Skip to main content

Viscosity index improvers and thickeners

  • Chapter
Chemistry and Technology of Lubricants

Abstract

Early in the history of the lubricants industry, the viscosity index (VI) was an important measure of quality, providing an indication of the potential of an oil for application over a wide temperature range. Pennsylvania grade oils (∼ 100 VI) were the standard against which all others were measured. Hydrogenation and solvent extraction were developed to upgrade poorer quality crudes, but the refinery technology of the 1930s had a practical VI ceiling of about 110 to 115.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alexander, D.L. (1989) Change in high-shear-rate viscosity of engine oils during use: a review. In Spearot, J.A. (ed.) (1989), pp. 60–73.

    Google Scholar 

  • Arlie, J.P., Denis, J. and Parc, G. (1975a) Viscosity index improvers 1. Mechanical and thermal stabilities of polymethacrylates and polyolefins. IP Paper 75-005, Inst. Petr., London.

    Google Scholar 

  • Arlie, J.P., Denis, J. and Parc, G. (1975b) Viscosity index improvers 2. Relations between the structure and viscosimetric properties of polymethacrylate solutions in lube oils. IP Paper 75-006, Inst. Petr., London.

    Google Scholar 

  • Arlie, J.P., Denis, J. and Parc, G. (1977) Comparative study of the shear stability of polymethacrylates and olefin copolymers. IP Paper 77-006, Inst. Petr., London.

    Google Scholar 

  • ASTM (1973) Shear stability of multigrade crankcase oil, ASTM Data Series Publication DS 49, ASTM, Philadelphia, PA.

    Google Scholar 

  • ASTM (1974) Shear stability of multigrade crankcase oils, ASTM Data Series Publication DS 49 S-1, ASTM, Philadelphia, PA.

    Google Scholar 

  • ASTM (1985) The relationship between high-temperature oil rheology and engine operation—a status report. ASTM DS 62, ASTM, Philadelphia, PA.

    Google Scholar 

  • Bartz, W.J. and Wiemann, W. (1977) Determination of the cold flow behavior of multigrade engine oils. SAE Paper 770630.

    Google Scholar 

  • BASF (1975) Hydrogenated polyolefins as viscosity index improvers. Ger. Offen. DE 2,358,764.

    Google Scholar 

  • BASF AG (1982) Hydrogenated styrene-butadiene copolymer VI improver for lubricating oils. Ger. Offen. DE 3,106,959.

    Google Scholar 

  • Bondi, A. (1951) Physical Chemistry of Lubricating Oils. Reinhold, New York, 48.

    Google Scholar 

  • Bueche, F. (1960) Mechanical degradation of high polymers. J. Appl. Pol. Sci. 4(10) 101–106.

    Article  Google Scholar 

  • Carlson, D.C. (1983) The effect of VI improvers and resultant base oil volatility on automotive oil economy with SAE 5W-40 oils. SAE Paper 830029.

    Google Scholar 

  • Cryvoff, S.A., Spearot, J.A. and Bates, T.W. (1990) Engine bearing oil film thickness measurement and oil rheology—an ASTM task force report. SAE Paper 902064.

    Google Scholar 

  • Dare-Edwards, M.P., Kempsell, S.P., Barnes, J.R., Craven, C.J. and Wayne, F.D. (1988) Nuclear magnetic resonance of lubricant-related systems. 6th International Colloquium, Industrial Lubricants—Properties, Application, Disposal, Vol. II, Bartz, W.J. (ed.), Technische Akademie Esslingen, Ostfieldern, 12.3-1 to 12.3-15.

    Google Scholar 

  • Dettman, L.P. and Marsden, K. (1981) Shear stability testing of polymers in automotive lubricants. CEC International Symposium on the Performance Evaluation of Automotive Fuels and Lubricants, Paper EL/4/4.

    Google Scholar 

  • Eckert, R.J.A. and Covey, D.F. (1988) Developments in the field of hydrogenated diene copolymers as viscosity index improvers. Lubr. Sci. 1(1) 65–80.

    Article  Google Scholar 

  • E. I. du Pont de Nemours and Co. (1956) Lubricating Oil Compositions Containing Polymeric Additives. US Patent 2,737,496.

    Google Scholar 

  • E. I. du Pont de Nemours and Co. (1974) Mineral Oil Composition. US Patent 3,790,480.

    Google Scholar 

  • Entreprise de Recherches et d’Activités Petrolières (1978) Novel Lubricating Compositions Containing Nitrogen Containing Hydrocarbon Backbone Polymeric Additives. US Patent 4,092,255.

    Google Scholar 

  • Exxon Research and Engineering Co. (1979a) Stabilized Imide Graft of Ethylene Copolymeric Additives for Lubricants. US Patent 4,137,185.

    Google Scholar 

  • Exxon Research and Engineering Co. (1979b) Polymeric Additives for Fuels and Lubricants. US Patent 4,144,181.

    Google Scholar 

  • Exxon Research and Engineering Co. (1985) Ethylene Copolymer Viscosity Index Improver-Dispersant Additive Useful in Oil Compositions. US Patent 4,517,104.

    Google Scholar 

  • Exxon Research and Engineering Co. (1986) Ethylene Copolymer Viscosity Index Improver-Dispersant Additive Useful in Oil Compositions. US Patent 4,632,769.

    Google Scholar 

  • Exxon Chemical Patents, Inc. (1988) Viscosity Index Improver-Dispersant Additive Useful in Oil Compositions. US Patent 4,780,228.

    Google Scholar 

  • Frame, E.A., Montemayor, A.F. and Owens, E.C. (1987) Low-Temperature Pumpability of U.S. Army Diesel Engine Oils. Report BFLRF No. 229, US Army Belvoir Research, Development and Engineering Center, Fort Belvoir, VA.

    Google Scholar 

  • Hercamp, R.D. (1983) Premature loss of oil consumption control in a heavy duty diesel engine. SAE Paper 831720.

    Google Scholar 

  • Hillman, D.E., Lindley, H.M., Paul, J.I. and Pickles, D. (1975) Application of gel permeation chromatography to the study of shear degradation of polymeric viscosity index improvers used in automotive engine oils. Br. Polym. J. 7 397–407.

    Article  Google Scholar 

  • Hillman, D.E., Morris, P.R., Paul, J.I. and Pickles, D. (1977) Comparison of the modes of degradation of viscosity index improvers in the Kurt Orbahn and FZG tests by gel permeation chromatography. Materials Quality Assurance Directorate Technical Paper No. 677, London.

    Google Scholar 

  • Huby, F. and Stambaugh, R.L. (1986) Package optimization for diesel performance. 5th International Colloquium, Additives for Lubricants and Operational Fluids, Vol. II, Bartz, W.J. (ed.) Technische Akademie Esslingen, Ostfieldern, 9.7-1 to 9.7-15.

    Google Scholar 

  • Hutton, J.F., Jones, B. and Bates, T.W. (1983) Effects of isotropic pressure on the high temperature high shear viscosity of motor oils. SAE Trans. 92 Paper 830030.

    Google Scholar 

  • Hutton, J.F., Jackson, K.P. and Williamson, B.P. (1984) The effects of lubricant rheology on the performance of journal bearings. ASLE Preprint No. 84-LC-1C-1.

    Google Scholar 

  • I.G. Farbenindustrie AG (1938a) Hydrocarbon Lubricating Oils. US Patent 2,106,232.

    Google Scholar 

  • I.G. Farbenindustrie AG (1938b) High Molecular Weight Iso-Olefine Polymers and Process of Producing the Same. US Patent 2,130,507.

    Google Scholar 

  • Johnson, R.S. (1984) A laboratory engine test study of motor oil flow properties in winter service. SAE Trans. Paper 841387.

    Google Scholar 

  • Jordan, E.F., Jr., Smith, S, Jr., Zabarsky, R.D., Austin, R. and Wrigley, A.N. (1978) Viscosity index. II. Correlation with rheological theories of data for blends containing n-octadecyl acrylate. J. Appl. Polym. Sci. 22 1529–1545.

    Article  Google Scholar 

  • Kapuscinski, M.M., Sen, A. and Rubin, I.D. (1989) Solution studies on OCP VI improvers. SAE Paper 892152.

    Google Scholar 

  • Kay, R.E. and O’Brien, J.A. (1974) New multigrade SE/CD lubricant. SAE Paper 740523.

    Google Scholar 

  • Klein, J. and Mueller, H.G. (1979) Decomposition and solution behavior of polymers (in German). Erdoel Kohle, Erdgas, Petrochem. 32(8) 394.

    Google Scholar 

  • Klein, J. and Mueller, H.G. (1981) Shear stability of viscosity index improvers (in German). Ber.-Dtsch. Ges. Mineraloelwiss. Kohlechem., 256, DGMK, Hamburg.

    Google Scholar 

  • Klein, J. and Mueller, H.G. (1982) Shear stability of viscosity index improvers (in German). Kohle Erdgas, Petrochem., 35(4) 187.

    Google Scholar 

  • Koller, R.D., Galluccio, R.A. and Stambaugh, R.L. (1983) Deposit control in the Caterpillar 1H2 engine test—A statistical approach to identifying engine oil component effects. SAE Paper 831723.

    Google Scholar 

  • Kopko, R.J. and Stambaugh, R.L. (1975) Effect of VI improver on the in-service viscosity of hydraulic fluids. SAE Paper 750693.

    Google Scholar 

  • Lane, G., Roberts, D.C. and Tims, J.M. (1977) Measurement of the viscosity of multigrade oils in a running engine. SAE Trans. 86 Paper 770379.

    Google Scholar 

  • Laukotka, E.M. (1989) Shear stability tests for polymer containing lubricating fluids. CEC 3rd International Symposium of Performance Evaluation for Automotive Fuels and Lubricants, Paper 3 LT.

    Google Scholar 

  • Lubrizol Corp. (1976) Lubricant Containing Nitrogen-Containing Ester. US Patent 3,702,300.

    Google Scholar 

  • Mark, H.F., Gaylord, N.G. and Bikales, N.M., eds. (1966) Encyclopedia of Polymer Science and Technology, Vol. 4. John Wiley & Sons, New York, pp. 661–672; 705-712.

    Google Scholar 

  • Marsden, K. (1988) Literature review of OCP viscosity modifiers. Lub. Sci. 1(3) 265–280.

    Article  Google Scholar 

  • May, C.J. and Habeeb, J.J. (1989) Lubricant low temperature pumpability studies—oil formulation and engine hardware effects. SAE Paper 890037.

    Google Scholar 

  • McGeehan, J.A. (1983) Effect of piston deposits, fuel sulfur, and lubricant viscosity on diesel engine oil consumption and cylinder bore polishing. SAE Trans. 92 Paper 831721.

    Google Scholar 

  • McGeehan, J.A., Rynbrandt, J.D. and Hansel, T.J. (1984) Effect of oil formulations in minimizing viscosity increase and sludge due to diesel engine soot. SAE Paper 841370.

    Google Scholar 

  • Mueller, H.G. (1978) Mechanism of action of viscosity index improvers. Tribol. Int. 11(3) 189–192.

    Article  Google Scholar 

  • Mueller, H.G. and Leidigkeit, G. (1979) Thermal and oxidative degradation of polymers in multiviscosity oils (in German). Schmiertech. Tribol. 26(6) 201–204.

    Google Scholar 

  • Neudoerfl, P. (1986) State of the art in the use of polymethacrylates in lubricating oils. 5th International Colloquium, Additives for Lubricants and Operational Fluids, Vol. 11, Bartz, W.J. (ed.) Technische Akademie Esslingen, Ostfieldern, 8.2-1 to 8.2-15.

    Google Scholar 

  • Neveu, C. and Huby, F. (1988) Solution properties of polymethacrylate VI improvers. Lubr. Sci. 1(1) 27–50.

    Article  Google Scholar 

  • Otto, M., Miller, F.L., Blackwood, A.J. and Davis, G.H.B. (1934) Motor oils having viscosity index of 120 predicted as definite need. Oil Gas J. 33(26) 98–106.

    Google Scholar 

  • Ovenall, D.W., Hastings, G.W. and Allen, P.E. (1958) The degradation of polymer molecules in solution under the influence of ultrasonic waves. Part I. Kinetic analysis J. Poly. Sci. 33 207–212.

    Article  Google Scholar 

  • Phillips Petroleum Co. (1971) Viscosity Index Improvers. US Patent 3,554,911.

    Google Scholar 

  • Rein, S.W., Randall, N.P., Marshall, H.T. and Lewis, B.J. (1977) A mathematical technique for comparing shear stability in bench tests and service. SAE Paper 770633.

    Google Scholar 

  • Roberts, D.C. (1990) Review of oil consumption aspects of engines. 7th International Colloquium, Automotive Lubrication, Bartz, W.J. (ed.) Technische Akademie Esslingen, Ostfildern, 13.2-1 to 13.2-15.

    Google Scholar 

  • Rohm and Haas Co. (1937a) Composition of Matter and Process. US Patent 2,091,627.

    Google Scholar 

  • Rohm and Haas Co. (1937b) Process for Preparing Esters and Products. US Patent 2,100,993.

    Google Scholar 

  • Rohm and Haas Co. (1970) Lubricating Oils and Fuels Containing Graft Copolymers. US Patent 3,506,574.

    Google Scholar 

  • Rohm and Haas Co. (1979) Polyolefin Graft Copolymers. US Patent 4,146,489.

    Google Scholar 

  • Rohm GmbH (1973) Graft Copolymeric Lubricating Oil Additives. US Patent 3,732,334.

    Google Scholar 

  • Rohm GmbH (1979) Lubricating Oil Additives. US Patent 4,149,984.

    Google Scholar 

  • Rohm GmbH (1981) Lubricating Oil Additives. US Patent 4,290,925.

    Google Scholar 

  • Rosenberg, R.C. (1975) The influence of polymer additives on journal bearing performance. SAE Trans. 84 Paper 750692.

    Google Scholar 

  • Rubin, I.D. (1987) Polymers make the grade. Chemtech 17(10) 620–623.

    Google Scholar 

  • Selby, T.W. (1958) The non-Newtonian characteristics of lubricating oils. Trans. ASLE 1 68–81.

    Article  Google Scholar 

  • Shell International Research (1985) Hydrogenated Modified Star-shaped Polymers. UK Patent Application GB 2,144,430 A.

    Google Scholar 

  • Shell Oil Co. (1960) Oil-Soluble Copolymers of Vinylpyridine for Use in Lubricating Oil. US Patent 2,957,854.

    Google Scholar 

  • Shell Oil Co. (1966) Lubricating Composition Containing Non-Ash Forming Additives. US Patent 3,249,545.

    Google Scholar 

  • Shell Oil Co. (1973) Lubricating Compositions. US Patent 3,772,196.

    Google Scholar 

  • Shell Oil Co. (1977) Lubricating Composition Containing Hydrogenated Butadiene-Isoprene Copolymers. US Patent 4,032,459.

    Google Scholar 

  • Shell Oil Co. (1978) Hydrogenated Star-Shaped Polymer. US Patent 4,116,917.

    Google Scholar 

  • Shell Oil Co. (1985) Process for the Preparation of Oil-Soluble Hydrogenated Modified Star-Shaped Polymers. US Patent 4,557,849.

    Google Scholar 

  • Shell Oil Co. (1988) Polymeric Viscosity Index Improver and Oil Composition Comprising the Same. US Patent 4,788,361.

    Google Scholar 

  • Smith, M.F., Jr., Tunkel, N., Bachman, H.E. and Fernandez, W.J. (1976) A new look at multigrade diesel engine oils. SAE Paper 760558.

    Google Scholar 

  • Société Nationale Elf Acquitaine (1979) Lubricating Oil Compositions Containing Copolymers of Olefins or of Olefins and Non-Conjugated Dienes with Unsaturated Derivatives of Cyclic Imides. US Patent 4,139,417.

    Google Scholar 

  • Spearot, J.A., ed. (1989) High-temperature, high-shear oil viscosity—measurement and relationship to engine operation, AST M STP 1068, ASTM, Philadelphia, PA.

    Google Scholar 

  • Spiess, G.T., Johnston, J.E. and Ver Strate, G. (1986) Ethylene propylene copolymers as lube oil viscosity modifiers. 5th International Colloquium, Additives for Lubricants and Operational Fluids, Vol. 11, Bartz, W.J. (ed.) Technische Akademie Esslingen, Ostfieldern, 8.10-1 to 8.10-11.

    Google Scholar 

  • Stambaugh, R.L. (1984) Low temperature pumpability of engine oils. SAE Trans. Paper 841388.

    Google Scholar 

  • Stambaugh, R.L. and Kopko, RJ. (1973) Behavior of non-Newtonian lubricants in high shear rate applications. SAE Trans. 82 Paper 730487.

    Google Scholar 

  • Stambaugh, R.L. and O’Mara, J.H. (1982) Low temperature flow properties of engine oils. SAE Trans. 91 Paper 820509.

    Google Scholar 

  • Stambaugh, R.L., Kopko, R.J. and Franklin, T.M. (1972) Effect of unleaded fuel and exhaust gas recirculation on sludge and varnish formation. SAE Trans. 81 Paper 720944.

    Google Scholar 

  • Stambaugh, R.L., Kopko, R.J. and Roland, T.F. (1990a) Hydraulic pump performance—a basis for fluid viscosity classification. SAE Paper 901633.

    Google Scholar 

  • Stambaugh, R.L., Machleder, W.H. and Kopko, RJ. (1990b) Heavy-duty diesel engine oil pumpability at low temperature—a study of key variables. Proceedings of the Japan International Tribology Conference, Nagoya, Japan, JSLE, in press.

    Google Scholar 

  • Standard Oil Co. (1975) Oil-Soluble Lubricant Bi-Functional Additives from Mannich Condensation Products of Oxidized Olefin Copolymers, Amines and Aldehydes. US Patent 3,872,019.

    Google Scholar 

  • Stewart, R.M. and Selby, T.W. (1977) The relationship between oil viscosity and engine performance—a literature search. SAE Trans. 86 Paper 770372.

    Google Scholar 

  • Talbot, A.F., Wright, W.A. and Morris, H.L (1973) A bench scale test for shear stability of multigrade engine oils. SAE Paper 730485.

    Google Scholar 

  • Tamai, T., Toshikazu, Y. and Mogi, M. (1977) Flow activation quantities of VI-improver-blended mineral lubricating oils. Bull. Jpn. Pet. Inst. 19(2) 131–134.

    Article  Google Scholar 

  • Texaco Inc. (1977) Multifunctional Tetrapolymer Lube Oil Additive. US Patent 4,021,357.

    Google Scholar 

  • Texaco Inc. (1988) Diesel Lubricating Oil Consumption Control Additives. European Patent 0 302 239.

    Google Scholar 

  • Van Horne, W.L. (1949) Polymethacrylates as viscosity index improvers and pour point depressants. Ind. Eng. Chem. 41(5) 952–959.

    Article  Google Scholar 

  • Ver Strate, G. and Struglinski, M.J. (1989) Polymers as lubricating oil viscosity modifiers. Polym. Mater. Sci. Eng. 61 252–258.

    Google Scholar 

  • von Petery, C., Kruse, H. and Bartz, W.J. (1978) Influence of the viscosity of polymer containing engine oils on the startability of engines. SAE Paper 780370.

    Google Scholar 

  • Weast, R.C., ed. (1989) CRC Handbook of Chemistry and Physics, 70th Edition. CRC Press, Boca Raton, FL, F-206-207.

    Google Scholar 

  • Wilson, T.C. (1970) Oil Mist Lubrication Process and Novel Lubricating Oil Composition for Use Therein. US Patent 3,510,425.

    Google Scholar 

  • Wright, B. and duParquet, J.P.R. (1983) Degradation of polymers in multigrade lubricants by mechanical shear. Polym. Degrad. Stab. 5 425–447.

    Article  Google Scholar 

  • Wunderlich, W. and Jost, H. (1978) Polymer stability in engines. SAE Paper 780372.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stambaugh, R.L. (1992). Viscosity index improvers and thickeners. In: Mortier, R.M., Orszulik, S.T. (eds) Chemistry and Technology of Lubricants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3272-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3272-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6439-9

  • Online ISBN: 978-1-4615-3272-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics