Skip to main content

Biochemical Aspects of Ergosterol Biosynthesis Inhibition

  • Chapter

Abstract

The major product of sterol biosynthesis in fungi and some trypanosomes is ergosterol, unlike in mammalian systems which synthesize cholesterol as the major membrane lipid (12, 13). The two sterols differ in a few minor ways: cholesterol has a second double bond (Δ5(6)) in the B ring (Figure 16.1) and has a fully saturated side chain without a methyl group at C24. These small differences are clearly very important as ergosterol has been shown to be essential for the aerobic growth of most fungi. This requirement is demonstrated by the sparking phenomenon discussed by Nes et al. (55), who described the essential structural parts of the sterol molecule needed for growth. Some fungi, however ( Pythium and Phytophthora ), use an alternative terpene-like compound instead of sterols (33).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtar, M., K.A. Munday, A.D. Rahimtula, I.A. Watkinson, and D.C. Wilton. 1969. Mechanism of reduction of double bonds in biological systems: conversion of desmosterol into cholesterol. Chem. Comm. 1969:1287–1288.

    Google Scholar 

  2. Aoyama, Y., Y. Yoshida, and R. Sato. 1984. Yeast cytochrome p-450 catalysing lanosterol 14a-demethylation. J. Biol. Chem. 259:1661–1666.

    PubMed  CAS  Google Scholar 

  3. Atkin, S.D., B. Morgan, K.H. Baggaley, and J. Green 1972. The isolation of 2,3-oxidosqualene from the liver of rats treated with 1-dodecylimidazole, a novel hypocholesterolaemic agent. Biochem. J. 130:153–157.

    PubMed  CAS  Google Scholar 

  4. Bach, T.J., and H.K. Lichtenthaler. 1982. Mechanism of inhibition by mevinolin (MK 803) of microsome-bound radish and of partially purified yeast HMG-CoA reductase (EC.1.1.1.34.) Z. Naturforsch. 38c:212–219.

    Google Scholar 

  5. Balliano, G., F. Viola, M. Ceruti, and L. Cattel. 1988. Inhibition of sterol biosynthesis in Saccharomyces cerevisiae by N,N-diethylazasqualene and derivatives. Biochim. Biophys. Acta. 959:9–19.

    Article  PubMed  CAS  Google Scholar 

  6. Baloch, R.I., E.I. Mercer, T.E. Wiggins, and B.C. Baldwin. 1984. Where do morpholines inhibit sterol biosynthesis? Brit. Crop Protect. Conf. 1984. 3:893–898.

    Google Scholar 

  7. Barrett-Bee, K. 1991. Resistance to azole antifungal agents in several species. J. Med. Vet. Mycol., in press.

    Google Scholar 

  8. Barrett-Bee, K., A.C. Lane, and R.W. Turner. 1986. The mode of antifungal action of tolnaftate. J. Med. Vet. Mycol. 24:155–160.

    Article  PubMed  CAS  Google Scholar 

  9. Barrett-Bee, K., J. Lees, P.E. Pinder, J. Campbell, and L. Newboult. 1988. Biochemical studies with a novel antifungal agent ICI 195,739. Ann. N.Y. Acad. Sci. 544:231244.

    Google Scholar 

  10. Barrett-Bee, K., L. Newboult, and P.E. Pinder. 1991. Biochemical changes associated with the antifungal action of the triazole ICI 153,066 on C. albicans and T. quickeanum. FEMS, Lett. 79:127–132.

    Article  CAS  Google Scholar 

  11. Barrett-Bee, K., and P.E. Pinder. 1984. Resistance to ergosterol biosynthesis inhibitors observed in several fungal species. p. 139. In C. Nombela (ed.) Proceedings of FEMS Symposium, The development of antifungal agents. S.E.M., Madrid.

    Google Scholar 

  12. Block, K. 1979. Speculations on the evolution of sterol structure and function. CRC Crit. Rev. Biochem. 91:1–5.

    Article  Google Scholar 

  13. Block, K. 1981. Sterol structure and membrane function. Curr. Top. Cell Regul. 18:289–299.

    Google Scholar 

  14. Bohnen, K. and A. Pfinner. 1979. Fenpropimorph, ein neus systemisches Fungizid zur Bekaempfung von echten Meltau und Rostkrankheiten im Getreidebau, Meded Rijksfac Landbouwwetensch Gent 44:487–497.

    CAS  Google Scholar 

  15. Borgers, M. 1985. Antifungal azole derivatives, p. 133–153. In D. Greenwood and F. O’Grady (ed.), Scientific basis of antimicrobial chemotherapy. Cambridge University Press, Cambridge.

    Google Scholar 

  16. Borgers, M., M. De Brabander, H. Vanden Bossche, and J. Van Cutsem. 1979. Promotion of pseudomycelium formation of Candida albicans in culture: A morphological study of the effects of miconazole and ketoconazole. Postgrad. Med. J. 55:687–691.

    Article  PubMed  CAS  Google Scholar 

  17. Boyle, F.T. 1990. Drug discovery: a chemists approach, p. 3–30. In J.F. Ryley (ed.), Chemotherapy of fungal diseases, handbook of experimental pharmacology, vol. 96. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  18. Butters, J., J. Clark, and D.W. Hollman. 1984. Resistance to inhibitors of sterol biosynthesis in barley powdery mildew. Meded. Rijksfac. Landbouwwetensch Gent. 49:143–151.

    CAS  Google Scholar 

  19. Cattel, L., M. Ceruti, G. Balliano, F. Viola, G. Grosa, and F. Schuber. 1989. Drug design based on biosynthetic studies: synthesis, biological activity, and kinetics of new inhibitors of 2,3-oxidosqualene cyclase and squalene epoxidase. Steroids 53:363391.

    Google Scholar 

  20. Cattel, L., M. Ceruti, F. Viola, L. Delprino, G. Balliano, A. Duriatti, and P. Bouvier-Nave. 1986. The squalene-2,3-epoxide cyclase as a model for the development of new drugs. Lipids 21:31–38.

    Article  PubMed  CAS  Google Scholar 

  21. Ceruti, M., F. Viola, G. Balliano, G. Grosa, P. Caputo, and N. Gerst. 1988. Synthesis of a squalenoid oxaziridine and other new classes of squalene derivatives, as inhibitors of sterol biosynthesis. Eur. J. Med. Chem. 23:533–537.

    Article  CAS  Google Scholar 

  22. Chang, T.-Y., E.S. Schiavoni, Jr., K.R. McCrae, J.A. Nelson, and T.A. Spencer. 1979. Inhibition of cholesterol biosynthesis in chinese hamster ovary cells by 4,410p-trimethyl-trans-decal-3p-ol. J. Biol. Chem. 254:11258–11263.

    PubMed  CAS  Google Scholar 

  23. Corey, E.J., P.R. Ortiz de Montellano, K. Lin, and P.D.G. Dean. 1967.2,3iminosqualene, a potent inhibitor of the enzymatic cyclization of 2,3-oxidosqualene to sterols. J. Am. Chem. Soc. 89:2797–2798.

    Article  PubMed  CAS  Google Scholar 

  24. Counsell, R.E., P.D. Klimstra, R.E. Ranney, and D.L. Cook. 1962. Hypocholesterolemic agents. 1. 20a-(2-dialkylaminoethyl)aminopregn-5-en-3a-ol derivatives. J. Med. Pharm. Chem. 5:720–729.

    Article  CAS  Google Scholar 

  25. Dekker, J. 1984. Development of resistance to antifungal agents, p. 89–112. In A.P.J. Trinci and J.F. Ryley (ed.), Mode of action of antifungal agents. Cambridge University Press, Cambridge.

    Google Scholar 

  26. Delprino, L., G. Balliano, L. Cattel, P. Benveniste, and P. Bouvier. 1983. Inhibition of higher plant, 2,3-oxidosqualene cyclase by 2-aza-2,3-dihydrosqualene and its derivatives. J. Chem. Soc. Chem. Commun. (1983):381

    Google Scholar 

  27. DeWaard, M.A., and J.G. van Nistleroy. 1980. An energy-dependent efflux mechanism for fenarimol in a wild-type strain and fenarimol-resistant mutant of Aspergillus nidulans. Pestic. Biochem. Biophys. 13:255–266.

    Article  CAS  Google Scholar 

  28. Duriatti, A., P. Bouvier-Nave, P. Benveniste, F. Schuber, L. Delprino, G. Balliano, and L. Cattel. 1985. In vitro inhibition of animal and higher plant 2,3-oxidosqualene-sterol cyclases by 2-aza-2,3-dihydrosqualene and derivatives, and by other ammonium-containing molecules. Biochem. Pharmacol. 34:2765–2777.

    Article  PubMed  CAS  Google Scholar 

  29. Endo, A., M. Kuroda, and K. Tanzawa. 1976. Competitive inhibition of 3-hydroxy3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 72:323–326.

    Article  PubMed  CAS  Google Scholar 

  30. Ross, H.G., L. Mascaro, M.D. Tsai, and R.W. Woodard. 1979. Stereochemistry of enzymatic transmethylation, p. 135–141. In E. Usdin, R.T. Borchardt, C.R. Creveling (ed.), Transmethylation: developments in neuroscience, vol. 5. Elsevier/North Holland, New York.

    Google Scholar 

  31. Fryberg, M., and A.C. Oehlschlager. 1976. Sterol biosynthesis in antibiotic sensitive and resistant Candida. Arch. Biochem. Biophys. 173:171–177.

    Article  PubMed  CAS  Google Scholar 

  32. Georgopoulos, A., G. Petranyi, H. Mieth, and J. Drews. 1981. In vitro activity of naftifine, a new antifungal agent. Antimicrob. Agents Chemother. 19:386–389.

    Article  PubMed  CAS  Google Scholar 

  33. Goodwin, T.W. 1973. Comparative biochemistry of sterols in eukaryotic microorganisms, p. 1–41. In J.A. Erwin (ed.), Lipids and biomembranes of eukaryotic microorganisms. Academic Press, New York.

    Google Scholar 

  34. Gordee, R.S., and T.F. Butler. 1973. A9145 a new adenine-containing antifungal antibiotic. II. Biological activity. J. Antibiot. 26:466–470.

    Article  PubMed  CAS  Google Scholar 

  35. Greenspan, M.D., J.B. Judkovitz, C.H.L. Lo, J.W. Chen, A.W. Alberts, V.M. Hunt, M.N. Chang, S.S. Yang, K.L. Thompson, Y.P. Chiang, J.C. Chabala, R.L. Monaghan, and R.L. Schwart. 1987. Inhibition of hydroxymethylglutaryl-coenzyme A synthase by L-659–699. Proc. Natl. Acad. Sci. USA 84:7688–7492.

    Article  Google Scholar 

  36. Hamilton-Miller, J.M.T. 1973. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol. Rev. 37:166–196.

    CAS  Google Scholar 

  37. Henry, M.J., and H.D. Sisler. 1979. Effects of miconazole and dodecylimidazole on sterol biosynthesis in Ustilago maydis. Antimicrob. Agents Chemother. 15:603–607.

    Article  PubMed  CAS  Google Scholar 

  38. Hitchcock, C.A., K. Barrett-Bee, and N.J. Russell. 1987. Inhibition of 14a-sterol demethylase activity in Candida albicans-Darlington does not correlate with resistance to azole. J. Med. Vet. Mycol. 25:329–333.

    Article  PubMed  CAS  Google Scholar 

  39. Hitchcock, C.A.,N.J. Russell, and K. Barrett-Bee. 1989. The lipid composition and permeability to the triazole antifungal antibiotic ICI 153,066 of serum grown mycelial cultures of C. albicans. J. Gen. Micro. 135:1949–1955.

    Google Scholar 

  40. Ikeura, R., S. Murakawa, and A. Endo. 1988. Growth inhibition of yeast by compactin (ML-236B) analogues. J. Antibiot. 41:1148–1150.

    Article  PubMed  CAS  Google Scholar 

  41. Kato, T., and Y. Kawase. 1976. Selective inhibition of the demethylation at C-14 in ergosterol biosynthesis by the fungicide Denmert. Agri. Biol. Chem. 40:2379–2388.

    Article  CAS  Google Scholar 

  42. Kerkanaar, A. 1987. The mode of action of dimethylmorpholines, p. 523–542. In R.A. Fromtling (ed.), Recent trends in the discovery, development and evaluation of antifungal agents. J.R. Prous Science, Barcelona.

    Google Scholar 

  43. Kerkenaar, A., and D. Barug. 1984. Fluorescence microscope studies of Ustilago maydis and Penicillium italicum after treatment with imazalil and fenpropimorph. Pestic. Sci. 15:199–205.

    Article  CAS  Google Scholar 

  44. Kerkenaar, A., M. Uchiyama, and G.G. Versluis. 1981. Specific effects of tridemorph on sterol biosynthesis in Ustilago maydis. Pestic. Biochem. Physiol. 16:97–104.

    Article  CAS  Google Scholar 

  45. Kuroda, M., Y. Hazama-Shimada, and A. Endo. 1977. Inhibition of sterol synthesis by citrinin in a cell-free system from rat liver and yeast. Biochim. Biophys. Acta. 486:254–259.

    Article  PubMed  CAS  Google Scholar 

  46. Lee, W.H., B.N., Lutsky, and G.S. Schroepfer. 1969. 5a cholest-8(14)-en-3β-ol, a possible intermediate in the biosynthesis of cholesterol. J. Biol. Chem. 244:5440–5448.

    PubMed  CAS  Google Scholar 

  47. Marriott, M.S. 1980. Inhibition of sterol biosynthesis in Candida albicans by imidazole containing antifungals. J. Gen. Micro. 117:265–275.

    Google Scholar 

  48. Mercer, E.I., P.K. Moms, and B.C. Baldwin. 1985. Differences in the inhibitory effects of N-(1-n-dodecyl)-heterocycles on the 2,3-oxidosqualene lanosterol-cyclase of rat liver and yeast. Comp. Biochem. Physiol. 80B:341–346.

    CAS  Google Scholar 

  49. Miller, W.L., and J.L. Gaylor. 1970. Investigation of the component reactions of oxidative sterol demethylation, oxidation of a 4a methyl to a 4a carboxylic-acid during cholesterol biosynthesis. J. Biol. Chem. 245:5369–5381.

    PubMed  CAS  Google Scholar 

  50. Monger, D.J., W.A. Lim, F.J. Kezdy, and J.H. Law. 1982. Compactin inhibits insect HMG-CoA reductase and juvenile hormone biosynthesis. Biochem. Biophys. Res. Commun. 105:1374–1380.

    Article  PubMed  CAS  Google Scholar 

  51. Morita, T., K. Iwata, and Y. Nozawa. 1989. Inhibitory effect of a new antimycotic agent, piritetrate, on ergosterol biosynthesis in pathogenic fungi. J. Med. Vet. Mycol. 27:17–25.

    Article  PubMed  CAS  Google Scholar 

  52. Morita, T., and Y. Nozawa. 1985. Effects of antifungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagrophytes: differential inhibitory sites of naphthiomate and miconazole. J. Invest. Dermatol. 85:434–437.

    Article  PubMed  CAS  Google Scholar 

  53. Nakamura, C.E., and R.H. Abeles. 1985. Mode of interaction of β-hydroxy-βmethylglutaryl coenzyme A reductase with strong binding inhibitors: compactin and related compounds. Biochemistry 24:1364–1376.

    Article  PubMed  CAS  Google Scholar 

  54. Nave, J.-F., H. d’Orchymont, J.-B. Ducep, F. Piriou, and M.J. Jung. 1985. Mechanism of the inhibition of cholesterol biosynthesis by 6-fluoromevalonate. Biochem. J. 227:247–254.

    PubMed  CAS  Google Scholar 

  55. Nes, W.R., B.C. Sekula, W.D. Nes, and J.H. Adler. 1978. The functional importance of structural features of ergosterol in yeast. J. Biol. Chem. 253:6218–6225.

    PubMed  CAS  Google Scholar 

  56. Nussbaumer, P., N.S. Ryder, and A. Stutz. 1991. Allylamine antimycotics: recent trends in structure-activity relationships and syntheses. Pestic. Sci., in press.

    Google Scholar 

  57. Odds, F. 1988, Candida and candidosis, 2nd ed. Bailliere Tindall, London.

    Google Scholar 

  58. Ohno, T., T. Kesado, J. Awaya, and S. Omura. 1974. Target of inhibition by the anti-lipogenic antibiotic cerulenin of sterol synthesis in yeast. Biochem. Biophys. Res. Comm. 57:1119–1124.

    Article  CAS  Google Scholar 

  59. Omura, S., H. Tomoda, H. Kumagai, M.D. Greenspan, J.B. Yodkovitz, J.S. Chen, A.W. Alberts, I. Martin, S. Mochales, R.L. Monaghan, J.C. Chabal, R.E. Schwartz, and A.A. Patchett. 1987. Potent inhibitory effect of antibiotic 1233A on cholesterol 434/Barrett-Bee and Ryder biosynthesis which specifically blocks 3-hydroxy-3-methylglutaryl coenzyme A synthase. J. Antibiot. 11:1356–1357.

    Article  Google Scholar 

  60. Onishi, J.C., G.K. Abruzzo, R.A. Fromtling, G.M. Garrity, J.A. Milligan, B.A. Pelak, W. Rozdilsky, and B. Weissberger. 1988. Mode of action of L-660,631 in Candida albicans. Ann. N.Y. Acad. Sci. 544:229.

    Article  Google Scholar 

  61. Onishi, J.C., G.K. Abruzzo, R.A. Fromtling, G.M. Garrity, J.A. Milligan, B.A. Pelak, W. Rozdilsky, and B. Weissberger. 1988. Mode of action of β-lactone 1233A in Candida albicans. Ann. N.Y. Acad. Sci. 544:230.

    Article  Google Scholar 

  62. Parks, L.W. 1958. S-Adenosylmethionine and ergosterol synthesis. J. Am. Chem. Soc. 80:2023–2024.

    Article  CAS  Google Scholar 

  63. Poulter, C.D. 1990. Isopentenyl diphosphate to squalene-enzymology and inhibition, p. 169–188. In P.J. Kuhn, A.P.J. Trinci, M.J. Jung, M.W. Goosey, and L.G. Copping (eds.), Biochemistry of cell walls and membranes of fungi. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  64. Reardon, J.E., and R.H. Abeles. 1987. Inhibition of cholesterol biosynthesis by fluorinated mevalonate analogues. Biochemistry 26:4717–4722.

    Article  PubMed  CAS  Google Scholar 

  65. Ryder, N.S. 1985. Specific inhibition of fungal sterol biosynthesis by SF 86–327, a new allylamine antimycotic agent. Antimicrob. Agents Chemother. 27:252–256.

    Article  PubMed  CAS  Google Scholar 

  66. Ryder, N.S. 1987. Squalene epoxidase as the target of antifungal allylamines. Pestic. Sci. 21:281–288.

    Article  CAS  Google Scholar 

  67. Ryder, N.S. 1988. Mode of action of allylamines, p. 151–167. In D. Berg and M. Plempel (eds.), Sterol biosynthesis inhibitors: pharmaceutical and agrochemical aspects. Ellis Horwood, Chichester, U.K.

    Google Scholar 

  68. Ryder, N.S. 1990. Inhibition of squalene epoxidase and sterol side-chain methylation of allylamines. Biochem. Soc. Trans. 18:45–46.

    PubMed  CAS  Google Scholar 

  69. Ryder, N.S. 1990. Squalene epoxidase-enzymology and inhibition, p. 189–203. In P.J. Kuhn, A.P.J. Trinci, M.J. Jung, M.W. Goosey, and L.G. Copping (eds.), Biochemistry of cell walls and membranes of fungi. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  70. Ryder, N.S., and M.C. Dupont. 1985. Inhibition of squalene epoxidase by allylamine antimycotic compounds: a comparative study of the fungal and mammalian enzymes. Biochem. J. 230:765–770.

    PubMed  CAS  Google Scholar 

  71. Ryder, N.S., M.C. Dupont, and I. Frank. 1986. Inhibition of fungal and mammalian sterol biosynthesis by 2-aza-2,3-dihydrosqualene. FEBS Lett. 204:239–242.

    Article  PubMed  CAS  Google Scholar 

  72. Ryder, N.S., I. Frank, and M.C. Dupont. 1986. Ergosterol biosynthesis inhibition by the thiocarbamate antifungel agents tolnaftate and tolciclate. Antimicrob. Agents Chemother. 29:858–860.

    Article  PubMed  CAS  Google Scholar 

  73. Ryder, N.S., and L.J. Goad. 1980. The effect of the 3-hydroxy-3-methylglutaryl CoA reductase inhibitor ML-236B on phytosterol synthesis in Acer pseudoplatanus tissue culture. Biochim. Biophys. Acta. 619:424–427.

    Article  PubMed  CAS  Google Scholar 

  74. Ryder, N.S., and H. Mieth. 1990. Allylamine antifungal drugs. Curr. Top. Med. Mycol., in press.

    Google Scholar 

  75. Ryder, N.S., G. Seidl, and P.F. Troke. 1984. Effect of the antimycotic drug naftifineon growth of and sterol biosynthesis in Candida albicans. Antimicrob. Agents Chemother. 25:483–487.

    Google Scholar 

  76. Ryley, J.F., R.G. Wilson, and K. Barrett-Bee. 1984. Azole resistance in Candida albicans. Sabouraudia 22:53–63.

    Article  PubMed  CAS  Google Scholar 

  77. Santen, R.J., H. Vanden Bossche, J. Symoens, J. Brugmans, and R. Decoster. 1983. Site of action of low-dose ketoconazole on androgen biosynthesis in men. J. Clin. Endocrinol. Metab. 57:732–736.

    Article  PubMed  CAS  Google Scholar 

  78. Sen, S.E., and G.D. Prestwich. 1989. Trisnorsqualene alcohol, a potent inhibitor of vertebrate squalene epoxidase. J. Am. Chem. Soc. 111:1508–1510.

    Article  CAS  Google Scholar 

  79. Sen, S.E. and G.D. Prestwich. 1989. Trisnorsqualene cyclopropylamine: a reversible, tight-binding inhibitor of squalene epoxidase. J. Am. Chem. Soc. 111:8761–8763.

    Article  CAS  Google Scholar 

  80. Sen, S.E., C. Wawrzenczyk, and G.D. Prestwich. 1990. Inhibition of vertebrate squalene epoxidase by extended and truncated analogues of trisnorsqualene alcohol. J. Med. Chem. 33:1698–1701.

    Article  PubMed  CAS  Google Scholar 

  81. Servouse, M., and F. Karst. 1986. Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem. J. 240:541–547.

    PubMed  CAS  Google Scholar 

  82. Sisler, H.D., R.C. Walsh, and B.N. Ziogas. 1983. Ergosterol biosynthesis a target for fungitoxic action, p. 6218–6225. In J. Miyamo and P.C. Kearney (ed.), Proceedings of the Fifth International Congress of Pesticide Chemistry, vol. 3. Pergamon Press, Elmsford.

    Google Scholar 

  83. Sobus, M.T., C.E. Holmlund, and N.F. Whittaker. 1977. Effects of the hypocholesterolemic agent trifluperidol on the sterol, steryl ester and fatty acid metabolism of S. cerevisiae. J. Bacteriol. 130:1310–1316.

    PubMed  CAS  Google Scholar 

  84. Steel, C.C., R.I. Baloch, E.I. Mercer, and B.C. Baldwin. 1989. The intracellular location and physiological effects of abnormal sterols in fungi grown in the presence of morpholine and functionally related fungicides. Pestic. Biochem. Physiol. 33:101111.

    Google Scholar 

  85. Stutz, A. 1988. Synthesis and structure-activity correlations within allylamine antimycotics. Ann. N.Y. Acad. Sci. 544:46–62.

    Article  PubMed  CAS  Google Scholar 

  86. Stutz, A., A. Georgopoulos, W. Granitzer, G. Petranyi, and D. Berney. 1986. Synthesis and structure-activity relationships of naftifine-related allylamine antimycotics. J. Med. Chem. 29:112–125.

    Article  PubMed  CAS  Google Scholar 

  87. Stutz, A., and G. Petranyi. 1984. Synthesis and antifungal activity of (E)-N-(6,6 dimethy1–2-hepten-4-ynyl)-N-methyl-l-naphthalene-methanimine (SF 86–327) and related allylamine derivatives with enhanced oral activity. J. Med. Chem. 27:1539–1543.

    Article  PubMed  CAS  Google Scholar 

  88. Sud. I.J., and D.S. Feingold. 1985. Effect of ketoconazole in combination with other inhibitors of sterol synthesis on fungal growth. Antimicrob. Agents. Chemother. 28:532–534.

    Article  Google Scholar 

  89. Tomoda, H., H. Kumagai, H. Tanaka, and S. Omura. 1987. F-244 specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A synthase. Biochim. Biophys. Acta. 922:351–356.

    Article  PubMed  CAS  Google Scholar 

  90. Trocha, P.J., and D.B. Sprinson. 1976. Location and regulation of early enzymes of sterol biosynthesis in yeast. Arch. Biochem. Biophys. 174:45–51.

    Article  PubMed  CAS  Google Scholar 

  91. Vanden Bossche, H. 1974. Biochemical effects of miconazole on fungi. 1. Effects on the uptake and/or utilisation of purines, pyrimidines, amino acids and glucose by Candida albicans. Biochem. Pharmacol. 26:887–899.

    Article  Google Scholar 

  92. Vanden Bossche, H., G. Willemsens, P. Marichal, W. Cools, and W. Lauwers. 1985. The molecular basis for the antifungal activation of N-substituted azole derivatives, p. 321–341. In A.P.J. Trinci and J.F. Ryley (ed.), Mode of action of antifungal agents. Cambridge University Press, Cambridge.

    Google Scholar 

  93. Walsh, R.C., and H.D. Sisler. 1982. A mutant of Ustilago maydis deficient in sterol carbon-14 demethylation characteristics and sensitivity to inhibitors of ergosterol biosynthesis. Pestic. Biochem. Physiol. 18:122–131.

    Article  CAS  Google Scholar 

  94. Warnock, D.W., G.M. Johnson, and M.D. Richardson. 1983. Modified response to ketoconazole of Candida albicans from a treatment failure. Lancet 1:642–643.

    Article  PubMed  CAS  Google Scholar 

  95. Yeagle, P.L., R.B. Martin, A.K. Lala, H.K. Lin, and K. Bloch. 1977. Differential effects of cholesterol and lanosterol on artificial membranes. Proc. Natl. Acad. Sci. USA 74:4924–4926.

    Article  PubMed  CAS  Google Scholar 

  96. Yoshida, Y. 1988. Cytochrome P450 of fungi: primary target for azole antifungal agents, p. 388–418. In M.R. McGinnis (ed.), Current topics in medical mycology, vol. 2. Springer Verlag, Berlin.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barrett-Bee, K., Ryder, N. (1992). Biochemical Aspects of Ergosterol Biosynthesis Inhibition. In: Sutcliffe, J.A., Georgopapadakou, N.H. (eds) Emerging Targets in Antibacterial and Antifungal Chemotherapy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3274-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3274-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6440-5

  • Online ISBN: 978-1-4615-3274-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics