Rationally Designed Inhibitors of Sterol Biosynthesis

  • A. C. Oehlschlager
  • Eva Czyzewska

Abstract

Sterols play vital hormonal, regulatory, and architectural roles in all living organisms. As knowledge of their biosynthetic pathways has grown, so has the possibility for manipulation. One of the most exciting and promising strategies to develop over the past 15 years has been the interference of specific sterol biosynthetic enzymes by mechanism-based inhibitors. Because sterol biosynthesis and its regulation vary among animals, plants, and fungi, this approach offers significant prospects for the rational design of chemotherapeutic agents aimed at the control of disease states ranging from arteriosclerosis to fungal infections.

Keywords

Sterol Biosynthesis Amine Oxide Squalene Epoxidase Oxidosqualene Cyclase Sterol Biosynthesis Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agnew, W.S. and Popjak, G. 1978. Squalene synthetase. Stoichiometry and kinetics of presqualene pyrophosphate and squalene synthesis by yeast microsomes. J. Biol. Chem. 253:4566–4573.PubMedGoogle Scholar
  2. 2.
    Agnew, W.S. 1985. Squalene synthetase. Methods Enzymol., 110:359–373.PubMedCrossRefGoogle Scholar
  3. 3.
    Akhtar, M., Alexander, K., Boar, R.B., McGhie, J.F. and Barton, D.H.R. 1978. Chemical and enzymatic studies on the characterization of intermediates during the removal of the 14a-methyl group in cholesterol biosynthesis. Use of 32-functionalized lanosterol derivatives. Biochem. J. 169:449–463.PubMedGoogle Scholar
  4. 4.
    Altman, L.J., Kowerski, R.C. and Laungani, F.R. 1978. Studies in terpene biosynthesis. Synthesis and resolution of presqualene and prephytoene alcohols. J. Am. Chem. Soc. 100:6174–6182.CrossRefGoogle Scholar
  5. 5.
    Aoyama, Y. and Yoshida, Y. 1978. Interaction of lanosterol to cytochrome P-450 purified from yeast microsomes: evidence for contribution of cytochrome P-450 to lanosterol metabolism. Biochem. Biophys. Res. Commun. 82:33–38.PubMedCrossRefGoogle Scholar
  6. 6.
    Aoyama, Y., Yoshida, Y., Sonoda, Y. and Sato, Y. 1987. Metabolism of 32hydroxyl-24,25-didydrolanosterol by purified cytochrome P-45014_DM from yeast. Evidence for contribution of the cytochrome to whole process of lanosterol 14ademethylation. J. Biol. Chem. 262:1239–1243.PubMedGoogle Scholar
  7. 7.
    Aoyama, Y., Yoshida, Y., Nishino, T., Katsuki, H., Maitra, U.S., Mohan, V.P. and Sprinson, D.B. 1987. Isolation and characterization of an altered cytochrome P450 from a yeast mutant defective in lanosterol 14a-demethylation. J. Biol. Chem. 262:14260–14264.PubMedGoogle Scholar
  8. 8.
    Aoyama, Y., Yoshida, Y., Sonoda, Y. and Sato, Y. 1989. Deformylation of 32oxo-24,25-dihydrolanosterol by the purified cytochrome P-45014_DM (lanosterol 14ademethylase) from yeast. Evidence confirming the intermediate step of lanosterol 14a-demethylation. J. Biol. Chem. 264:18502–18505.PubMedGoogle Scholar
  9. 9.
    Arigoni, D. 1978. Stereochemical studies of enzymic C-methylations. Ciba Found. Symp. 60:243–261.Google Scholar
  10. 10.
    Ator, M.A., Schmidt, J., Adams, J.L. and Dolle, R.E. 1989. Mechanism and inhibition of 024-sterol methyltransferase from Candida albicans and Candida tropicales. Biochemistry 28:9633–9640.PubMedCrossRefGoogle Scholar
  11. 11.
    Avruch, L., Fisher, S., Pierce, H.D., Jr. and Oehlschlager, A.C. 1976. The induced biosynthesis of 7-dehydrocholesterols in yeast: potential sources of new provitamin D3 analogs. Can. J. Biochem. 54:657–665.PubMedGoogle Scholar
  12. 12.
    Bach, T.J. 1985. Selected natural and synthetic enzyme inhibitors of sterol biosynthesis as molecular probes for in vivo studies concerning the regulation of plant growth. Plant Sci., 39:183–187.CrossRefGoogle Scholar
  13. 13.
    Bach, T.J. 1988. Current trends in the development of sterol biosynthesis inhibitors: early aspects of the pathway. J. Am. Oil. Chem. Soc. 65:591–595.CrossRefGoogle Scholar
  14. 14.
    Baldwin, B.C. 1983. Fungicidal inhibitors of ergosterol biosynthesis. Biochem. Soc. Trans. 11:659–663.PubMedGoogle Scholar
  15. 15.
    Benveniste, P. 1986. Sterol biosynthesis. Ann. Rev. Plant Physiol. 37:275–308.CrossRefGoogle Scholar
  16. 16.
    Bertolino, A., Altman, L.J., Vasak, J. and Rilling, H.C., 1978. Polyisoprenoid amphiphilic compounds as inhibitors of squalene synthesis and other microsomal enzymes. Biochim. Biophys. Acta 530:17–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Billes, S.A., Foster, C., Gordon, E.M., Harrity, T., Scott, W.A. and Ciosek, C.P., 1988. Isoprenoid (phosphinylmethyl)phosphonates as inhibitors of squalene synthetase. J. Med. Chem. 31:1869–1871.CrossRefGoogle Scholar
  18. 18.
    Bloch, K., Corey, E.J., Dean, P.D.G. and Ortiz de Montellano, P.R. 1967. A soluble 2,3-oxidosqualene cyclase. J. Biol. Chem. 242:3014–3019.PubMedGoogle Scholar
  19. 19.
    Bottema, C.K. and Parks, L.W. 1978.014-Sterol reductase in Saccharomyces cerevisiae. Biochem. Biophys. Acta 531:301–307.CrossRefGoogle Scholar
  20. 20.
    Bujons, J., Guajards, R. and Kyle, K.S. 1988. Enantioselective enzymatic sterol synthesis by using ultrasonically stimulated bakers’ yeast. J. Am. Chem. Soc. 110:604–606 for leading references.CrossRefGoogle Scholar
  21. 21.
    Burden, R.S., Cooke, D.T. and Carter, G.A. 1989. Inhibitors of sterol biosynthesis and growth in plants and fungi. Phytochem. 28:1791–1804.CrossRefGoogle Scholar
  22. 22.
    Buttke, T.M., Brint, S.L. and Lowe, M.R. 1988. Regulation of squalene epoxidase activity by membrane fatty acid composition in yeast. Lipids 23:68–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Capstack, E., Jr., Rosin, N., Blondin, G.A. and Nes, W.R. 1965. Squalene in Pisum sativum. Its cyclization to β-amyrin and labelling pattern. J. Biol. Chem. 240:3258–3263.Google Scholar
  24. 24.
    Caras, I.W. and Bloch, K. 1979. Effects of a supernatant protein activator on microsomal squalene-2,3-oxide-lanosterol cyclase. J. Biol. Chem. 254:11816–11821.PubMedGoogle Scholar
  25. 25.
    Cattel, L., Ceruti, M., Viola, F., Delprino, L., Balliano, G., Duriatti, A. and Bouvier-Nave, P. 1986. The squalene-2,3-epoxide cyclase as a model for the development of new drugs. Lipids 21:31–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Ceruti, M., Viola, F., Grosa, G., Balliano, G., Delprino, L. and Cattel, L. 1988. Synthesis of squalenoid acetylenes and alienes, as inhibitors of squalene epoxidase. J. Chem. Res. (S):18–19.Google Scholar
  27. 27.
    Ceruti, M., Viola, F., Balliano, G., Grosa, G. Caputo, O., Gerst, N., Schuber, F. and Cattel, L. 1988. Synthesis of a squalenoid oxaziridine and other new classes of squalene derivatives as inhibitors of sterol biosynthesis. Eur. J. Med. Chem. 23:533–537.CrossRefGoogle Scholar
  28. 28.
    Ceruti, M., Viola, F., Dosis, F., Cattel, L., Bouvier-Nave, P. and Ugliengo, P. 1988. Stereospecific synthesis of squalenoid epoxide vinyl ethers as inhibitors of 2,3oxidosqualene cyclase. J. Chem. Soc. Perkin Trans. I:461–469.CrossRefGoogle Scholar
  29. 29.
    Chin, J. and Bloch, K. 1984. Role of supernatant protein factor and anionic phospholipid in squalene uptake and conversion by microsomes. J. Biol. Chem. 259:11735–11738.PubMedGoogle Scholar
  30. 30.
    Coates, R.M. and Robinson, W.H., 1971. Stereoselective total synthesis of (±)presqualene alcohol. J. Am. Chem. Soc. 93:1785–1786.PubMedCrossRefGoogle Scholar
  31. 31.
    Corey, E.J. and Gross, S.K. 1967. Formation of sterols by the action of 2,3-oxidosqualene-sterol cyclase on the facticious substrates 2,3:22,23-dioxidosqualene and 2,3-oxido-22,23-dihydrosqualene. J. Am. Chem. Soc. 89:4561–4562.PubMedCrossRefGoogle Scholar
  32. 32.
    Corey, E.J., Lin, K. and Jautelat,.M. 1968. Studies on the action of 2,3-oxidosqualene-sterol cyclase on unnatural substrates produced by alkylidene transfer from sulfonium alkylides to 4,8,13,17,21-pentamethyldocosa-4,8,12,16,20-pentaenal. J. Am. Chem. Soc. 90:2724–2726.CrossRefGoogle Scholar
  33. 33.
    Corey, E.J. and Volante, R.P., 1976. Application of unreactive analogs of terpenoid pyrophosphates to studies of multistep biosynthesis. Demonstration that “presqualene pyrophosphate” is an essential intermediate on the path to squalene. J. Am. Chem. Soc. 98:1291–1293.CrossRefGoogle Scholar
  34. 34.
    Duriatti, A., Bouvier-Nave, P., Benveniste, P., Schuber, F., Delprins, L., Balliano, G. and Cattel, L. 1985. In vitro inhibition of animal and higher plant 2,3-oxidosqualene-sterol cyclases by 2-aza-2,3-dehydrosqualene and derivatives, and by other ammonium-containing molecules. Biochem. Pharmacol. 34:2765–2777.PubMedCrossRefGoogle Scholar
  35. 35.
    Duriatti, A. and Schuber, F. 1988. Partial purification of 2,3-oxidosqualene-lanosterol cyclase from hog liver. Evidence for a functional thiol residue. Biochem. Biophys. Res. Commun. 151:1378–1385.CrossRefGoogle Scholar
  36. 36.
    Eilenberg, H. and Shechter, I. 1984. A possible regulatory role of squalene epoxidase in chinese hamster ovary cells. Lipids. 19:539–543.PubMedCrossRefGoogle Scholar
  37. 37.
    Eilenberg, H. and Shechter, I. 1987. Regulation of squalene epoxidase activity and comparison of catalytic properties of rat liver and chinese hamster ovary cell-derived enzymes. J. Lipid Res. 28:1398–1404.PubMedGoogle Scholar
  38. 38.
    Eilenberg, H., Kliner, E., Przedecki, F. and Shechter, I. 1989. Inactivation and activation of various membranal enzymes of the cholesterol biosynthetic pathway of digitonin. J. Lipid. Res. 30:1127–1135.PubMedGoogle Scholar
  39. 39.
    Friedlander, E.J., Caras, I.W., Leu Fen Hou Lin and Bloch, K. 1980. Supernatant protein factor facilitates intermembrane transfer of squalene. J. Biol. Chem. 255:8042–8045.PubMedGoogle Scholar
  40. 40.
    Fryberg. M., Avruch, L., Oehlschlager, A.C. and Unrau, A.M. 1975. Nuclear demethylation and C-24 alkylation during ergosterol biosynthesis in Saccharomyces cerevisiae. Can. J. Biochem. 53:881–889.Google Scholar
  41. 41.
    Frye, L.L. and Robinson, C.H. 1988. Novel inhibitors of lanosterol 14a-methyl demethylase, a critical enzyme in cholesterol biosynthesis. J. Chem. Soc. Chem. Commun.:129–131.Google Scholar
  42. 42.
    Gadher, P. Mercer, E.I., Baldwin, B.C. and Wiggins, T.C. 1983. A comparison of the potency of some fungicides as inhibitors of sterol 14a-demethylation. Pestic. Biochem. Physiol. 19:1–10.CrossRefGoogle Scholar
  43. 43.
    Gelb, M.H., Heimbrook, D.C., Malkonen, P. and Sligar, S.G. 1982. Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P-450 monoxygenase system. Biochem. 21:370–377.CrossRefGoogle Scholar
  44. 44.
    Gerst, N., Schuber, F., Viola, F. and Cattel, L. 1986. Inhibition of cholesterol biosynthesis in 3T3 fibroblasts by 2-aza-2,3-dihydrosqualene, a rationally designed 2,3-oxidosqualene cyclase inhibitor. Biochem. Pharmacol. 35:4243–4250.PubMedCrossRefGoogle Scholar
  45. 45.
    Gerst, N., Duriatti, A., Schuber, F., Taton, M., Benveniste, P. and Rahier, A. 1988. Potent inhibition of cholesterol biosynthesis in 3T3 fibroblasts by N-[(1,5,9)trimethyldecyl]-4a, 10-dimethyl-8-aza-trans-decal-3/3-ol, a new 2,3-oxidosqualene cyclase inhibitor. Biochem. Pharmacol. 37:1955–1964.PubMedCrossRefGoogle Scholar
  46. 46.
    Gibbons, G.F., Pullinger, C.R. and Mikropaulos, K.A. 1979. Studies on the mechanism of 14a-demethylation; a requirement for two distinct types of mixed function oxidases. Biochem. J. 183:309–315.PubMedGoogle Scholar
  47. 47.
    Haughan, P.A., Lenton, J.R. and Goad, L.J. 1988. Sterol requirements and paclobutrazol inhibition of a celery cell culture. Phytochem. 27:2491–2500.CrossRefGoogle Scholar
  48. 48.
    Jahnke, L. and Kein, H.P. 1983. Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae. J. Bacteriol. 155:488–492.PubMedGoogle Scholar
  49. 49.
    Johnson, W.S., Telfer, S.J., Cheng, S. and Schubert, U. 1987. Cation-stabilizing auxiliaries: A new concept in biomimetic polyene cyclizations. J. Am. Chem. Soc. 109:2517–2518.CrossRefGoogle Scholar
  50. 50.
    Koller, W. (1987). Isomers of sterol synthesis inhibitors: fungicidal effects and plant growth regulator activities. Pestic. Sci., 18:129–147.CrossRefGoogle Scholar
  51. 51.
    Koller, W. and Scheinpflung, H. 1987. Fungal resistance to sterol biosynthesis inhibitors: a new challenge. Plant Disease 71:1066–1074.CrossRefGoogle Scholar
  52. 52.
    Kuswik-Rabiega, G. and Rifling, H.C. 1987. Squalene synthetase-Solubilization and partial purification of squalene synthetase-Copurification of presqualene pyrophosphate and squalene synthetase activity. J. Biol. Chem. 262:1505–1509.PubMedGoogle Scholar
  53. 53.
    Lederer, E. 1977. Biological C-alkylation reactions, p. 89–126. In Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H.G. and Schlenk F., Eds. Biochemistry of S-adenosylmethinine. Columbia University Press, New York.Google Scholar
  54. 54.
    M’Baya, B. and Karst, F. 1987. In vitro assay of squalene epoxidase of Saccharomyces cerevisiae. Biochem Biophys. Res. Comm. 147:555–564.Google Scholar
  55. 55.
    McCammon, M. and Parks, L.W. 1981. Inhibition of sterol transmethylation by Sadenosylhomocysteine analogs. J. Bacteriol. 145:106–112.PubMedGoogle Scholar
  56. 56.
    Medina, J.C. and Kyler, K.S. 1988. Enzymatic cyclization of hydroxylated surrogate squalenoids with bakers’ yeast. J. Am. Chem. Soc., 110:4818–4821.CrossRefGoogle Scholar
  57. 57.
    Medina, J.C., Guajardo, R. and Kyler, K.S. 1989. Vinyl group rearrangement in the enzymatic cyclization of squalenoids: Synthesis of 30-oxysterols. J. Am. Chem. Soc. 111:2310–2311.CrossRefGoogle Scholar
  58. 58.
    Mercer, E.J. 1984. The biosynthesis of ergosterol. Pestic. Sci.15:133–155.CrossRefGoogle Scholar
  59. 59.
    Moore, J.T., Jr. and Gaylor, J.L. 1969. Isolation and purification of an S-adenosylmethionine:T24-sterolmethyltransferase from yeast. J. Biol. Chem. 244:6334–6340.PubMedGoogle Scholar
  60. 60.
    Moore, J.T., Jr. and Gaylor, J.L. 1970. Investigation of an S-adenosylmethionine: 024-sterolmethyltransferase in ergosterol biosynthesis in yeast. Specificity of sterol substrates and inhibitors. J. Biol. Chem. 245:4684–4688.PubMedGoogle Scholar
  61. 61.
    Muehlbacher, M. and Poulter, C.D. 1985. Isopentenyl diphosphate:dimethylallyl diphosphate isomerase. Irreversible inhibition of the enzyme by active-site-directed covalent attachment. J. Am. Chem. Soc. 107:8307–8308.CrossRefGoogle Scholar
  62. 62.
    Muehlbacher, M. and Poulter, C.D. 1988. Isopentenyl diphosphate isomerase: inactivation of the enzyme with active-site-directed irreversible inhibitors and transition-state analogues. Biochem. 27:7315–7328.CrossRefGoogle Scholar
  63. 63.
    Nakamura, M. and Sato, R. 1979. The roles of soluble factors in squalene epoxidation by rat liver microsomes. Biochem. Biophys. Res. Commun. 89:900–906.PubMedCrossRefGoogle Scholar
  64. 64.
    Narula, A.S., Rahier, A., Benveniste, P. and Schuber, F. 1981. 24-Methyl-25azacycloartanol, an analogue of a carbonium ion high-energy intermediate, is a potent inhibitor of (S)-adenosyl-L-methionine:sterol C-24-methyltransferase in higher plant cells. J. Am. Chem. Soc. 103:2408–2409.CrossRefGoogle Scholar
  65. 65.
    Nes, W.D., Hanners, P.K. and Parish, E.J. 1986. Control of fungal sterol C-24 transmethylation: Importance to developmental regulation. Biochem. Biophys. Res. Commun. 139:410–415.PubMedCrossRefGoogle Scholar
  66. 66.
    Oehlschlager, A.C., Fryberg, M. and Unrau, A.M. 1973. Biosynthesis of ergosterol in yeast. Evidence for multiple pathways. J. Am. Chem. Soc. 95:5747–5757.PubMedCrossRefGoogle Scholar
  67. 67.
    Oehlschlager, A.C., Pierce, H.D., Jr., Pierce, A.M., Angus, R.H., Quantin-Martenot, E., Unrau, A.M. and Srinivasan, R. 1980. The use of mutants and azasterols in studies of yeast steroid biosynthesis, p. 395–405. In Mazliak, P., Benveniste, P., Costes, C. and Douce, R., Eds. Biogenesis and function of plant lipids. Elsevier/ Holland Biomedical Press, New York.Google Scholar
  68. 68.
    Oehlschlager, A.C., Anugs, R.H., Pierce, A.M., Pierce, H.D., Jr. and Srinivasan, R. 1984. Azasterol inhibition of A24-sterol methyltransferase in Saccharomyces cerevisiae. Biochemistry. 23:3582–3589.PubMedCrossRefGoogle Scholar
  69. 69.
    Ono, T. and Bloch, K. 1975. Solubilization and partial characterization of rat liver squalene epoxidase. J. Biol. Chem. 250:1571–1579.PubMedGoogle Scholar
  70. 70.
    Ortiz de Montellano, P.R., Castillo, R., Vinson, W. and Wei, J.S. 1976. Squalene biosynthesis. Role of the 3-methyl group in famesyl pyrophosphate. J. Am. Chem. Soc. 98:3020–3021.PubMedCrossRefGoogle Scholar
  71. 71.
    Petranyl, G., Ryder, N.S. and Stütz, A. 1984. Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 224:1239–1241.CrossRefGoogle Scholar
  72. 72.
    Popjak, G. and Agnew, W.S., 1978, Squalene synthetase. Mol. and Cell. Biochem. 27:97–116.Google Scholar
  73. 73.
    Porter, J.W. and Spurgeon, S.L., Eds. 1981. Biosynthesis of isoprenoid compounds. Vol. 1., John Wiley & Sons, New York.Google Scholar
  74. 74.
    Poulter, C.D., Musico, O.J. and Goodfellow, R.J. 1974. Biosynthesis of head-tohead terpenes. Carbonium ion rearrangements which lead to head-to-head terpenes. Biochemistry 13:1530–1537.PubMedCrossRefGoogle Scholar
  75. 75.
    Poulter, C.D., Capson, T.L., Thompson, M.D. and Bard, R.S., 1989. Squalene synthetase. Inhibition by ammonium analogs of carbocationic intermediates in the conversion of presqualene diphosphate to squalene, J. Am. Chem. Soc. 111:3734–3739.CrossRefGoogle Scholar
  76. 76.
    Poulter, C.D., Muehlbacher, M. and Davis, D.R. 1989. Mechanism of active-sitedirected irreversible inhibition by 3-(fluoromethyl)-3-butenyl diphosphate. J. Am. Chem. Soc. 111:3740–3742.CrossRefGoogle Scholar
  77. 77.
    Rahier, A., Genot, J.C., Narula, A.S., Beneveniste, P. and Schmitt, P. 1980. 25Azacycloartanol, a potent inhibitor of S-adenosyl-L-methionine-sterol C-24 and C28 methyltransferases in higher plant cells. Biochem. Biophys. Res. Commun. 92:20–25.PubMedCrossRefGoogle Scholar
  78. 78.
    Rahier, A., Genot, J.C., Schuber, F., Benveniste, P. and Narula, A.S. 1984. Inhibition of S-adenosyl-L-methionine sterol-C-24-methyltransferase by analogues of a carbocationic ion high-energy intermediate. Structure activity relationships for C-25 heteroatom (N, As, S) substituted triterpenoid derivatives. J. Biol. Chem. 259:15215–15223.PubMedGoogle Scholar
  79. 79.
    Rahier, A., Taton, M., Schmitt, P., Benveniste, P., Place, P. and Anding, C. 1985. Inhibition of De Y-sterol isomerase and of cycloeucalenol-obtusifoliol isomerase by N-benzyl-8-aza-4a, 10-dimethyl-trans-decal-3β-ol, an analogue of carbocationic high energy intermediate. Phytochem. 24:1223–1232.CrossRefGoogle Scholar
  80. 80.
    Reardon, J.E. and Abeles, R.H. 1986. Mechanism of action of isopentenyl pyrophosphate isomerase: evidence for a carbonium ion intermediate. Biochem. 25:5609–5616.CrossRefGoogle Scholar
  81. 81.
    Ruhl, K.K., Anzalone, L., Arguropoulos, E.D., Gayen, A.K. and Spencer, T.A. 1989. Azadecalin analogs of 4,4,10β-trimethyl-trans-decal-3β-ol. Synthesis and assay as inhibitors of oxidosqualene cyclase. Bioorg. Chem. 17:108–120.CrossRefGoogle Scholar
  82. 82.
    Ryder, N.S. and Dupont, M-C. 1984. Properties of a particulate squalene epoxidase from Candida albicans. Biochem. Biophys. Acta 794:466–471.PubMedCrossRefGoogle Scholar
  83. 83.
    Ryder, N.S. and Dupont, M.-C. 1985. Inhibition of squalene epoxidase by allylamine antimycotic compounds. A comparative study of the fungal and mammalian enzymes. Biochem. J. 230:765–770.PubMedGoogle Scholar
  84. 84.
    Ryder, N.S., Dupont, M.-C. and Frank, I. 1986. Inhibition of fungal and mammalian sterol biosynthesis by 2-aza-2,3-dihydrosqualene. FEBS Letters 204:239–242.PubMedCrossRefGoogle Scholar
  85. 85.
    Sasiak, K. and Rilling, H.C., 1988. Purification to homogeneity and some properties of squalene synthetase. Arch. Biochem. Biophys. 260:622–627.PubMedCrossRefGoogle Scholar
  86. 86.
    Schenkman, J.B., Remmer, H. and Estabrook, R.W. 1967. Spectral studies of drug interaction with hepatic microsomal cytochrome (rat). Mol. Pharmacol. 3:113–123.Google Scholar
  87. 87.
    Schmitt, P., Scheid, F. and Benveniste, P. 1980. Accumulation of Á8’14 sterols in suspension cultures of bramble cells cultured with an azasterol antimycotic agent (A25822B). Phytochem. 19:525–530.CrossRefGoogle Scholar
  88. 88.
    Schmitt, P., Narula, A.S., Benveniste, P. and Rahier, A. 1981. Manipulation by 25azacycloartanol of the relative percentage of C-10, C-9 and C-8 side-chain sterols in suspension cultures of bramble cells. Phytochem. 20:197–201.CrossRefGoogle Scholar
  89. 89.
    Schmitt, P., Gonzales, R., Benveniste, P., Ceruti, M. and Cattel, L. 1987. Inhibition of sterol biosynthesis and accumulation of 2,3-oxidosqualene in bramble cell suspension cultures treated with 2-aza-2,3-dihydrosqualene and 2-aza-2,3-dehydrosqualeneN-oxide. Phytochem. 26:2709–2714.CrossRefGoogle Scholar
  90. 90.
    Sen, S.E. and Prestwich, G.D. 1989. Squalene analogs containing isopropylidene mimic as potential inhibitors of pig liver squalene epoxidase and oxidosqualene cyclase. J. Med. Chem. 32:2152–2158.PubMedCrossRefGoogle Scholar
  91. 91.
    Sen, S.E. and Prestwich, G.D. 1989. Trisnorsqualene alcohol, a potent inhibitor of vertebrate squalene epoxidase. J. Am. Chem. Soc. 111:1508–1510.CrossRefGoogle Scholar
  92. 92.
    Sen, S.E. and Prestwich, G.D. 1989. Trisnorsqualene cyclopropylamine: a reversible tight-binding inhibitor of squalene epoxidase. J. Am. Chem. Soc. 111:8761–8762.CrossRefGoogle Scholar
  93. 93.
    Silverman, R.B. 1988, Mechanism-based enzyme inactivation: chemistry and enzymology. Vol. 2. p. 89–190, CRC Press, Boca Raton, Florida.Google Scholar
  94. 94.
    Srikantalah, M.V., Hansbury, E., Loughran, E.D. and Scallen, T.J. 1976. Purification and properties of sterol carrier protein. J. Biol. Chem. 251:5496–5504.Google Scholar
  95. 95.
    Stevenson, D.E., Wright, J.N. and Akhtar, M. 1988. Mechanistic consideration of P-450 dependent enzymic reactions: studies on oestriol biosynthesis. J. Chem. Soc. Perkin Trans. I:2043–2052.CrossRefGoogle Scholar
  96. 96.
    Stutz, A. 1987. Allylamine derivatives-a new class of active substances in antifungal chemotherapy. Angew. Chem. Int’l. Ed. Engl. 26:320–328.CrossRefGoogle Scholar
  97. 97.
    Tal, B. and Nes, W.D. 1987. Regulation of sterol biosynthesis: Importance of the C-24 alkyl group to growth of sunflower suspension cultures. Plant Physiol. Suppl. 83:969.Google Scholar
  98. 98.
    Taton, M. Benveniste, P. and Rahier, A. 1987. Mechanism of inhibition of sterol biosynthesis enzymes by N-substituted morpholines. Pestic. Sci. 21:269–280.CrossRefGoogle Scholar
  99. 99.
    Taton, M., Benveniste, P. and Rahier, A. 1987. Use of rationally designed inhibitors to study sterol and triterpenoid biosynthesis. Pure and Appl. Chem. 59:287–294.CrossRefGoogle Scholar
  100. 100.
    Taton, M., Benveniste, P. and Rahier, A. 1987. Comparative study of the inhibition of sterol biosynthesis in Rubus fruticosus suspension cultures and Zea mays seedlings by N-(1,5,9-trimethyldecyl)-4a,10-dimethyl-8aza-trans-decal-3β-ol and derivatives. Phytochem. 26:385–392.CrossRefGoogle Scholar
  101. 101.
    van Tamelen, E.E., Sharpless, K.B., Willett, J.D., Clayton, R.B. and Burlingame, A.L. 1967. Biological activities of some terminally modified squalene and squalene2,3-oxide analogs. J. Am. Chem. Soc. 89, 3920–3922.CrossRefGoogle Scholar
  102. 102.
    van Tamelen, E.E., Sharpless, K.B., Hanzlik, R., Clayton, R.B., Burlingame, A.L. and Wszolek, P.C. 1967. Enzymatic cyclization of trans, trans, trans-18,19dihydrosqualene-2,3-oxide. J. Am. Chem. Soc. 89:7150–7151.PubMedCrossRefGoogle Scholar
  103. 103.
    van Tamelen, E.E. and Schwartz, M.A., 1971. Mechanism of presqualene pyrophosphate-squalene biosynthesis. J. Am. Chem. Soc. 93:1780–1782.CrossRefGoogle Scholar
  104. 104.
    van Tamelen, E.E., Lees, R.G. and Grieder, A. 1974. Cyclization of a terpenoid diene with preformed A-B-D rings and its significance for the mechanism of terpenoid terminal epoxide cyclizations. J. Am. Chem. Soc. 96:2255–2256.CrossRefGoogle Scholar
  105. 105.
    van Tamelen, E.E. and James, D.R. 1977. Overall mechanism of terpenoid terminal epoxide polycyclization. J. Am. Chem. Soc. 99:950–952.CrossRefGoogle Scholar
  106. 106.
    van Tamelen, E.E. and Hopla, R.E. 1979. Generation of the onocerin system by lanosterol 2,3-oxidosqualene cyclase. Implications for the cyclization process. J. Am. Chem. Soc. 101:6112–6114.CrossRefGoogle Scholar
  107. 107.
    van Tamelen, E.E., Leopold, E.J., Marson, S.A. and Walspe, H.R. 1982. Action of 2,3-oxidosqualene lanosterol cyclase on 15’-nor-18,19-dihydro-2,3-oxidosqualene. J. Am. Chem. Soc. 104:6479–6480.CrossRefGoogle Scholar
  108. 108.
    Walsh, C. 1979. Enzymatic reaction mechanisms, p. 358–431, W.H. Freeman and Co., San Francisco.Google Scholar
  109. 109.
    White, R.E., Miller, J.P., Favreau L.V. and Battacharyya, A. 1986. Stereochemical dynamics of aliphatic hydroxylation by cytochrome P-450. J. Am. Chem. Soc. 108:6024–6031.PubMedCrossRefGoogle Scholar
  110. 110.
    Yabusaki, Y., Nishino, T., Ariga, N. and Katsuki, H. 1979. Studies on As Δ8→Δ7 isomerization and methyl transfer of sterols in ergosterol biosynthesis in yeast. J. Biochem. 85:1531–1537.PubMedGoogle Scholar
  111. 111.
    Yoshida, Y., Kumaoka, H. and Sato, R. 1974. Studies on the microsomal electron-transport system of anaerobically grown yeast. I. Intracellular localization and characterization. J. Biochem. (Tokyo) 75:1201–1210.Google Scholar
  112. 112.
    Yoshida, Y., Aoyama, Y., Kumaoka, H. and Kubota, S. 1977. A highly purified preparation of cytochrome P-450 from microsomes of anaerobically grown yeast. Biochem. Biophys. Res. Commun. 78:1005–1010.PubMedCrossRefGoogle Scholar
  113. 113.
    Yoshida, Y. and Aoyama, Y. 1984. Yeast cytochrome P-450 catalyzing lanosterol 14a-demetylation. I. Purification and spectral properties. J. Biol. Chem. 259:1655–1660.PubMedGoogle Scholar
  114. 114.
    Yoshida, Y.M., Aoyama, Y., Takano, H. and Kato, T. 1986. Stereoselective interaction of enantiomers of diniconazole, a fungicide, with purified P-450/14-DM from yeast. Biochem. Biophys. Res. Commun. 137:513–519.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • A. C. Oehlschlager
  • Eva Czyzewska

There are no affiliations available

Personalised recommendations