Thermal ionization mass spectrometry

  • P. J. Potts


Thermal ionization mass spectrometry is a technique which has been chiefly developed for the analysis of geological samples. The technique is used extensively for the isotope ratio measurements required for Rb—Sr, Nd—Sm and Pb—Th—U geochronology studies as well as the determination of rare-earth elements, and, less frequently, other selected elements by isotope dilution analysis.


Isotope Dilution Mass Peak Thermal Ionization Mass Spectrometry Isotope Dilution Mass Spectrometry Isotope Ratio Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 17

  1. Allegre, C.J. and F. Albarede (1974) 238U/206Pb-235U/207Pb232Th/208Pb zircon geochronology in alpine and non-alpine environments. Contrib. Mineral. Petrol 43 163–194.CrossRefGoogle Scholar
  2. Arden, J.W. (1983a) Electrochemical separation and isotopic determination of thallium at the nanogram level by surface ionisation mass spectrometry. Anal. Chim. Acta 148 211–223.CrossRefGoogle Scholar
  3. Arden, J.W. (1983b) Distribution of lead and thallium in the matrix of the Allende meteorite and the extent of terrestrial lead contamination in chondrites. Earth Planet. Sci. Lett 62 395–406.CrossRefGoogle Scholar
  4. Arden, J.W. and N.H. Gale (1974) New electrochemical technique for the separation of lead at trace levels from natural silicates. Anal. Chem 46 2–9.CrossRefGoogle Scholar
  5. Arth, J.G., F. Barker and T.W. Stern (1980) Geochronology of Archean gneisses in the Lake Helen area, south western Big Horn mountains, Wyoming. Precambrian Res. 11 11–22.CrossRefGoogle Scholar
  6. Birck, J.L. and C.J. Allegre (1973) 87Rb/87Sr systematics of Muntsche Tundra mafic pluton (Kola Peninsula, USSR). Earth Planet. Sci. Lett 20 266–274.CrossRefGoogle Scholar
  7. Boelrijk, N.A.I.M. (1968) A general formula for double isotope dilution analysis. Chem. Geol 3 323–325.CrossRefGoogle Scholar
  8. Cameron, A.E., D.H. Smith and R.L. Walker (1969) Mass spectrometry of nanogram-size samples of lead. Anal. Chem 41 525–526.CrossRefGoogle Scholar
  9. Catanzaro, E.J. (1967) Absolute isotopic abundance ratios of three common lead reference samples. Earth Planet. Sci. Lett 3 343–346.CrossRefGoogle Scholar
  10. Catanzaro, E.J., T.J. Murphy, W.R. Shields and E.L. Garner (1968) Absolute isotopic abundance ratios of common, equal-atom and radiogenic lead standards. J. Res. Natl. Bur. Stand A72 261–267.Google Scholar
  11. Colby, B.N., A.E. Rosecrance and M.E. Colby (1981) Measurement parameter selection of quantitative isotope dilution gas chromatography/mass spectrometry. Anal. Chem 53 1907–1911.CrossRefGoogle Scholar
  12. de Laeter, J.R., I.D. Abercrombie and R. Date (1969) Mass spectrometric isotope dilution analysis of barium in standard rocks. Earth Planet. Sci. Lett 7 64–66.CrossRefGoogle Scholar
  13. de Laeter, J.R. and D.J. Hosie (1977) Mass spectrometric isotope dilution analysis of barium in geochemical reference samples. Geostand. Newslett 1 143–145.CrossRefGoogle Scholar
  14. de Laeter, J.R. and N. Mermelengas (1978) Mass spectrometric isotope dilution determination of palladium in geochemical reference samples. Geostand. Newslett 2 9–11.CrossRefGoogle Scholar
  15. DePaolo, D.J. and G.J. Wasserburg (1976) Nd isotopic variations and petrogenetic models. Geophys. Res. Lett 3 249–252.CrossRefGoogle Scholar
  16. Faure, G. (1977) Principles of Isotope Geology John Wiley and Sons, New York.Google Scholar
  17. Gale, N.H., J.W. Arden and R. Hutchison (1975) The chronology of the Nakhla achondritic meteorite. Earth Planet. Sci. Lett 26 195–206.CrossRefGoogle Scholar
  18. Gancarz, A.J. and G.J. Wasserburg (1977) Initial Pb of the Amitsoq gneiss, West Greenland and implications for the age of the Earth. Geochim. Cosmochim. Acta 41 1283–1301.CrossRefGoogle Scholar
  19. Gast, P.W. (1962) The isotopic composition of strontium and the age of stone meteorites, J Geochim. Cosmochim. Acta 26 927.CrossRefGoogle Scholar
  20. Hawkesworth, C.J. and P.W.C. van Calsteren (1983). Radiogenic isotopes—some geological applications. In: P. Henderson (ed.), Rare Earth Element Geochemistry (Developments in Geochemistry, 2). Elsevier, Amsterdam, 375–421.Google Scholar
  21. Hawkesworth, C.J., M.J. Norry, J.C. Roddick, P.E. Baker, P.W. Francis and R.S. Thorpe (1979)143Nd/,144Nd, 87Sr/86Sr and incompatible element variations in calc-alkaline andesites and plateau lavas from South America. Earth Planet. Sci. Lett 42 45–57.CrossRefGoogle Scholar
  22. Heumann, K.G. (1982) Isotopic analysis of inorganic and organic substances by mass spectrometry. Int. J. Mass Spectrom. Ion Phys 45 87–110.Google Scholar
  23. Hooker, P.J., R.K. O’Nions and R.J. Pankhurst (1975) Determination of rare earth elements in USGS standard rocks by mixed solvent ion exchange and mass spectrometric isotope dilution. Chem. Geol 16 189–196.CrossRefGoogle Scholar
  24. Korkisch, J. and G. Arrhenius (1964) Separation of uranium, thorium and the rare earth elements by anion exchange. Anal. Chem 36 850–854.CrossRefGoogle Scholar
  25. Krogh, T.E. (1973) A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37 485–494.CrossRefGoogle Scholar
  26. Krogh, T.E. (1982a) Improved accuracy of U-Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique. Geochim. Cosmochim. Acta 46 631–635.CrossRefGoogle Scholar
  27. Krogh, T.E. (1982b) Improved accuracy of U-Pb zircon ages by creation of more concordant systems using an air abrasion technique. Geochim. Cosmochim. Acta 46 637–649.CrossRefGoogle Scholar
  28. Krogh, T.E. and G.L. Davis (1975) The production and preparation of 205Pb for use as a tracer for isotope dilution analysis. Carnegie Institute Yearbook 74 416–417.Google Scholar
  29. Lancelot, J.R., A.M. Bouillier, H. Maluski and J. Ducrot (1983) Deformation and related radiochronology in a Late Pan-African myonitic shear zone, Adrar des Iforas (Mali). Contrib. Mineral. Petrol 82 312–326.CrossRefGoogle Scholar
  30. Loss, R.D., K.J.R. Rosman and J.R. de Laeter (1983) Measurement of Ag, Te, Pd in geochemical reference materials by mass spectrometric isotope dilution analysis. Talanta 30 831–835.CrossRefGoogle Scholar
  31. Loss, R.D., K.J.R. Rosman and J.R. de Laeter (1983) Ag, Te, Pd in 17 geochemical reference materials by mass spectrometric isotope dilution analysis. Geostand. Newslett 7 321–324.CrossRefGoogle Scholar
  32. Loss, R.D., K.J.R. Rosman and J.R. de Laeter (1984) Mass spectrometric isotope dilution analysis of palladium, silver, cadmium and tellurium in carbonaceous chondrites. Geochim. Cosmochim. Acta 48 1677–1681.CrossRefGoogle Scholar
  33. Lugmair, G.W. and K. Marti (1978) Lunar initial 143Nd/144Nd differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett 39 349–357.CrossRefGoogle Scholar
  34. Manhes, G., C.J. Allegre and A. Provost (1984) U-Th-Pb systematics of the eucrite “Juvinas”: precise age determination and evidence for exotic lead. Geochim. Cosmochim. Acta 48 2247–2264.CrossRefGoogle Scholar
  35. Manhes, G., J.F. Minster and C.J. Allegre (1978) Comparative uranium-thorium-lead and rubidium-strontium study of the Saint Severin amphoterite: consequences of early solar system chronology. Earth Planet. Sci. Lett 39 14–24.CrossRefGoogle Scholar
  36. Masuda, A. (1968) Geochemistry of lanthanides in basalts of central Japan. Earth Planet. Sci. Lett 4 284–292.CrossRefGoogle Scholar
  37. Masuda, A., N. Nakamura and T. Tanaka (1973) Five structures of mutually normalised rare earth patterns of chondrites. Geochim. Cosmochim. Acta 37 239–248.CrossRefGoogle Scholar
  38. McCulloch, M.T. and B.W. Chappell (1982) Nd isotopic characteristics of S- and I-type granites. Earth Planet. Sci. Lett 58 5164.CrossRefGoogle Scholar
  39. Mermelengas, N., J.R. de Laeter and K.J.R. Rosman (1979) New data on the abundance of palladium in meteorites. Geochim. Cosmochim Acta 43 747–753.CrossRefGoogle Scholar
  40. Minster, J.F. and C.J. Allegre (1976) 87Rb-87Sr history of the Norton County enstatite achondrite. Earth Planet. Sci. Lett 32 191–198.CrossRefGoogle Scholar
  41. Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta 38 757–775.CrossRefGoogle Scholar
  42. Nakamura, N. and A. Masuda (1973) Chondrites with peculiar rare earth patterns. Earth Planet. Sci. Lett 19 429–437.CrossRefGoogle Scholar
  43. Nier, A.O. (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Phys. Rev 77 789–793.CrossRefGoogle Scholar
  44. Nunes, P.D. and P.C. Thurston (1980) Two hundred and twenty million years of Archean evolution: a zircon U-Pb age stratigraphic study of the Uchi-Confederation Lakes greenstone belt, northwestern Ontario. Can. J. Earth Sci 17 710–721.CrossRefGoogle Scholar
  45. O’Nions, R.K., P.J. Hamilton and N.M. Evensen (1977) Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth Planet. Sci. Lett 34 13–22.CrossRefGoogle Scholar
  46. O’Nions, R.K., S.R. Carter, N.M. Evensen and P.J. Hamilton (1979) Geochemical and cosmochemical applications of Nd isotope analysis. Ann. Rev. Earth Planet. Sci 7 11–38.CrossRefGoogle Scholar
  47. Oversby, V.M. (1975) Lead isotopic systematics and ages of Archaean intrusives in Kalgoorlie-Norseman area, Western Australia. Geochim. Cosmochim. Acta 39 1107–1125.CrossRefGoogle Scholar
  48. Pankhurst, R.J. and R.K. O’Nions (1973) Determination of Rb/Sr and 87Sr/86Sr ratios of some standard rocks and evaluation of x-ray fluorescence spectrometry in Rb-Sr geochemistry. Chem. Geol 12 127–136.CrossRefGoogle Scholar
  49. Papanastassiou, D.A. and G.J. Wasserburg (1969) Initial strontium isotopic abundances and the resolution of small time differences in the formation of planetary objects. Earth Planet. Sci. Lett 5 361–376.CrossRefGoogle Scholar
  50. Richard, P., N. Shimizu and C.J. Allegre (1976) 143Nd/’46Nd, a natural tracer: an application to oceanic basalts. Earth Planet. Sci. Lett 31 269–278.CrossRefGoogle Scholar
  51. Sanz, H.G. and G.J. Wasserburg (1969) Determination of an internal 87Rb/87Sr isochron for the Olivenza chondrite. Earth Planet. Sci. Lett 6,335–345.CrossRefGoogle Scholar
  52. Schnetzler, C.C., H.H. Thomas and J.A. Philpotts (1967) Determination of rare earth elements in rocks and minerals by mass spectrometric stable isotope dilution technique. Anal. Chem 39 1888–1890.CrossRefGoogle Scholar
  53. Schnetzler, C.C., H.H. Thomas and J.A. Philpots (1967) The determination of barium in G-1 and W-1 by isotope dilution. Geochim. Cosmochim. Acta 31 95–96.CrossRefGoogle Scholar
  54. Schuhmann, S. and J.A. Philpotts (1979) Mass spectrometric stable isotope dilution analyses for lanthanides in geochemical materials. In: K.A. Gschneider and L. Eyring (eds.), Handbook on the Physical Chemistry of Rare Earths Elsevier/North Holland Publishing, Amsterdam, 4 471–481.Google Scholar
  55. Steiger, R.H. and E. Jager (1977) Subcommission of geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett 36 359–362.CrossRefGoogle Scholar
  56. Tera, F. and G.J. Wasserburg (1972) U-Th-Pb systematics in lunar highland samples from the Lunar 20 and Apollo 16 missions. Earth Planet. Sci. Lett 17 36–51.CrossRefGoogle Scholar
  57. Tera, F. and G.J. Wasserburg (1975) Precise isotopic analysis of lead in picomole and subpicomole quantities. Anal. Chem 47 2214–2220.CrossRefGoogle Scholar
  58. Thirlwall, M.F. (1982) A triple filament method for rapid and precise analysis of rare earth elements by isotope dilution. Chem. Geol 35 155–166.CrossRefGoogle Scholar
  59. Tilton, G.R. (1973) Isotopic lead ages of chondritic meteorites. Earth Planet. Sei. Lett 19 321–329.CrossRefGoogle Scholar
  60. Verma, S.P. (1981) Mass spectrometric isotope dilution determination of K, Rb, Cs, Ba and Sr in five geochemical reference samples. Geostand. Newslett 5 129–131.CrossRefGoogle Scholar
  61. Wasserburg, G.J., S.B. Jacobsen, D.J. DePaolo, M.T. McCulloch and T. Wen (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 45 2311–2323.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • P. J. Potts
    • 1
  1. 1.The Open UniversityMilton KeynesUK

Personalised recommendations