamentation by Ion mutants of Escherichia coli K-12. J. Bacteriol. 148:265–273.PubMedGoogle Scholar
  64. 64.
    Grundstrom, T.S., S. Normark, and K. Magnusson. 1980. Overproduction of outer membrane protein suppresses envA-mediated hyperpermeability. J. Bacteriol. 144:884–890.PubMedGoogle Scholar
  65. 65.
    Hara, H, Y. Nishimura, J. -I. Kato, H. Suzuki, H. Nagasawa, A. Suzuki, and Y. Hirota. 1989. Genetic analyses of processing involving C-terminal cleavage in penicillin-binding protein 3 of Escherichia coli. 1989. J. Bacteriol. 171:5882–5889.PubMedGoogle Scholar
  66. 66.
    Harry, E.J., and R.G. Wake. 1989. Cloning and expression of a Bacillus subtilis division initiation gene for which a homolog has not been identified in another organism. J. Bacteriol. 171:6835–6839.PubMedGoogle Scholar
  67. 67.
    Hiraga, S., H. Niki, T. Ogura, C. Ichinose, H. Mori, B. Ezaki, and A. Jaffe. 1989. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J. Bacteriol. 171:1496–1505.PubMedGoogle Scholar
  68. 68.
    Huisman, O., and R. D’Ari. 1981. An inducible DNA replication-cell division coupling mechanism in E. coli. Nature (London) 290:797–799.CrossRefGoogle Scholar
  69. 69.
    Huisman, O., R. D’Ari, and S. Gottesman. 1984. Cell division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation. Proc. Natl. Acad. Sci. USA 81:4490–4494.PubMedCrossRefGoogle Scholar
  70. 70.
    Hussain, K., K.J. Begg, G.P.C. Salmond, and W.D. Donachie, 1987. ParD: a new gene code for a protein required for chromosome partitioning and septum localization. Mol. Microbiol. 1:73–81.PubMedCrossRefGoogle Scholar
  71. 71.
    Hussain, K., E.J. Elliott, and G.P.C. Salmond. 1987. The ParD- mutant of Escherichia coli also carries a gyrA,,,, mutation: the complete sequence of gyrA. Mol. Microbiol. 1:259–273.PubMedCrossRefGoogle Scholar
  72. 72.
    Ikeda, M., T. Sato, M. Wachi, H.K. Jung, F. Ishino, Y. Kobasyashi, and M. Matsuhashi. 1989. Structural similarity among Escherichia coli FtsW, RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively. J. Bacteriol. 171:6375–6378.PubMedGoogle Scholar
  73. 73.
    Ishino, F., and M. Matsuhashi. 1981. Peptidoglycan synthetic activities of highly purified penicillin-binding protein 3 in Escherichia coli: a septum-forming reaction sequence. Biochem. Biophys Res. Commun. 101:905–911.PubMedCrossRefGoogle Scholar
  74. 74.
    Ishino, F., H.K. Jung, M. Ikeda, M. Doi, M. Wachi, and M. Matsuhashi. 1989. New mutations fts-36, Its-33 and ftsW clustered in the mra region of the Escherichia coli chromosome induce thermosensitive cell growth and division. J. Bacteriol. 171:5523–5530.PubMedGoogle Scholar
  75. 75.
    Ishino, F., W. Park, S. Tomioka, S. Tamaki, I. Takase, K. Kunugita, H. Matsuzawa, S. Asoh, T. Ohta, B.G. Spratt, and M. Matsuhashi. 1986. Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and RodA protein. J. Biol. Chem. 261:7024–7031.PubMedGoogle Scholar
  76. 76.
    Jaffe, A., R. D’Ari, and V. Norris, 1986. SOS-independent coupling between DNA replication and cell division in Escherichia coli. J. Bacteriol. 165:66–71.PubMedGoogle Scholar
  77. 77.
    Jaffe, A., R. D’Ari, and S. Hiraga. 1988. Minicell-fonning mutants of Escherichia coli: production of minicells and anucleate rods. J. Bacteriol. 170:3094–3101.PubMedGoogle Scholar
  78. 78.
    Johnson, B.F. 1977. Fine structure mapping and properties of mutations suppressing the Ion mutation in Escherichia coli K-12 and B strains. Genet. Res. 30:273–286.PubMedCrossRefGoogle Scholar
  79. 79.
    Jones, C.A., and I.B. Holland. 1984. Inactivation of essential genes, ftsA, ftsZ, suppresses mutations at sfiB, a locus mediating division inhibition during the SOS response in E. coli. EMBO J. 3:1181–1186.PubMedGoogle Scholar
  80. 80.
    Jones, C.A., and I.B. Holland. 1985. Role of the SfiB (FtsZ) protein in division inhibition during the SOS response in E. coli: FtsZ stabilizes the inhibitor SfiA in maxicells. Proc. Natl. Acad. Sci. USA 82:6045–6049.PubMedCrossRefGoogle Scholar
  81. 81.
    Jones, N.C., and W.D. Donachie, 1973. Chromosome replication, transcription and cell division in Escherichia coli. Nature (London) 243:100–103.CrossRefGoogle Scholar
  82. 82.
    Jung, H.K., F. Ishino, and M. Matsuhashi. Inhibition of growth of ftsQ, ftsA, and ftsZ mutant cells of Escherichia coli by amplification of a chromosomal region encompassing closely aligned cell division and cell growth genes. J. Bacteriol. 171:6379–6382.Google Scholar
  83. 83.
    Kang, P.J., and E.A. Craig. 1990. Identification and characterization of a new Escherichia coli gene that is a dosage-dependent suppressor of a dnaK-deletion mutation. J. Bacteriol. 172:2055–2064.PubMedGoogle Scholar
  84. 84.
    Kren, B. and J.A. Fuchs. 1987. Characterization of the ftsB gene as an allele of the nrdB gene in Escherichia coli. J. Bacteriol. 169:14–18.PubMedGoogle Scholar
  85. 85.
    Labie, C., F. Bouche, and J. -B. Bouche. 1989. Isolation and mapping of Escherichia coli mutations conferring resistance to division inhibition protein DicB.J. Bacteriol. 171:4315–4319.PubMedGoogle Scholar
  86. 86.
    Leclerc, G., C. Sirard, and G.R. Drapeau. 1989. The Escherichia coli cell division mutation ftsMl is in serU. J. Bacteriol. 171:2090–2095.PubMedGoogle Scholar
  87. 87.
    Leidenix, M.J., G.H. Jacoby, T.A. Henderson, and K.D. Young. 1989. Separation of Escherichia coli penicillin-binding proteins into different membrane vesicles by agarose electrophoresis and sizing chromatography. J. Bacteriol. 171:5680–5686.PubMedGoogle Scholar
  88. 88.
    Little, J.W., and D.W. Mount. 1982. The SOS regulatory system of Escherichia coli. Cell 29, 11–22.PubMedCrossRefGoogle Scholar
  89. 89.
    Love, P.E., and R.E. Yasbin. 1984. Genetic characterization of the inducible SOS-like system of Bacillus subtilis. J. Bacteriol. 160:910–920.PubMedGoogle Scholar
  90. 90.
    Lutkenhaus, J.F. 1983. Coupling of DNA replication and cell division: sulB is an allele of ftsZ. J. Bacteriol. 154:1339–1346.PubMedGoogle Scholar
  91. 91.
    Lutkehaus, J. 1990. Regulation of cell division in E. coli. Trends in Genetics 6:22–25.CrossRefGoogle Scholar
  92. 92.
    Lutkenhaus, J.F., and W.D. Donachie. 1979. Identification of the ftsA gene product. J. Bacteriol. 154:1088–1094.Google Scholar
  93. 93.
    Lutkenhaus, J.F., B. Sandjanwala, and M. Lowe. 1986. Overproduction of FtsZ suppresses sensitivity of Ion mutants to division inhibition. J. Bacteriol. 166:756–762.PubMedGoogle Scholar
  94. 94.
    Lutkenhaus, J.F., H. Wolf-Watz, and W.D. Donachie. 1980. Organization of genes in the fts-A-envA region of the Escherichia coli genetic map and identification of a new fts locus (ftsZ). J. Bacteriol. 142:615–620.PubMedGoogle Scholar
  95. 95.
    Lutkenhaus, J.F., and H.C. Wu. 1980. Determination of transcriptional units and gene products from the ftsA region of Escherichia coli. J. Bacteriol. 143:1281–1288.PubMedGoogle Scholar
  96. 96.
    MacAlister, T.J., Macdonald, B., and L.I. Rothfield. 1983. The periseptal annulus: an organelle associated with cell division in gram-negative bacteria. Proc. Natl. Acad. Sci. USA. 80:1372–1376.PubMedCrossRefGoogle Scholar
  97. 97.
    MacAlister, T.J., W.R. Cook, R. Weigand, and L.I. Rothfield. 1987. Membranemurein attachment at the leading edge of the division septum: a second membranemurein structure associated with morphogenesis of the gram-negative bacterial division septum. J. Bacteriol. 169:3945–3951.PubMedGoogle Scholar
  98. 98.
    Maguin, E., H. Brody, C.W. Hill, and R. D’Ari. 1986. SOS-associated division inhibition gene sfiC is part of excisable element e14 in Escherichia coli. J. Bacteriol. 168:464–466.PubMedGoogle Scholar
  99. 99.
    Maguin, E., J. Lutkenhaus, and R. D’Ari. 1986. Reversibility of SOS-associated division inhibition in Escherichia coli. J. Bacteriol. 166:733–738.PubMedGoogle Scholar
  100. 100.
    March, P.E., C.G. Lerner, J. Ahnn, X. Cui, and M. Inouye. 1988. The Escherichia coli Ras-like protein (Era) has GTPase activity and is essential for growth. Oncogene 2:539–544.PubMedGoogle Scholar
  101. 101.
    Markiewicz, Z., J.K. Broome-Smith, U. Schwarz, and B.G. Spratt. 1982. Spherical E. coli due to elevated levels of D-alanine carboxypeptidase. Nature (London) 297:702–704.CrossRefGoogle Scholar
  102. 102.
    Masters, M., T. Paterson, A.G. Popplewell, T. Owen-Hughes, J.H. Pringle, and K.J. Begg. 1989. The effect of DnaA protein levels and the rate of initiation at oriC on transcription originating in the ftsQ and ftsA genes: in vivo experiments. Mol. Gen. Genet. 216:475–483.PubMedCrossRefGoogle Scholar
  103. 103.
    Mizusawa, S., and S. Gottesman. 1983. Protein degradation in Escherchia coli: the Ion gene controls the stability of Su1A protein. Proc. Natl. Acad. Sci. USA 80:358–362.PubMedCrossRefGoogle Scholar
  104. 104.
    Mulder, E., and C.L. Woldringh. 1989. Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA.J. Bacteriol. 171:4303–4314.PubMedGoogle Scholar
  105. 105.
    Mulder, E., M. El’Bouhali, E. Pas, and C.L. Woldringh. 1990. The Escherichia coli minB mutation resembles gyrB in defective nucleoid segregation and decreased negative supercoiling of plasmids. Mol. Gen. Genet. 221:87–93.PubMedCrossRefGoogle Scholar
  106. 106.
    Nagasawa, H., Y. Sakagami, A. Suzuki, H. Suzuki, H. Hara, and Y. Hirota. 1989. Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli. J. Bacteriol. 171:5890–5893.PubMedGoogle Scholar
  107. 107.
    Nakamura, M., I.N. Maruyama, M. Soma, J. Kato, H. Suzuki, and Y. Hirota. 1983. On the process of cellular division in Escherichia coli: nucleotide sequence of the gene for penicillin-binding protein 3. Mol. Gen. Genet. 191:1–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Niki, H., A. Jaffe, R. Imamura, T. Ogura, and S. Hiraga. 1991. The new gene mukB codes for a 177 kDa protein with coiled-coil domains involved in chromosome partitioning in E. coli. EMBO J. 10:183–193.PubMedGoogle Scholar
  109. 109.
    Nishimura, A. 1989. A new gene controlling the frequency of cell division per round of DNA replication in Escherichia coli. Mol. Gen. Genet. 215:286–293.PubMedCrossRefGoogle Scholar
  110. 110.
    Nishimura, A., and Y. Hirota. 1989. A cell division regulatory mechanism controls the flagellar regulon in Escherichia coli. Mol. Gen. Genet. 216:340–346.PubMedCrossRefGoogle Scholar
  111. 111.
    Normark, S., H.G. Boman, and E. Matsson. 1969. Mutant of Escherichia coli with anomalous cell division and ability to decrease episomally and chromosomally mediated resistance to ampicillin and several other antibiotics. J. Bacteriol. 97:1334–1342.PubMedGoogle Scholar
  112. 112.
    Ogura, T., P. Bouloc, H. Niki, R. D’An, S. Hiraga, and A. Jaffe. 1989. Penicillin-binding protein 2 is essential in wild type Escherichia coli but not in lov or cya mutants. J. Bacteriol. 171:3025–3030.PubMedGoogle Scholar
  113. 113.
    Olijhoek, A.J.M., S. Klencke, E. Pas, N. Nanninga, and U. Schwarz. Volume growth, murein synthesis, and murein cross-linking during the division cycle of Escherichia coli PA3092. 1982. J. Bacteriol. 152:1248–1254.PubMedGoogle Scholar
  114. 114.
    Oliver, D., and J. Beckwith. 1981. E. coli mutant pleiotropically defective in the export of secreted proteins. Cell 25:765–772.PubMedCrossRefGoogle Scholar
  115. 115.
    Orr, E., N.F. Fairweather, I.B. Holland, and R.H. Pritchard. 1979. Isolation and characterization of a strain carrying a conditional lethal mutation in the cou gene of Escherichia coli K-12. Mol. Gen. Genet. 177:103–112.PubMedCrossRefGoogle Scholar
  116. 116.
    Pla, J., A. Dopazo, and M. Vicente. 1990. The native form of FtsA, a septal protein of Escherichia coli, is located in the cytoplasmic membrane. J. Bacteriol. 172:5097–5102.PubMedGoogle Scholar
  117. 117.
    Reeve, J.N., N.H. Mendelson, S.I. Coyne, L.L. Hallock, and R.M. Cole. 1973. Minicells of B. subtilis. J. Bacteriol. 114:860–873.PubMedGoogle Scholar
  118. 118.
    Ricard, M., and Y. Hirota. 1973. Process of cellular division in Escherichia coli: physiological study on thermosensitive mutants defective in cell division. J. Bacteriol. 116:314–322.PubMedGoogle Scholar
  119. 119.
    Robin, A., D. Joseleau-Petit, and R. D’Ari. 1990. Transcription of the ftsZ gene and cell division in Escherichia coli. J. Bacteriol. 172:1392–1399.PubMedGoogle Scholar
  120. 120.
    Robinson, A.C., D.J. Kenan, G.F. Hatfull, N.F. Sullivan, R. Spiegelberg, and W.D. Donachie. 1984. DNA sequence and transcriptional organization of essential cell division genes ftsQ and ftsA of Escherichia coli: evidence for overlapping transcriptional organization of the ddl ftsQ region. J. Bacteriol. 160:546–555.PubMedGoogle Scholar
  121. 121.
    Romisch, K., J. Webb, J. Herz, S. Prehn, R. Frank, M. Vingron, and B. Dobberstein. 1989. Nature (London) 340:478–482.CrossRefGoogle Scholar
  122. 122.
    Sakakibara, Y. 1988. The dnaK gene of Escherichia coli functions in initiation of chromosome replication. J. Bacteriol. 170:972–979.PubMedGoogle Scholar
  123. 123.
    Schmid, M.B., N. Kapur, D.R. Isaacson, P. Lindroos, and C. Sharpe. 1989. Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimurium. Genet. 123:625–633.Google Scholar
  124. 124.
    Schwarz, U., A. Asmus, and H. Frank. 1969. Autolytic enzymes and cell division of Escherichia cola. J. Mol. Biol. 41:419–429.PubMedCrossRefGoogle Scholar
  125. 125.
    Spratt, B.G. 1975. Distinct penicillin binding proteins involved in the division, elongation and shape of Escherichia coli. Proc. Natl. Acad. Sci. USA 72:2999–3003.PubMedCrossRefGoogle Scholar
  126. 126.
    Stotts, D.R., O.M. Aparicio, J.M. Schoemaker, and A. Markovitz. 1989. Overproduction and identification of the ftsQ gene product, an essential cell division protein in Escherchia coli K-12. J. Bacteriol. 171:4290–4297.Google Scholar
  127. 127.
    Sullivan, N.F., and W.D. Donachie. 1984. Overlapping functional units in a cell division gene cluster in Escherichia coli. J. Bacteriol. 158:1198–1201.PubMedGoogle Scholar
  128. 128.
    Taschner, P.E.M., J.G.J. Verest, and C.L. Woldringh. 1987. Genetic and morphological characterization of ftsB and nrdB mutants of Escherichia coli. J. Bacteriol. 169:19–25.PubMedGoogle Scholar
  129. 129.
    Taschner, P.E.M., P. Huls, E. Pas, and C.L. Woldringh. 1988. Division behavior and shape changes in isogenicftsZ, ftsQ, ftsA, pbpB, andftsE cell division mutants of Escherichia cola during temperature shift experiments. J. Bacteriol. 170:1533–1540.PubMedGoogle Scholar
  130. 130.
    Teather, R.M., J.F. Collins, and W.D. Donachie. 1974. Quantal behavior of a diffusible factor which initiates septum formation at potential division sites in Escherichia coli. J. Bacteriol. 118:407–413.PubMedGoogle Scholar
  131. 131.
    Tormo, A., and M. Vicente. 1984. The ftsA gene product participates in formation of the Escherichia coli septum structure. J. Bacteriol. 157:779–784.PubMedGoogle Scholar
  132. 132.
    Tormo, A., J.A. Ayala, M.A. de Pedro, M. Aldea, and M. Vicente. 1986. Interaction of FtsA and PBP3 proteins in the Escherichia cola septum. J. Bacteriol. 166:985–992.PubMedGoogle Scholar
  133. 133.
    Tsuchido, T., R.A. VanBogelen, and F.C. Neidhardt. 1986. Heat shock response in Escherichia cola influences cell division. Proc. Natl. Acad. Sci. USA 83:6959–6963.PubMedCrossRefGoogle Scholar
  134. 134.
    Utsumi, R., M. Noda, M. Kawamukai, and T. Komano. 1989. Control mechanism of the Escherichia cola K-12 cell cycle is triggered by the cyclic AMP-cyclic AMP receptor protein complex. J. Bacteriol. 171:2909–2912.PubMedGoogle Scholar
  135. 135.
    van de Putte, P., J.E. van Dillewijn, and A. Rorsch. 1964. The selection of mutants of E. coli with impaired cell division at elevated temperature. Mutat. Res. 1:121–130.CrossRefGoogle Scholar
  136. 136.
    Wachi, M., M. Doi, S. Tamaki, W. Park, S. Nakajima-lijima, and M. Matsuhashi. 1987. Mutant isolation and molecular cloning of the mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol. 169:4935–4940.PubMedGoogle Scholar
  137. 137.
    Wachi, M., and M. Matsuhashi. 1989. Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coli cells. J. Bacteriol. 171:3123–3127.PubMedGoogle Scholar
  138. 138.
    Walker, J.R., A. Kovarik, J.S. Allan, and R.A. Gustafson. 1975. Regulation of bacterial cell division: temperature sensitive mutants of Escherichia coli that are defective in septum formation. J. Bacteriol. 123:693–703.PubMedGoogle Scholar
  139. 139.
    Wang, H., and R.C. Gayda. 1990. High-level expression of the FtsA protein inhibits cell separation in Escherichia coli K-12. J. Bacteriol. 172:4736–4740.PubMedGoogle Scholar
  140. 140.
    Ward, J.E., and J.F. Lutkenhaus. 1984. A lacZ-ftsZ gene fusion is an analog of the cell division inhibitor sulA. J. Bacteriol. 157:815–820.PubMedGoogle Scholar
  141. 141.
    Ward, J.E., and J.F. Lutkenhaus. 1985. Overproduction of FtsZ induces minicells in E. coli. Cell 42:941–949.PubMedCrossRefGoogle Scholar
  142. 142.
    Wientjes, F.B. and N. Nanninga. 1989. Rate and topography of peptidoglycan synthesis during cell division in Escherichia coli: concept of a leading edge. J. Bacteriol. 171:3412–3419.PubMedGoogle Scholar
  143. 143.
    Wientjes, F.B., T.J.M. Olijhoek, U. Schwarz, and N. Nanninga. 1983. Labelling pattern of major penicillin-binding proteins of Escherichia coli during the division cycle. J. Bacteriol. 153:1287–1293.PubMedGoogle Scholar
  144. 144.
    Yi, Q. -M., and J. Lutkenhaus. 1985. The nucleotide sequence of the essential cell division gene ftsZ. Gene 36:241–247.PubMedCrossRefGoogle Scholar
  145. 145.
    Yi, Q. -M., S. Rockenbach, J.E. Ward, and J. Lutkenhaus. 1985. Structure and expression of the cell division genes ftsQ, ftsA, and ftsZ. J. Mol. Biol. 184:399–412.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Joe Lutkenhaus

There are no affiliations available

Personalised recommendations