Skip to main content

Abstract

Sterols play vital hormonal, regulatory, and architectural roles in all living organisms. As knowledge of their biosynthetic pathways has grown, so has the possibility for manipulation. One of the most exciting and promising strategies to develop over the past 15 years has been the interference of specific sterol biosynthetic enzymes by mechanism-based inhibitors. Because sterol biosynthesis and its regulation vary among animals, plants, and fungi, this approach offers significant prospects for the rational design of chemotherapeutic agents aimed at the control of disease states ranging from arteriosclerosis to fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, W.S. and Popjak, G. 1978. Squalene synthetase. Stoichiometry and kinetics of presqualene pyrophosphate and squalene synthesis by yeast microsomes. J. Biol. Chem. 253:4566–4573.

    PubMed  CAS  Google Scholar 

  2. Agnew, W.S. 1985. Squalene synthetase. Methods Enzymol., 110:359–373.

    Article  PubMed  CAS  Google Scholar 

  3. Akhtar, M., Alexander, K., Boar, R.B., McGhie, J.F. and Barton, D.H.R. 1978. Chemical and enzymatic studies on the characterization of intermediates during the removal of the 14a-methyl group in cholesterol biosynthesis. Use of 32-functionalized lanosterol derivatives. Biochem. J. 169:449–463.

    PubMed  CAS  Google Scholar 

  4. Altman, L.J., Kowerski, R.C. and Laungani, F.R. 1978. Studies in terpene biosynthesis. Synthesis and resolution of presqualene and prephytoene alcohols. J. Am. Chem. Soc. 100:6174–6182.

    Article  CAS  Google Scholar 

  5. Aoyama, Y. and Yoshida, Y. 1978. Interaction of lanosterol to cytochrome P-450 purified from yeast microsomes: evidence for contribution of cytochrome P-450 to lanosterol metabolism. Biochem. Biophys. Res. Commun. 82:33–38.

    Article  PubMed  CAS  Google Scholar 

  6. Aoyama, Y., Yoshida, Y., Sonoda, Y. and Sato, Y. 1987. Metabolism of 32hydroxyl-24,25-didydrolanosterol by purified cytochrome P-45014_DM from yeast. Evidence for contribution of the cytochrome to whole process of lanosterol 14ademethylation. J. Biol. Chem. 262:1239–1243.

    PubMed  CAS  Google Scholar 

  7. Aoyama, Y., Yoshida, Y., Nishino, T., Katsuki, H., Maitra, U.S., Mohan, V.P. and Sprinson, D.B. 1987. Isolation and characterization of an altered cytochrome P450 from a yeast mutant defective in lanosterol 14a-demethylation. J. Biol. Chem. 262:14260–14264.

    PubMed  CAS  Google Scholar 

  8. Aoyama, Y., Yoshida, Y., Sonoda, Y. and Sato, Y. 1989. Deformylation of 32oxo-24,25-dihydrolanosterol by the purified cytochrome P-45014_DM (lanosterol 14ademethylase) from yeast. Evidence confirming the intermediate step of lanosterol 14a-demethylation. J. Biol. Chem. 264:18502–18505.

    PubMed  CAS  Google Scholar 

  9. Arigoni, D. 1978. Stereochemical studies of enzymic C-methylations. Ciba Found. Symp. 60:243–261.

    CAS  Google Scholar 

  10. Ator, M.A., Schmidt, J., Adams, J.L. and Dolle, R.E. 1989. Mechanism and inhibition of 024-sterol methyltransferase from Candida albicans and Candida tropicales. Biochemistry 28:9633–9640.

    Article  PubMed  CAS  Google Scholar 

  11. Avruch, L., Fisher, S., Pierce, H.D., Jr. and Oehlschlager, A.C. 1976. The induced biosynthesis of 7-dehydrocholesterols in yeast: potential sources of new provitamin D3 analogs. Can. J. Biochem. 54:657–665.

    PubMed  CAS  Google Scholar 

  12. Bach, T.J. 1985. Selected natural and synthetic enzyme inhibitors of sterol biosynthesis as molecular probes for in vivo studies concerning the regulation of plant growth. Plant Sci., 39:183–187.

    Article  CAS  Google Scholar 

  13. Bach, T.J. 1988. Current trends in the development of sterol biosynthesis inhibitors: early aspects of the pathway. J. Am. Oil. Chem. Soc. 65:591–595.

    Article  CAS  Google Scholar 

  14. Baldwin, B.C. 1983. Fungicidal inhibitors of ergosterol biosynthesis. Biochem. Soc. Trans. 11:659–663.

    PubMed  CAS  Google Scholar 

  15. Benveniste, P. 1986. Sterol biosynthesis. Ann. Rev. Plant Physiol. 37:275–308.

    Article  CAS  Google Scholar 

  16. Bertolino, A., Altman, L.J., Vasak, J. and Rilling, H.C., 1978. Polyisoprenoid amphiphilic compounds as inhibitors of squalene synthesis and other microsomal enzymes. Biochim. Biophys. Acta 530:17–23.

    Article  PubMed  CAS  Google Scholar 

  17. Billes, S.A., Foster, C., Gordon, E.M., Harrity, T., Scott, W.A. and Ciosek, C.P., 1988. Isoprenoid (phosphinylmethyl)phosphonates as inhibitors of squalene synthetase. J. Med. Chem. 31:1869–1871.

    Article  Google Scholar 

  18. Bloch, K., Corey, E.J., Dean, P.D.G. and Ortiz de Montellano, P.R. 1967. A soluble 2,3-oxidosqualene cyclase. J. Biol. Chem. 242:3014–3019.

    PubMed  Google Scholar 

  19. Bottema, C.K. and Parks, L.W. 1978.014-Sterol reductase in Saccharomyces cerevisiae. Biochem. Biophys. Acta 531:301–307.

    Article  CAS  Google Scholar 

  20. Bujons, J., Guajards, R. and Kyle, K.S. 1988. Enantioselective enzymatic sterol synthesis by using ultrasonically stimulated bakers’ yeast. J. Am. Chem. Soc. 110:604–606 for leading references.

    Article  CAS  Google Scholar 

  21. Burden, R.S., Cooke, D.T. and Carter, G.A. 1989. Inhibitors of sterol biosynthesis and growth in plants and fungi. Phytochem. 28:1791–1804.

    Article  CAS  Google Scholar 

  22. Buttke, T.M., Brint, S.L. and Lowe, M.R. 1988. Regulation of squalene epoxidase activity by membrane fatty acid composition in yeast. Lipids 23:68–71.

    Article  PubMed  CAS  Google Scholar 

  23. Capstack, E., Jr., Rosin, N., Blondin, G.A. and Nes, W.R. 1965. Squalene in Pisum sativum. Its cyclization to β-amyrin and labelling pattern. J. Biol. Chem. 240:3258–3263.

    CAS  Google Scholar 

  24. Caras, I.W. and Bloch, K. 1979. Effects of a supernatant protein activator on microsomal squalene-2,3-oxide-lanosterol cyclase. J. Biol. Chem. 254:11816–11821.

    PubMed  CAS  Google Scholar 

  25. Cattel, L., Ceruti, M., Viola, F., Delprino, L., Balliano, G., Duriatti, A. and Bouvier-Nave, P. 1986. The squalene-2,3-epoxide cyclase as a model for the development of new drugs. Lipids 21:31–38.

    Article  PubMed  CAS  Google Scholar 

  26. Ceruti, M., Viola, F., Grosa, G., Balliano, G., Delprino, L. and Cattel, L. 1988. Synthesis of squalenoid acetylenes and alienes, as inhibitors of squalene epoxidase. J. Chem. Res. (S):18–19.

    Google Scholar 

  27. Ceruti, M., Viola, F., Balliano, G., Grosa, G. Caputo, O., Gerst, N., Schuber, F. and Cattel, L. 1988. Synthesis of a squalenoid oxaziridine and other new classes of squalene derivatives as inhibitors of sterol biosynthesis. Eur. J. Med. Chem. 23:533–537.

    Article  CAS  Google Scholar 

  28. Ceruti, M., Viola, F., Dosis, F., Cattel, L., Bouvier-Nave, P. and Ugliengo, P. 1988. Stereospecific synthesis of squalenoid epoxide vinyl ethers as inhibitors of 2,3oxidosqualene cyclase. J. Chem. Soc. Perkin Trans. I:461–469.

    Article  Google Scholar 

  29. Chin, J. and Bloch, K. 1984. Role of supernatant protein factor and anionic phospholipid in squalene uptake and conversion by microsomes. J. Biol. Chem. 259:11735–11738.

    PubMed  CAS  Google Scholar 

  30. Coates, R.M. and Robinson, W.H., 1971. Stereoselective total synthesis of (±)presqualene alcohol. J. Am. Chem. Soc. 93:1785–1786.

    Article  PubMed  CAS  Google Scholar 

  31. Corey, E.J. and Gross, S.K. 1967. Formation of sterols by the action of 2,3-oxidosqualene-sterol cyclase on the facticious substrates 2,3:22,23-dioxidosqualene and 2,3-oxido-22,23-dihydrosqualene. J. Am. Chem. Soc. 89:4561–4562.

    Article  PubMed  CAS  Google Scholar 

  32. Corey, E.J., Lin, K. and Jautelat,.M. 1968. Studies on the action of 2,3-oxidosqualene-sterol cyclase on unnatural substrates produced by alkylidene transfer from sulfonium alkylides to 4,8,13,17,21-pentamethyldocosa-4,8,12,16,20-pentaenal. J. Am. Chem. Soc. 90:2724–2726.

    Article  CAS  Google Scholar 

  33. Corey, E.J. and Volante, R.P., 1976. Application of unreactive analogs of terpenoid pyrophosphates to studies of multistep biosynthesis. Demonstration that “presqualene pyrophosphate” is an essential intermediate on the path to squalene. J. Am. Chem. Soc. 98:1291–1293.

    Article  CAS  Google Scholar 

  34. Duriatti, A., Bouvier-Nave, P., Benveniste, P., Schuber, F., Delprins, L., Balliano, G. and Cattel, L. 1985. In vitro inhibition of animal and higher plant 2,3-oxidosqualene-sterol cyclases by 2-aza-2,3-dehydrosqualene and derivatives, and by other ammonium-containing molecules. Biochem. Pharmacol. 34:2765–2777.

    Article  PubMed  CAS  Google Scholar 

  35. Duriatti, A. and Schuber, F. 1988. Partial purification of 2,3-oxidosqualene-lanosterol cyclase from hog liver. Evidence for a functional thiol residue. Biochem. Biophys. Res. Commun. 151:1378–1385.

    Article  CAS  Google Scholar 

  36. Eilenberg, H. and Shechter, I. 1984. A possible regulatory role of squalene epoxidase in chinese hamster ovary cells. Lipids. 19:539–543.

    Article  PubMed  CAS  Google Scholar 

  37. Eilenberg, H. and Shechter, I. 1987. Regulation of squalene epoxidase activity and comparison of catalytic properties of rat liver and chinese hamster ovary cell-derived enzymes. J. Lipid Res. 28:1398–1404.

    PubMed  CAS  Google Scholar 

  38. Eilenberg, H., Kliner, E., Przedecki, F. and Shechter, I. 1989. Inactivation and activation of various membranal enzymes of the cholesterol biosynthetic pathway of digitonin. J. Lipid. Res. 30:1127–1135.

    PubMed  CAS  Google Scholar 

  39. Friedlander, E.J., Caras, I.W., Leu Fen Hou Lin and Bloch, K. 1980. Supernatant protein factor facilitates intermembrane transfer of squalene. J. Biol. Chem. 255:8042–8045.

    PubMed  CAS  Google Scholar 

  40. Fryberg. M., Avruch, L., Oehlschlager, A.C. and Unrau, A.M. 1975. Nuclear demethylation and C-24 alkylation during ergosterol biosynthesis in Saccharomyces cerevisiae. Can. J. Biochem. 53:881–889.

    Google Scholar 

  41. Frye, L.L. and Robinson, C.H. 1988. Novel inhibitors of lanosterol 14a-methyl demethylase, a critical enzyme in cholesterol biosynthesis. J. Chem. Soc. Chem. Commun.:129–131.

    Google Scholar 

  42. Gadher, P. Mercer, E.I., Baldwin, B.C. and Wiggins, T.C. 1983. A comparison of the potency of some fungicides as inhibitors of sterol 14a-demethylation. Pestic. Biochem. Physiol. 19:1–10.

    Article  CAS  Google Scholar 

  43. Gelb, M.H., Heimbrook, D.C., Malkonen, P. and Sligar, S.G. 1982. Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P-450 monoxygenase system. Biochem. 21:370–377.

    Article  CAS  Google Scholar 

  44. Gerst, N., Schuber, F., Viola, F. and Cattel, L. 1986. Inhibition of cholesterol biosynthesis in 3T3 fibroblasts by 2-aza-2,3-dihydrosqualene, a rationally designed 2,3-oxidosqualene cyclase inhibitor. Biochem. Pharmacol. 35:4243–4250.

    Article  PubMed  CAS  Google Scholar 

  45. Gerst, N., Duriatti, A., Schuber, F., Taton, M., Benveniste, P. and Rahier, A. 1988. Potent inhibition of cholesterol biosynthesis in 3T3 fibroblasts by N-[(1,5,9)trimethyldecyl]-4a, 10-dimethyl-8-aza-trans-decal-3/3-ol, a new 2,3-oxidosqualene cyclase inhibitor. Biochem. Pharmacol. 37:1955–1964.

    Article  PubMed  CAS  Google Scholar 

  46. Gibbons, G.F., Pullinger, C.R. and Mikropaulos, K.A. 1979. Studies on the mechanism of 14a-demethylation; a requirement for two distinct types of mixed function oxidases. Biochem. J. 183:309–315.

    PubMed  CAS  Google Scholar 

  47. Haughan, P.A., Lenton, J.R. and Goad, L.J. 1988. Sterol requirements and paclobutrazol inhibition of a celery cell culture. Phytochem. 27:2491–2500.

    Article  CAS  Google Scholar 

  48. Jahnke, L. and Kein, H.P. 1983. Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae. J. Bacteriol. 155:488–492.

    PubMed  CAS  Google Scholar 

  49. Johnson, W.S., Telfer, S.J., Cheng, S. and Schubert, U. 1987. Cation-stabilizing auxiliaries: A new concept in biomimetic polyene cyclizations. J. Am. Chem. Soc. 109:2517–2518.

    Article  CAS  Google Scholar 

  50. Koller, W. (1987). Isomers of sterol synthesis inhibitors: fungicidal effects and plant growth regulator activities. Pestic. Sci., 18:129–147.

    Article  Google Scholar 

  51. Koller, W. and Scheinpflung, H. 1987. Fungal resistance to sterol biosynthesis inhibitors: a new challenge. Plant Disease 71:1066–1074.

    Article  Google Scholar 

  52. Kuswik-Rabiega, G. and Rifling, H.C. 1987. Squalene synthetase-Solubilization and partial purification of squalene synthetase-Copurification of presqualene pyrophosphate and squalene synthetase activity. J. Biol. Chem. 262:1505–1509.

    PubMed  CAS  Google Scholar 

  53. Lederer, E. 1977. Biological C-alkylation reactions, p. 89–126. In Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H.G. and Schlenk F., Eds. Biochemistry of S-adenosylmethinine. Columbia University Press, New York.

    Google Scholar 

  54. M’Baya, B. and Karst, F. 1987. In vitro assay of squalene epoxidase of Saccharomyces cerevisiae. Biochem Biophys. Res. Comm. 147:555–564.

    Google Scholar 

  55. McCammon, M. and Parks, L.W. 1981. Inhibition of sterol transmethylation by Sadenosylhomocysteine analogs. J. Bacteriol. 145:106–112.

    PubMed  CAS  Google Scholar 

  56. Medina, J.C. and Kyler, K.S. 1988. Enzymatic cyclization of hydroxylated surrogate squalenoids with bakers’ yeast. J. Am. Chem. Soc., 110:4818–4821.

    Article  CAS  Google Scholar 

  57. Medina, J.C., Guajardo, R. and Kyler, K.S. 1989. Vinyl group rearrangement in the enzymatic cyclization of squalenoids: Synthesis of 30-oxysterols. J. Am. Chem. Soc. 111:2310–2311.

    Article  CAS  Google Scholar 

  58. Mercer, E.J. 1984. The biosynthesis of ergosterol. Pestic. Sci.15:133–155.

    Article  CAS  Google Scholar 

  59. Moore, J.T., Jr. and Gaylor, J.L. 1969. Isolation and purification of an S-adenosylmethionine:T24-sterolmethyltransferase from yeast. J. Biol. Chem. 244:6334–6340.

    PubMed  CAS  Google Scholar 

  60. Moore, J.T., Jr. and Gaylor, J.L. 1970. Investigation of an S-adenosylmethionine: 024-sterolmethyltransferase in ergosterol biosynthesis in yeast. Specificity of sterol substrates and inhibitors. J. Biol. Chem. 245:4684–4688.

    PubMed  CAS  Google Scholar 

  61. Muehlbacher, M. and Poulter, C.D. 1985. Isopentenyl diphosphate:dimethylallyl diphosphate isomerase. Irreversible inhibition of the enzyme by active-site-directed covalent attachment. J. Am. Chem. Soc. 107:8307–8308.

    Article  CAS  Google Scholar 

  62. Muehlbacher, M. and Poulter, C.D. 1988. Isopentenyl diphosphate isomerase: inactivation of the enzyme with active-site-directed irreversible inhibitors and transition-state analogues. Biochem. 27:7315–7328.

    Article  CAS  Google Scholar 

  63. Nakamura, M. and Sato, R. 1979. The roles of soluble factors in squalene epoxidation by rat liver microsomes. Biochem. Biophys. Res. Commun. 89:900–906.

    Article  PubMed  CAS  Google Scholar 

  64. Narula, A.S., Rahier, A., Benveniste, P. and Schuber, F. 1981. 24-Methyl-25azacycloartanol, an analogue of a carbonium ion high-energy intermediate, is a potent inhibitor of (S)-adenosyl-L-methionine:sterol C-24-methyltransferase in higher plant cells. J. Am. Chem. Soc. 103:2408–2409.

    Article  CAS  Google Scholar 

  65. Nes, W.D., Hanners, P.K. and Parish, E.J. 1986. Control of fungal sterol C-24 transmethylation: Importance to developmental regulation. Biochem. Biophys. Res. Commun. 139:410–415.

    Article  PubMed  CAS  Google Scholar 

  66. Oehlschlager, A.C., Fryberg, M. and Unrau, A.M. 1973. Biosynthesis of ergosterol in yeast. Evidence for multiple pathways. J. Am. Chem. Soc. 95:5747–5757.

    Article  PubMed  Google Scholar 

  67. Oehlschlager, A.C., Pierce, H.D., Jr., Pierce, A.M., Angus, R.H., Quantin-Martenot, E., Unrau, A.M. and Srinivasan, R. 1980. The use of mutants and azasterols in studies of yeast steroid biosynthesis, p. 395–405. In Mazliak, P., Benveniste, P., Costes, C. and Douce, R., Eds. Biogenesis and function of plant lipids. Elsevier/ Holland Biomedical Press, New York.

    Google Scholar 

  68. Oehlschlager, A.C., Anugs, R.H., Pierce, A.M., Pierce, H.D., Jr. and Srinivasan, R. 1984. Azasterol inhibition of A24-sterol methyltransferase in Saccharomyces cerevisiae. Biochemistry. 23:3582–3589.

    Article  PubMed  CAS  Google Scholar 

  69. Ono, T. and Bloch, K. 1975. Solubilization and partial characterization of rat liver squalene epoxidase. J. Biol. Chem. 250:1571–1579.

    PubMed  CAS  Google Scholar 

  70. Ortiz de Montellano, P.R., Castillo, R., Vinson, W. and Wei, J.S. 1976. Squalene biosynthesis. Role of the 3-methyl group in famesyl pyrophosphate. J. Am. Chem. Soc. 98:3020–3021.

    Article  PubMed  CAS  Google Scholar 

  71. Petranyl, G., Ryder, N.S. and Stütz, A. 1984. Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 224:1239–1241.

    Article  Google Scholar 

  72. Popjak, G. and Agnew, W.S., 1978, Squalene synthetase. Mol. and Cell. Biochem. 27:97–116.

    Google Scholar 

  73. Porter, J.W. and Spurgeon, S.L., Eds. 1981. Biosynthesis of isoprenoid compounds. Vol. 1., John Wiley & Sons, New York.

    Google Scholar 

  74. Poulter, C.D., Musico, O.J. and Goodfellow, R.J. 1974. Biosynthesis of head-tohead terpenes. Carbonium ion rearrangements which lead to head-to-head terpenes. Biochemistry 13:1530–1537.

    Article  PubMed  CAS  Google Scholar 

  75. Poulter, C.D., Capson, T.L., Thompson, M.D. and Bard, R.S., 1989. Squalene synthetase. Inhibition by ammonium analogs of carbocationic intermediates in the conversion of presqualene diphosphate to squalene, J. Am. Chem. Soc. 111:3734–3739.

    Article  CAS  Google Scholar 

  76. Poulter, C.D., Muehlbacher, M. and Davis, D.R. 1989. Mechanism of active-sitedirected irreversible inhibition by 3-(fluoromethyl)-3-butenyl diphosphate. J. Am. Chem. Soc. 111:3740–3742.

    Article  CAS  Google Scholar 

  77. Rahier, A., Genot, J.C., Narula, A.S., Beneveniste, P. and Schmitt, P. 1980. 25Azacycloartanol, a potent inhibitor of S-adenosyl-L-methionine-sterol C-24 and C28 methyltransferases in higher plant cells. Biochem. Biophys. Res. Commun. 92:20–25.

    Article  PubMed  CAS  Google Scholar 

  78. Rahier, A., Genot, J.C., Schuber, F., Benveniste, P. and Narula, A.S. 1984. Inhibition of S-adenosyl-L-methionine sterol-C-24-methyltransferase by analogues of a carbocationic ion high-energy intermediate. Structure activity relationships for C-25 heteroatom (N, As, S) substituted triterpenoid derivatives. J. Biol. Chem. 259:15215–15223.

    PubMed  CAS  Google Scholar 

  79. Rahier, A., Taton, M., Schmitt, P., Benveniste, P., Place, P. and Anding, C. 1985. Inhibition of De Y-sterol isomerase and of cycloeucalenol-obtusifoliol isomerase by N-benzyl-8-aza-4a, 10-dimethyl-trans-decal-3β-ol, an analogue of carbocationic high energy intermediate. Phytochem. 24:1223–1232.

    Article  CAS  Google Scholar 

  80. Reardon, J.E. and Abeles, R.H. 1986. Mechanism of action of isopentenyl pyrophosphate isomerase: evidence for a carbonium ion intermediate. Biochem. 25:5609–5616.

    Article  CAS  Google Scholar 

  81. Ruhl, K.K., Anzalone, L., Arguropoulos, E.D., Gayen, A.K. and Spencer, T.A. 1989. Azadecalin analogs of 4,4,10β-trimethyl-trans-decal-3β-ol. Synthesis and assay as inhibitors of oxidosqualene cyclase. Bioorg. Chem. 17:108–120.

    Article  CAS  Google Scholar 

  82. Ryder, N.S. and Dupont, M-C. 1984. Properties of a particulate squalene epoxidase from Candida albicans. Biochem. Biophys. Acta 794:466–471.

    Article  PubMed  CAS  Google Scholar 

  83. Ryder, N.S. and Dupont, M.-C. 1985. Inhibition of squalene epoxidase by allylamine antimycotic compounds. A comparative study of the fungal and mammalian enzymes. Biochem. J. 230:765–770.

    PubMed  CAS  Google Scholar 

  84. Ryder, N.S., Dupont, M.-C. and Frank, I. 1986. Inhibition of fungal and mammalian sterol biosynthesis by 2-aza-2,3-dihydrosqualene. FEBS Letters 204:239–242.

    Article  PubMed  CAS  Google Scholar 

  85. Sasiak, K. and Rilling, H.C., 1988. Purification to homogeneity and some properties of squalene synthetase. Arch. Biochem. Biophys. 260:622–627.

    Article  PubMed  CAS  Google Scholar 

  86. Schenkman, J.B., Remmer, H. and Estabrook, R.W. 1967. Spectral studies of drug interaction with hepatic microsomal cytochrome (rat). Mol. Pharmacol. 3:113–123.

    CAS  Google Scholar 

  87. Schmitt, P., Scheid, F. and Benveniste, P. 1980. Accumulation of Á8’14 sterols in suspension cultures of bramble cells cultured with an azasterol antimycotic agent (A25822B). Phytochem. 19:525–530.

    Article  CAS  Google Scholar 

  88. Schmitt, P., Narula, A.S., Benveniste, P. and Rahier, A. 1981. Manipulation by 25azacycloartanol of the relative percentage of C-10, C-9 and C-8 side-chain sterols in suspension cultures of bramble cells. Phytochem. 20:197–201.

    Article  CAS  Google Scholar 

  89. Schmitt, P., Gonzales, R., Benveniste, P., Ceruti, M. and Cattel, L. 1987. Inhibition of sterol biosynthesis and accumulation of 2,3-oxidosqualene in bramble cell suspension cultures treated with 2-aza-2,3-dihydrosqualene and 2-aza-2,3-dehydrosqualeneN-oxide. Phytochem. 26:2709–2714.

    Article  CAS  Google Scholar 

  90. Sen, S.E. and Prestwich, G.D. 1989. Squalene analogs containing isopropylidene mimic as potential inhibitors of pig liver squalene epoxidase and oxidosqualene cyclase. J. Med. Chem. 32:2152–2158.

    Article  PubMed  CAS  Google Scholar 

  91. Sen, S.E. and Prestwich, G.D. 1989. Trisnorsqualene alcohol, a potent inhibitor of vertebrate squalene epoxidase. J. Am. Chem. Soc. 111:1508–1510.

    Article  CAS  Google Scholar 

  92. Sen, S.E. and Prestwich, G.D. 1989. Trisnorsqualene cyclopropylamine: a reversible tight-binding inhibitor of squalene epoxidase. J. Am. Chem. Soc. 111:8761–8762.

    Article  CAS  Google Scholar 

  93. Silverman, R.B. 1988, Mechanism-based enzyme inactivation: chemistry and enzymology. Vol. 2. p. 89–190, CRC Press, Boca Raton, Florida.

    Google Scholar 

  94. Srikantalah, M.V., Hansbury, E., Loughran, E.D. and Scallen, T.J. 1976. Purification and properties of sterol carrier protein. J. Biol. Chem. 251:5496–5504.

    Google Scholar 

  95. Stevenson, D.E., Wright, J.N. and Akhtar, M. 1988. Mechanistic consideration of P-450 dependent enzymic reactions: studies on oestriol biosynthesis. J. Chem. Soc. Perkin Trans. I:2043–2052.

    Article  Google Scholar 

  96. Stutz, A. 1987. Allylamine derivatives-a new class of active substances in antifungal chemotherapy. Angew. Chem. Int’l. Ed. Engl. 26:320–328.

    Article  Google Scholar 

  97. Tal, B. and Nes, W.D. 1987. Regulation of sterol biosynthesis: Importance of the C-24 alkyl group to growth of sunflower suspension cultures. Plant Physiol. Suppl. 83:969.

    Google Scholar 

  98. Taton, M. Benveniste, P. and Rahier, A. 1987. Mechanism of inhibition of sterol biosynthesis enzymes by N-substituted morpholines. Pestic. Sci. 21:269–280.

    Article  CAS  Google Scholar 

  99. Taton, M., Benveniste, P. and Rahier, A. 1987. Use of rationally designed inhibitors to study sterol and triterpenoid biosynthesis. Pure and Appl. Chem. 59:287–294.

    Article  CAS  Google Scholar 

  100. Taton, M., Benveniste, P. and Rahier, A. 1987. Comparative study of the inhibition of sterol biosynthesis in Rubus fruticosus suspension cultures and Zea mays seedlings by N-(1,5,9-trimethyldecyl)-4a,10-dimethyl-8aza-trans-decal-3β-ol and derivatives. Phytochem. 26:385–392.

    Article  CAS  Google Scholar 

  101. van Tamelen, E.E., Sharpless, K.B., Willett, J.D., Clayton, R.B. and Burlingame, A.L. 1967. Biological activities of some terminally modified squalene and squalene2,3-oxide analogs. J. Am. Chem. Soc. 89, 3920–3922.

    Article  CAS  Google Scholar 

  102. van Tamelen, E.E., Sharpless, K.B., Hanzlik, R., Clayton, R.B., Burlingame, A.L. and Wszolek, P.C. 1967. Enzymatic cyclization of trans, trans, trans-18,19dihydrosqualene-2,3-oxide. J. Am. Chem. Soc. 89:7150–7151.

    Article  PubMed  CAS  Google Scholar 

  103. van Tamelen, E.E. and Schwartz, M.A., 1971. Mechanism of presqualene pyrophosphate-squalene biosynthesis. J. Am. Chem. Soc. 93:1780–1782.

    Article  CAS  Google Scholar 

  104. van Tamelen, E.E., Lees, R.G. and Grieder, A. 1974. Cyclization of a terpenoid diene with preformed A-B-D rings and its significance for the mechanism of terpenoid terminal epoxide cyclizations. J. Am. Chem. Soc. 96:2255–2256.

    Article  CAS  Google Scholar 

  105. van Tamelen, E.E. and James, D.R. 1977. Overall mechanism of terpenoid terminal epoxide polycyclization. J. Am. Chem. Soc. 99:950–952.

    Article  CAS  Google Scholar 

  106. van Tamelen, E.E. and Hopla, R.E. 1979. Generation of the onocerin system by lanosterol 2,3-oxidosqualene cyclase. Implications for the cyclization process. J. Am. Chem. Soc. 101:6112–6114.

    Article  CAS  Google Scholar 

  107. van Tamelen, E.E., Leopold, E.J., Marson, S.A. and Walspe, H.R. 1982. Action of 2,3-oxidosqualene lanosterol cyclase on 15’-nor-18,19-dihydro-2,3-oxidosqualene. J. Am. Chem. Soc. 104:6479–6480.

    Article  CAS  Google Scholar 

  108. Walsh, C. 1979. Enzymatic reaction mechanisms, p. 358–431, W.H. Freeman and Co., San Francisco.

    Google Scholar 

  109. White, R.E., Miller, J.P., Favreau L.V. and Battacharyya, A. 1986. Stereochemical dynamics of aliphatic hydroxylation by cytochrome P-450. J. Am. Chem. Soc. 108:6024–6031.

    Article  PubMed  CAS  Google Scholar 

  110. Yabusaki, Y., Nishino, T., Ariga, N. and Katsuki, H. 1979. Studies on As Δ8→Δ7 isomerization and methyl transfer of sterols in ergosterol biosynthesis in yeast. J. Biochem. 85:1531–1537.

    PubMed  CAS  Google Scholar 

  111. Yoshida, Y., Kumaoka, H. and Sato, R. 1974. Studies on the microsomal electron-transport system of anaerobically grown yeast. I. Intracellular localization and characterization. J. Biochem. (Tokyo) 75:1201–1210.

    CAS  Google Scholar 

  112. Yoshida, Y., Aoyama, Y., Kumaoka, H. and Kubota, S. 1977. A highly purified preparation of cytochrome P-450 from microsomes of anaerobically grown yeast. Biochem. Biophys. Res. Commun. 78:1005–1010.

    Article  PubMed  CAS  Google Scholar 

  113. Yoshida, Y. and Aoyama, Y. 1984. Yeast cytochrome P-450 catalyzing lanosterol 14a-demetylation. I. Purification and spectral properties. J. Biol. Chem. 259:1655–1660.

    PubMed  CAS  Google Scholar 

  114. Yoshida, Y.M., Aoyama, Y., Takano, H. and Kato, T. 1986. Stereoselective interaction of enantiomers of diniconazole, a fungicide, with purified P-450/14-DM from yeast. Biochem. Biophys. Res. Commun. 137:513–519.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the late Professor A. M. Unrau, a colleague and friend.

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oehlschlager, A.C., Czyzewska, E. (1992). Rationally Designed Inhibitors of Sterol Biosynthesis. In: Sutcliffe, J.A., Georgopapadakou, N.H. (eds) Emerging Targets in Antibacterial and Antifungal Chemotherapy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3274-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3274-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6440-5

  • Online ISBN: 978-1-4615-3274-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics