Advertisement

Biochemical Aspects of Ergosterol Biosynthesis Inhibition

  • Keith Barrett-Bee
  • Neil Ryder

Abstract

The major product of sterol biosynthesis in fungi and some trypanosomes is ergosterol, unlike in mammalian systems which synthesize cholesterol as the major membrane lipid (12, 13). The two sterols differ in a few minor ways: cholesterol has a second double bond (Δ5(6)) in the B ring (Figure 16.1) and has a fully saturated side chain without a methyl group at C24. These small differences are clearly very important as ergosterol has been shown to be essential for the aerobic growth of most fungi. This requirement is demonstrated by the sparking phenomenon discussed by Nes et al. (55), who described the essential structural parts of the sterol molecule needed for growth. Some fungi, however ( Pythium and Phytophthora ), use an alternative terpene-like compound instead of sterols (33).

Keywords

Candida Albicans Antifungal Agent Biochemical Aspect Sterol Biosynthesis Ergosterol Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhtar, M., K.A. Munday, A.D. Rahimtula, I.A. Watkinson, and D.C. Wilton. 1969. Mechanism of reduction of double bonds in biological systems: conversion of desmosterol into cholesterol. Chem. Comm. 1969:1287–1288.Google Scholar
  2. 2.
    Aoyama, Y., Y. Yoshida, and R. Sato. 1984. Yeast cytochrome p-450 catalysing lanosterol 14a-demethylation. J. Biol. Chem. 259:1661–1666.PubMedGoogle Scholar
  3. 3.
    Atkin, S.D., B. Morgan, K.H. Baggaley, and J. Green 1972. The isolation of 2,3-oxidosqualene from the liver of rats treated with 1-dodecylimidazole, a novel hypocholesterolaemic agent. Biochem. J. 130:153–157.PubMedGoogle Scholar
  4. 4.
    Bach, T.J., and H.K. Lichtenthaler. 1982. Mechanism of inhibition by mevinolin (MK 803) of microsome-bound radish and of partially purified yeast HMG-CoA reductase (EC.1.1.1.34.) Z. Naturforsch. 38c:212–219.Google Scholar
  5. 5.
    Balliano, G., F. Viola, M. Ceruti, and L. Cattel. 1988. Inhibition of sterol biosynthesis in Saccharomyces cerevisiae by N,N-diethylazasqualene and derivatives. Biochim. Biophys. Acta. 959:9–19.PubMedCrossRefGoogle Scholar
  6. 6.
    Baloch, R.I., E.I. Mercer, T.E. Wiggins, and B.C. Baldwin. 1984. Where do morpholines inhibit sterol biosynthesis? Brit. Crop Protect. Conf. 1984. 3:893–898.Google Scholar
  7. 7.
    Barrett-Bee, K. 1991. Resistance to azole antifungal agents in several species. J. Med. Vet. Mycol., in press.Google Scholar
  8. 8.
    Barrett-Bee, K., A.C. Lane, and R.W. Turner. 1986. The mode of antifungal action of tolnaftate. J. Med. Vet. Mycol. 24:155–160.PubMedCrossRefGoogle Scholar
  9. 9.
    Barrett-Bee, K., J. Lees, P.E. Pinder, J. Campbell, and L. Newboult. 1988. Biochemical studies with a novel antifungal agent ICI 195,739. Ann. N.Y. Acad. Sci. 544:231244.Google Scholar
  10. 10.
    Barrett-Bee, K., L. Newboult, and P.E. Pinder. 1991. Biochemical changes associated with the antifungal action of the triazole ICI 153,066 on C. albicans and T. quickeanum. FEMS, Lett. 79:127–132.CrossRefGoogle Scholar
  11. 11.
    Barrett-Bee, K., and P.E. Pinder. 1984. Resistance to ergosterol biosynthesis inhibitors observed in several fungal species. p. 139. In C. Nombela (ed.) Proceedings of FEMS Symposium, The development of antifungal agents. S.E.M., Madrid.Google Scholar
  12. 12.
    Block, K. 1979. Speculations on the evolution of sterol structure and function. CRC Crit. Rev. Biochem. 91:1–5.CrossRefGoogle Scholar
  13. 13.
    Block, K. 1981. Sterol structure and membrane function. Curr. Top. Cell Regul. 18:289–299.Google Scholar
  14. 14.
    Bohnen, K. and A. Pfinner. 1979. Fenpropimorph, ein neus systemisches Fungizid zur Bekaempfung von echten Meltau und Rostkrankheiten im Getreidebau, Meded Rijksfac Landbouwwetensch Gent 44:487–497.Google Scholar
  15. 15.
    Borgers, M. 1985. Antifungal azole derivatives, p. 133–153. In D. Greenwood and F. O’Grady (ed.), Scientific basis of antimicrobial chemotherapy. Cambridge University Press, Cambridge.Google Scholar
  16. 16.
    Borgers, M., M. De Brabander, H. Vanden Bossche, and J. Van Cutsem. 1979. Promotion of pseudomycelium formation of Candida albicans in culture: A morphological study of the effects of miconazole and ketoconazole. Postgrad. Med. J. 55:687–691.PubMedCrossRefGoogle Scholar
  17. 17.
    Boyle, F.T. 1990. Drug discovery: a chemists approach, p. 3–30. In J.F. Ryley (ed.), Chemotherapy of fungal diseases, handbook of experimental pharmacology, vol. 96. Springer Verlag, Berlin.CrossRefGoogle Scholar
  18. 18.
    Butters, J., J. Clark, and D.W. Hollman. 1984. Resistance to inhibitors of sterol biosynthesis in barley powdery mildew. Meded. Rijksfac. Landbouwwetensch Gent. 49:143–151.Google Scholar
  19. 19.
    Cattel, L., M. Ceruti, G. Balliano, F. Viola, G. Grosa, and F. Schuber. 1989. Drug design based on biosynthetic studies: synthesis, biological activity, and kinetics of new inhibitors of 2,3-oxidosqualene cyclase and squalene epoxidase. Steroids 53:363391.Google Scholar
  20. 20.
    Cattel, L., M. Ceruti, F. Viola, L. Delprino, G. Balliano, A. Duriatti, and P. Bouvier-Nave. 1986. The squalene-2,3-epoxide cyclase as a model for the development of new drugs. Lipids 21:31–38.PubMedCrossRefGoogle Scholar
  21. 21.
    Ceruti, M., F. Viola, G. Balliano, G. Grosa, P. Caputo, and N. Gerst. 1988. Synthesis of a squalenoid oxaziridine and other new classes of squalene derivatives, as inhibitors of sterol biosynthesis. Eur. J. Med. Chem. 23:533–537.CrossRefGoogle Scholar
  22. 22.
    Chang, T.-Y., E.S. Schiavoni, Jr., K.R. McCrae, J.A. Nelson, and T.A. Spencer. 1979. Inhibition of cholesterol biosynthesis in chinese hamster ovary cells by 4,410p-trimethyl-trans-decal-3p-ol. J. Biol. Chem. 254:11258–11263.PubMedGoogle Scholar
  23. 23.
    Corey, E.J., P.R. Ortiz de Montellano, K. Lin, and P.D.G. Dean. 1967.2,3iminosqualene, a potent inhibitor of the enzymatic cyclization of 2,3-oxidosqualene to sterols. J. Am. Chem. Soc. 89:2797–2798.PubMedCrossRefGoogle Scholar
  24. 24.
    Counsell, R.E., P.D. Klimstra, R.E. Ranney, and D.L. Cook. 1962. Hypocholesterolemic agents. 1. 20a-(2-dialkylaminoethyl)aminopregn-5-en-3a-ol derivatives. J. Med. Pharm. Chem. 5:720–729.CrossRefGoogle Scholar
  25. 25.
    Dekker, J. 1984. Development of resistance to antifungal agents, p. 89–112. In A.P.J. Trinci and J.F. Ryley (ed.), Mode of action of antifungal agents. Cambridge University Press, Cambridge.Google Scholar
  26. 26.
    Delprino, L., G. Balliano, L. Cattel, P. Benveniste, and P. Bouvier. 1983. Inhibition of higher plant, 2,3-oxidosqualene cyclase by 2-aza-2,3-dihydrosqualene and its derivatives. J. Chem. Soc. Chem. Commun. (1983):381Google Scholar
  27. 27.
    DeWaard, M.A., and J.G. van Nistleroy. 1980. An energy-dependent efflux mechanism for fenarimol in a wild-type strain and fenarimol-resistant mutant of Aspergillus nidulans. Pestic. Biochem. Biophys. 13:255–266.CrossRefGoogle Scholar
  28. 28.
    Duriatti, A., P. Bouvier-Nave, P. Benveniste, F. Schuber, L. Delprino, G. Balliano, and L. Cattel. 1985. In vitro inhibition of animal and higher plant 2,3-oxidosqualene-sterol cyclases by 2-aza-2,3-dihydrosqualene and derivatives, and by other ammonium-containing molecules. Biochem. Pharmacol. 34:2765–2777.PubMedCrossRefGoogle Scholar
  29. 29.
    Endo, A., M. Kuroda, and K. Tanzawa. 1976. Competitive inhibition of 3-hydroxy3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 72:323–326.PubMedCrossRefGoogle Scholar
  30. 30.
    Ross, H.G., L. Mascaro, M.D. Tsai, and R.W. Woodard. 1979. Stereochemistry of enzymatic transmethylation, p. 135–141. In E. Usdin, R.T. Borchardt, C.R. Creveling (ed.), Transmethylation: developments in neuroscience, vol. 5. Elsevier/North Holland, New York.Google Scholar
  31. 31.
    Fryberg, M., and A.C. Oehlschlager. 1976. Sterol biosynthesis in antibiotic sensitive and resistant Candida. Arch. Biochem. Biophys. 173:171–177.PubMedCrossRefGoogle Scholar
  32. 32.
    Georgopoulos, A., G. Petranyi, H. Mieth, and J. Drews. 1981. In vitro activity of naftifine, a new antifungal agent. Antimicrob. Agents Chemother. 19:386–389.PubMedCrossRefGoogle Scholar
  33. 33.
    Goodwin, T.W. 1973. Comparative biochemistry of sterols in eukaryotic microorganisms, p. 1–41. In J.A. Erwin (ed.), Lipids and biomembranes of eukaryotic microorganisms. Academic Press, New York.Google Scholar
  34. 34.
    Gordee, R.S., and T.F. Butler. 1973. A9145 a new adenine-containing antifungal antibiotic. II. Biological activity. J. Antibiot. 26:466–470.PubMedCrossRefGoogle Scholar
  35. 35.
    Greenspan, M.D., J.B. Judkovitz, C.H.L. Lo, J.W. Chen, A.W. Alberts, V.M. Hunt, M.N. Chang, S.S. Yang, K.L. Thompson, Y.P. Chiang, J.C. Chabala, R.L. Monaghan, and R.L. Schwart. 1987. Inhibition of hydroxymethylglutaryl-coenzyme A synthase by L-659–699. Proc. Natl. Acad. Sci. USA 84:7688–7492.CrossRefGoogle Scholar
  36. 36.
    Hamilton-Miller, J.M.T. 1973. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol. Rev. 37:166–196.Google Scholar
  37. 37.
    Henry, M.J., and H.D. Sisler. 1979. Effects of miconazole and dodecylimidazole on sterol biosynthesis in Ustilago maydis. Antimicrob. Agents Chemother. 15:603–607.PubMedCrossRefGoogle Scholar
  38. 38.
    Hitchcock, C.A., K. Barrett-Bee, and N.J. Russell. 1987. Inhibition of 14a-sterol demethylase activity in Candida albicans-Darlington does not correlate with resistance to azole. J. Med. Vet. Mycol. 25:329–333.PubMedCrossRefGoogle Scholar
  39. 39.
    Hitchcock, C.A.,N.J. Russell, and K. Barrett-Bee. 1989. The lipid composition and permeability to the triazole antifungal antibiotic ICI 153,066 of serum grown mycelial cultures of C. albicans. J. Gen. Micro. 135:1949–1955.Google Scholar
  40. 40.
    Ikeura, R., S. Murakawa, and A. Endo. 1988. Growth inhibition of yeast by compactin (ML-236B) analogues. J. Antibiot. 41:1148–1150.PubMedCrossRefGoogle Scholar
  41. 41.
    Kato, T., and Y. Kawase. 1976. Selective inhibition of the demethylation at C-14 in ergosterol biosynthesis by the fungicide Denmert. Agri. Biol. Chem. 40:2379–2388.CrossRefGoogle Scholar
  42. 4.
    Kerkanaar, A. 1987. The mode of action of dimethylmorpholines, p. 523–542. In R.A. Fromtling (ed.), Recent trends in the discovery, development and evaluation of antifungal agents. J.R. Prous Science, Barcelona.Google Scholar
  43. 43.
    Kerkenaar, A., and D. Barug. 1984. Fluorescence microscope studies of Ustilago maydis and Penicillium italicum after treatment with imazalil and fenpropimorph. Pestic. Sci. 15:199–205.CrossRefGoogle Scholar
  44. 44.
    Kerkenaar, A., M. Uchiyama, and G.G. Versluis. 1981. Specific effects of tridemorph on sterol biosynthesis in Ustilago maydis. Pestic. Biochem. Physiol. 16:97–104.CrossRefGoogle Scholar
  45. 45.
    Kuroda, M., Y. Hazama-Shimada, and A. Endo. 1977. Inhibition of sterol synthesis by citrinin in a cell-free system from rat liver and yeast. Biochim. Biophys. Acta. 486:254–259.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee, W.H., B.N., Lutsky, and G.S. Schroepfer. 1969. 5a cholest-8(14)-en-3β-ol, a possible intermediate in the biosynthesis of cholesterol. J. Biol. Chem. 244:5440–5448.PubMedGoogle Scholar
  47. 47.
    Marriott, M.S. 1980. Inhibition of sterol biosynthesis in Candida albicans by imidazole containing antifungals. J. Gen. Micro. 117:265–275.Google Scholar
  48. 48.
    Mercer, E.I., P.K. Moms, and B.C. Baldwin. 1985. Differences in the inhibitory effects of N-(1-n-dodecyl)-heterocycles on the 2,3-oxidosqualene lanosterol-cyclase of rat liver and yeast. Comp. Biochem. Physiol. 80B:341–346.Google Scholar
  49. 49.
    Miller, W.L., and J.L. Gaylor. 1970. Investigation of the component reactions of oxidative sterol demethylation, oxidation of a 4a methyl to a 4a carboxylic-acid during cholesterol biosynthesis. J. Biol. Chem. 245:5369–5381.PubMedGoogle Scholar
  50. 50.
    Monger, D.J., W.A. Lim, F.J. Kezdy, and J.H. Law. 1982. Compactin inhibits insect HMG-CoA reductase and juvenile hormone biosynthesis. Biochem. Biophys. Res. Commun. 105:1374–1380.PubMedCrossRefGoogle Scholar
  51. 51.
    Morita, T., K. Iwata, and Y. Nozawa. 1989. Inhibitory effect of a new antimycotic agent, piritetrate, on ergosterol biosynthesis in pathogenic fungi. J. Med. Vet. Mycol. 27:17–25.PubMedCrossRefGoogle Scholar
  52. 52.
    Morita, T., and Y. Nozawa. 1985. Effects of antifungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagrophytes: differential inhibitory sites of naphthiomate and miconazole. J. Invest. Dermatol. 85:434–437.PubMedCrossRefGoogle Scholar
  53. 53.
    Nakamura, C.E., and R.H. Abeles. 1985. Mode of interaction of β-hydroxy-βmethylglutaryl coenzyme A reductase with strong binding inhibitors: compactin and related compounds. Biochemistry 24:1364–1376.PubMedCrossRefGoogle Scholar
  54. 54.
    Nave, J.-F., H. d’Orchymont, J.-B. Ducep, F. Piriou, and M.J. Jung. 1985. Mechanism of the inhibition of cholesterol biosynthesis by 6-fluoromevalonate. Biochem. J. 227:247–254.PubMedGoogle Scholar
  55. 55.
    Nes, W.R., B.C. Sekula, W.D. Nes, and J.H. Adler. 1978. The functional importance of structural features of ergosterol in yeast. J. Biol. Chem. 253:6218–6225.PubMedGoogle Scholar
  56. 56.
    Nussbaumer, P., N.S. Ryder, and A. Stutz. 1991. Allylamine antimycotics: recent trends in structure-activity relationships and syntheses. Pestic. Sci., in press.Google Scholar
  57. 57.
    Odds, F. 1988, Candida and candidosis, 2nd ed. Bailliere Tindall, London.Google Scholar
  58. 58.
    Ohno, T., T. Kesado, J. Awaya, and S. Omura. 1974. Target of inhibition by the anti-lipogenic antibiotic cerulenin of sterol synthesis in yeast. Biochem. Biophys. Res. Comm. 57:1119–1124.CrossRefGoogle Scholar
  59. 59.
    Omura, S., H. Tomoda, H. Kumagai, M.D. Greenspan, J.B. Yodkovitz, J.S. Chen, A.W. Alberts, I. Martin, S. Mochales, R.L. Monaghan, J.C. Chabal, R.E. Schwartz, and A.A. Patchett. 1987. Potent inhibitory effect of antibiotic 1233A on cholesterol 434/Barrett-Bee and Ryder biosynthesis which specifically blocks 3-hydroxy-3-methylglutaryl coenzyme A synthase. J. Antibiot. 11:1356–1357.CrossRefGoogle Scholar
  60. 60.
    Onishi, J.C., G.K. Abruzzo, R.A. Fromtling, G.M. Garrity, J.A. Milligan, B.A. Pelak, W. Rozdilsky, and B. Weissberger. 1988. Mode of action of L-660,631 in Candida albicans. Ann. N.Y. Acad. Sci. 544:229.CrossRefGoogle Scholar
  61. 61.
    Onishi, J.C., G.K. Abruzzo, R.A. Fromtling, G.M. Garrity, J.A. Milligan, B.A. Pelak, W. Rozdilsky, and B. Weissberger. 1988. Mode of action of β-lactone 1233A in Candida albicans. Ann. N.Y. Acad. Sci. 544:230.CrossRefGoogle Scholar
  62. 62.
    Parks, L.W. 1958. S-Adenosylmethionine and ergosterol synthesis. J. Am. Chem. Soc. 80:2023–2024.CrossRefGoogle Scholar
  63. 63.
    Poulter, C.D. 1990. Isopentenyl diphosphate to squalene-enzymology and inhibition, p. 169–188. In P.J. Kuhn, A.P.J. Trinci, M.J. Jung, M.W. Goosey, and L.G. Copping (eds.), Biochemistry of cell walls and membranes of fungi. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  64. 64.
    Reardon, J.E., and R.H. Abeles. 1987. Inhibition of cholesterol biosynthesis by fluorinated mevalonate analogues. Biochemistry 26:4717–4722.PubMedCrossRefGoogle Scholar
  65. 65.
    Ryder, N.S. 1985. Specific inhibition of fungal sterol biosynthesis by SF 86–327, a new allylamine antimycotic agent. Antimicrob. Agents Chemother. 27:252–256.PubMedCrossRefGoogle Scholar
  66. 66.
    Ryder, N.S. 1987. Squalene epoxidase as the target of antifungal allylamines. Pestic. Sci. 21:281–288.CrossRefGoogle Scholar
  67. 67.
    Ryder, N.S. 1988. Mode of action of allylamines, p. 151–167. In D. Berg and M. Plempel (eds.), Sterol biosynthesis inhibitors: pharmaceutical and agrochemical aspects. Ellis Horwood, Chichester, U.K.Google Scholar
  68. 68.
    Ryder, N.S. 1990. Inhibition of squalene epoxidase and sterol side-chain methylation of allylamines. Biochem. Soc. Trans. 18:45–46.PubMedGoogle Scholar
  69. 69.
    Ryder, N.S. 1990. Squalene epoxidase-enzymology and inhibition, p. 189–203. In P.J. Kuhn, A.P.J. Trinci, M.J. Jung, M.W. Goosey, and L.G. Copping (eds.), Biochemistry of cell walls and membranes of fungi. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  70. 70.
    Ryder, N.S., and M.C. Dupont. 1985. Inhibition of squalene epoxidase by allylamine antimycotic compounds: a comparative study of the fungal and mammalian enzymes. Biochem. J. 230:765–770.PubMedGoogle Scholar
  71. 71.
    Ryder, N.S., M.C. Dupont, and I. Frank. 1986. Inhibition of fungal and mammalian sterol biosynthesis by 2-aza-2,3-dihydrosqualene. FEBS Lett. 204:239–242.PubMedCrossRefGoogle Scholar
  72. 72.
    Ryder, N.S., I. Frank, and M.C. Dupont. 1986. Ergosterol biosynthesis inhibition by the thiocarbamate antifungel agents tolnaftate and tolciclate. Antimicrob. Agents Chemother. 29:858–860.PubMedCrossRefGoogle Scholar
  73. 73.
    Ryder, N.S., and L.J. Goad. 1980. The effect of the 3-hydroxy-3-methylglutaryl CoA reductase inhibitor ML-236B on phytosterol synthesis in Acer pseudoplatanus tissue culture. Biochim. Biophys. Acta. 619:424–427.PubMedCrossRefGoogle Scholar
  74. 74.
    Ryder, N.S., and H. Mieth. 1990. Allylamine antifungal drugs. Curr. Top. Med. Mycol., in press.Google Scholar
  75. 75.
    Ryder, N.S., G. Seidl, and P.F. Troke. 1984. Effect of the antimycotic drug naftifineon growth of and sterol biosynthesis in Candida albicans. Antimicrob. Agents Chemother. 25:483–487.Google Scholar
  76. 76.
    Ryley, J.F., R.G. Wilson, and K. Barrett-Bee. 1984. Azole resistance in Candida albicans. Sabouraudia 22:53–63.PubMedCrossRefGoogle Scholar
  77. 77.
    Santen, R.J., H. Vanden Bossche, J. Symoens, J. Brugmans, and R. Decoster. 1983. Site of action of low-dose ketoconazole on androgen biosynthesis in men. J. Clin. Endocrinol. Metab. 57:732–736.PubMedCrossRefGoogle Scholar
  78. 78.
    Sen, S.E., and G.D. Prestwich. 1989. Trisnorsqualene alcohol, a potent inhibitor of vertebrate squalene epoxidase. J. Am. Chem. Soc. 111:1508–1510.CrossRefGoogle Scholar
  79. 79.
    Sen, S.E. and G.D. Prestwich. 1989. Trisnorsqualene cyclopropylamine: a reversible, tight-binding inhibitor of squalene epoxidase. J. Am. Chem. Soc. 111:8761–8763.CrossRefGoogle Scholar
  80. 80.
    Sen, S.E., C. Wawrzenczyk, and G.D. Prestwich. 1990. Inhibition of vertebrate squalene epoxidase by extended and truncated analogues of trisnorsqualene alcohol. J. Med. Chem. 33:1698–1701.PubMedCrossRefGoogle Scholar
  81. 81.
    Servouse, M., and F. Karst. 1986. Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem. J. 240:541–547.PubMedGoogle Scholar
  82. 82.
    Sisler, H.D., R.C. Walsh, and B.N. Ziogas. 1983. Ergosterol biosynthesis a target for fungitoxic action, p. 6218–6225. In J. Miyamo and P.C. Kearney (ed.), Proceedings of the Fifth International Congress of Pesticide Chemistry, vol. 3. Pergamon Press, Elmsford.Google Scholar
  83. 83.
    Sobus, M.T., C.E. Holmlund, and N.F. Whittaker. 1977. Effects of the hypocholesterolemic agent trifluperidol on the sterol, steryl ester and fatty acid metabolism of S. cerevisiae. J. Bacteriol. 130:1310–1316.PubMedGoogle Scholar
  84. 84.
    Steel, C.C., R.I. Baloch, E.I. Mercer, and B.C. Baldwin. 1989. The intracellular location and physiological effects of abnormal sterols in fungi grown in the presence of morpholine and functionally related fungicides. Pestic. Biochem. Physiol. 33:101111.Google Scholar
  85. 85.
    Stutz, A. 1988. Synthesis and structure-activity correlations within allylamine antimycotics. Ann. N.Y. Acad. Sci. 544:46–62.PubMedCrossRefGoogle Scholar
  86. 86.
    Stutz, A., A. Georgopoulos, W. Granitzer, G. Petranyi, and D. Berney. 1986. Synthesis and structure-activity relationships of naftifine-related allylamine antimycotics. J. Med. Chem. 29:112–125.PubMedCrossRefGoogle Scholar
  87. 87.
    Stutz, A., and G. Petranyi. 1984. Synthesis and antifungal activity of (E)-N-(6,6 dimethy1–2-hepten-4-ynyl)-N-methyl-l-naphthalene-methanimine (SF 86–327) and related allylamine derivatives with enhanced oral activity. J. Med. Chem. 27:1539–1543.PubMedCrossRefGoogle Scholar
  88. 88.
    Sud. I.J., and D.S. Feingold. 1985. Effect of ketoconazole in combination with other inhibitors of sterol synthesis on fungal growth. Antimicrob. Agents. Chemother. 28:532–534.CrossRefGoogle Scholar
  89. 89.
    Tomoda, H., H. Kumagai, H. Tanaka, and S. Omura. 1987. F-244 specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A synthase. Biochim. Biophys. Acta. 922:351–356.PubMedCrossRefGoogle Scholar
  90. 90.
    Trocha, P.J., and D.B. Sprinson. 1976. Location and regulation of early enzymes of sterol biosynthesis in yeast. Arch. Biochem. Biophys. 174:45–51.PubMedCrossRefGoogle Scholar
  91. 91.
    Vanden Bossche, H. 1974. Biochemical effects of miconazole on fungi. 1. Effects on the uptake and/or utilisation of purines, pyrimidines, amino acids and glucose by Candida albicans. Biochem. Pharmacol. 26:887–899.CrossRefGoogle Scholar
  92. 92.
    Vanden Bossche, H., G. Willemsens, P. Marichal, W. Cools, and W. Lauwers. 1985. The molecular basis for the antifungal activation of N-substituted azole derivatives, p. 321–341. In A.P.J. Trinci and J.F. Ryley (ed.), Mode of action of antifungal agents. Cambridge University Press, Cambridge.Google Scholar
  93. 93.
    Walsh, R.C., and H.D. Sisler. 1982. A mutant of Ustilago maydis deficient in sterol carbon-14 demethylation characteristics and sensitivity to inhibitors of ergosterol biosynthesis. Pestic. Biochem. Physiol. 18:122–131.CrossRefGoogle Scholar
  94. 94.
    Warnock, D.W., G.M. Johnson, and M.D. Richardson. 1983. Modified response to ketoconazole of Candida albicans from a treatment failure. Lancet 1:642–643.PubMedCrossRefGoogle Scholar
  95. 95.
    Yeagle, P.L., R.B. Martin, A.K. Lala, H.K. Lin, and K. Bloch. 1977. Differential effects of cholesterol and lanosterol on artificial membranes. Proc. Natl. Acad. Sci. USA 74:4924–4926.PubMedCrossRefGoogle Scholar
  96. 96.
    Yoshida, Y. 1988. Cytochrome P450 of fungi: primary target for azole antifungal agents, p. 388–418. In M.R. McGinnis (ed.), Current topics in medical mycology, vol. 2. Springer Verlag, Berlin.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Keith Barrett-Bee
  • Neil Ryder

There are no affiliations available

Personalised recommendations