Advertisement

Controlled Flux Growth of Complex Oxide Single Crystals

  • G. A. Emel’chenko
  • V. M. Masalov
  • V. A. Tatarchenko
Part of the Poct Kphctannob, Rost Kristallov, Growth of Crystals book series (GROC, volume 18)

Abstract

Crystallization from fluxes was developed in general to grow complex oxide single crystals [1, 2, 3, 4]. Many synthetic single crystals of ferroelectrics, ferrites, laser materials [1, 2, 3], and, starting in 1987, the rediscovered high-temperature superconductors [5] are prepared by crystallization from fluxes. Spontaneous crystallization is the most widely used method at present. This is due to its use as the first step in searching for new crystals of complex multicomponent systems, incongruently-melting compounds, and high-melting materials as well as its technical simplicity [4].

Keywords

Rotation Parameter Temperature Oscillation Yttrium Iron Garnet Single Crystal Growth Primary Crystallization Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Laudise, “Precipitation from molten salt solutions, ” in: Art and Science of Growing Crystals, Wiley, New York (1963), pp. 112–118.Google Scholar
  2. 2.
    B. M. Wanklyn, “Practical aspects of flux growth by spontaneous nucleation,” in: Crystal Growth, Vol. 1, Pergamon Press, Oxford (1974), pp. 93–262.Google Scholar
  3. 3.
    D. Elwell and H. J. Scheel, Crystal Growth from Hit-Temperature Solutions, Academic Press, London, etc. (1975).Google Scholar
  4. 4.
    V. A. Timofeeva, Growth of Crystals from Fluxes [in Russian], Nauka, Moscow (1978).Google Scholar
  5. 5.
    H. Hasegawa, U. Kawabe, T. Aita, and T. Ishiba, “Single crystal growth of layered perovskite metal oxides,” Jpn. J. Appl. Phys., 26, No. 5, L673 (1987).CrossRefGoogle Scholar
  6. 6.
    J. W. Nielsen, “Improved method for the growth of yttrium-iron and yttrium—gallium garnets,” J. Appl. Phys., 31, 518–525 (1960).CrossRefGoogle Scholar
  7. 7.
    A. B. Chase and J. A. Osmer, “Localized cooling in flux crystal growth,” J. Am. Ceram. Soc., 50, No. 6, 325 (1967).CrossRefGoogle Scholar
  8. 8.
    L. I. Averin, B. I. Birman, O. M. Konovalov, and T. R. Mnatsakanova, “Growth of single crystals of iron-yttrium garnet by spontaneous crystallization with a fixed amount of crystallization centers,” in: Single Crystals and Technology, Vol. 1 [in Russian], All-Union Scientific Research Institute of Single Crystals, Khar’kov (1970), pp. 3–11.Google Scholar
  9. 9.
    W. Tolksdorf, “Growth of yttrium iron garnet single crystals,” J. Cryst Growth, 3/4, 463–466 (1968).CrossRefGoogle Scholar
  10. 10.
    H. J. Scheel and F. O. Schulz-Dubois, “Flux growth of large crystals by accelerated crucible rotation technique,” J. Cryst. Growth, 8, 304–307 (1971).CrossRefGoogle Scholar
  11. 11.
    R. A. Laudise, R. C. Linares, and E. F. Dearborn, “Growth of yttrium iron garnet on seed from molten salt solution,” J. Appl. Phys., 35, Suppl. 3, 1362–1363 (1962).CrossRefGoogle Scholar
  12. 12.
    R. C. Linares, A. A. Ballman, and L. G. Van Uitert, “Growth of beryl single crystals for microwave Appl.ication,” J. Appl. Phys., 33, No. 11, 3209–3210 (1962).CrossRefGoogle Scholar
  13. 13.
    R. C. Linares, “Growth of single crystal garnets by a modified pulling technique,” J. Appl. Phys., 35, No. 2, 433–434 (1964).CrossRefGoogle Scholar
  14. 14.
    V. A. Timofeeva and I. Kvapil, “On the solubility and crystallization of Y3A15O12 from PbO-B2O3 and PbO—B2O3—PbF2 fluxes,” Kristallograftya, 11, No. 2, 289–294 (1966).Google Scholar
  15. 15.
    M. Kestigian, “Yttrium—iron garnet single crystal growth by the combined Czochralski—molten salt solvent technique,” J. Am. Ceram. Soc., 50, 65–66 (1967).CrossRefGoogle Scholar
  16. 16.
    V. I. Voronkova, V. K. Yanovskii, and V. A. Koptsik, “Growth of single crystals of corundum from tungstate fluxes,” Izv. Akad. Nauk SSSR,Neorg Mater., 4, No. 10, 1727–1731 (1968).Google Scholar
  17. 17.
    G. A. Bennet, “Seeded growth of garnet from molten salts,” J. Cryst Growth, 3, No. 4, 458–462 (1968).CrossRefGoogle Scholar
  18. 18.
    L. N. Bezmatemykh, G. I. Shvartsman, D. V. Tsynchik, et al., “Study of YIG single-crystal growth conditions during growth from high-temperature fluxes on seeds,” Izv. Akad Nauk SSSR Ser. Fiz, 34, No. 6, 1246–1249 (1970).Google Scholar
  19. 19.
    O. M. Konovalov, E. N. Sablin, and V. I. Salo, “Growth of YIG single crystals from a flux on a seed,” in: Proceedings of a Conference on Electronics Technology [in Russian], Central Scientific Research Institute of Electronics, Moscow (1970), No. 9(25), pp. 154–155.Google Scholar
  20. 20.
    S. H. Smith and D. Elwell, “Growth of nickel ferrite crystals from barium borate by a pulling method,” J. Cryst Growth, 3/4, 471–474 (1968).CrossRefGoogle Scholar
  21. 21.
    P. V. Klevtsov, L. P. Kozeeva, and A. A. Pavlyuk, “Polymorphism and crystallization of potassium-rare earth molybdates KLn(MoO4)2 (Ln = La, Ce, Pr, Nd),” Kristallografiya, 20, No. 6, 1216–1220 (1975).Google Scholar
  22. 22.
    P. V. Klevtsov and L. P. Kozeeva, “Synthesis and polymorphism of crystals of binary lithium tungstates of rare earths and yttrium, Kristallografiya, 15, No. 1, 57–61 (1970).Google Scholar
  23. 23.
    P. V. Klevtsov and L. P. Kozeeva, “Synthesis, x-ray, and thermographie study of potassium-rare earth tungstates KLn(WO4), Ln = RE,” Doki Akad Nauk SSSR, 185, No. 3, 571–573 (1969).Google Scholar
  24. 24.
    W. Tolksdorf and F. Welz, “Improved crucible molds for forming yttrium-iron garnet single crystals from melt solutions,” J. Cryst. Growth, 35, No. 3, 285–296 (1976).CrossRefGoogle Scholar
  25. 25.
    W. Tolksdorf and F. Welz, “Growth of gallium-substituted yttrium iron garnet single crystals from a molten solution at constant temperature,” J. Cryst. Growth, 20, No. 1, 47–52 (1973).CrossRefGoogle Scholar
  26. 26.
    W. Tolksdorf and F. Welz, “Crystal growth of magnetic garnets from high-temperature solution,” in: Crystals for Magnetic Appl.ication, Vol. 1, Springer, Berlin, etc. (1978), pp. 3–52.Google Scholar
  27. 27.
    G. A. Emel’chenko and V. T. Ushakovskii, “Growth of Y3Fe5O12 single crystals from a flux on a seed,” Izv. Akad Nauk SSSR, Neorg. Mater., 18, No. 2, 334–336 (1982).Google Scholar
  28. 28.
    G. A. Emel’chenko, V. V. Masalova, G. F. Zakharyugina, and V. V. Petrov, “Growth of homogeneous single crystals of solid solutions based on YIG from a flux,” Izv. Akad Nauk SSSR,Neorg. Mater., 23, No. 5, 837–840 (1987).Google Scholar
  29. 29.
    V. M. Masalov, G. A. Emel’chenko, and V. A. Tatarchenko, “The crystallization of substituted CBVG and CVG in a lead oxide melt,” Izv. Akad Nauk SSSR, Neorg. Mater., 25, No. 3, 451–457 (1989).Google Scholar
  30. 30.
    G. A. Emel’chenko and V. V. Masalova, “Growth of Ga-substituted YIG single crystals from a flux in a temperature gradient field with accelerated crucible rotation,” in: Abstracts of Papers of the Third All-Union Seminar on Hydromechanics and Thermal Mass Exchange in Zero Gravity [in Russian], Chemogolovka (1984), pp. 213–215.Google Scholar
  31. 31.
    G. A. Emel’chenko and V. V. Masalova, “Growth of Y3Fe5-xGaxO12 single crystals by the temperature gradient method on a seed and study of the influence of temperature oscillations in solution on their homogeneity,” in: Abstracts of Papers of the Sixth All-Union Conf on Crystal Growth, Vol. 2 [in Russian], Tsakhkadzor, Armenian SSR (1985), pp. 122–123.Google Scholar
  32. 32.
    G. A. Emel’chenko, V. Nikolov, V. M. Masalov, and V. A. Tatarchenko, “Physical modelling of hydrodynamics during growth of crystals from high-temperature solutions with accelerated—decelerated crucible rotation,” in: Abstracts of Papers of the Second All-Union Conf. on Modelling Crystal Growth [in Russian], Riga (1987), pp. 378–380.Google Scholar
  33. 33.
    V. M. Masalov and G. A. Emel’chenko, “Crystallization of substituted CBVG and CVG single crystals in a lead oxide flux,” in: Abstracts of Papers of the Seventh All-Union Conf. on Crystal Growth, Vol. 2 [in Russian], Moscow (1988), pp. 227–229.Google Scholar
  34. 34.
    G. F. Zakharyugina, G. A. Emel’chenko, V. V. Maslova, et al., “Use of constant gradient method for growing CBVG single crystals from a flux,” Elektron. Sverkhvysok Chastot, No. 1/2, 247–248 (1987).Google Scholar
  35. 35.
    G. A. Emel’chenko, N. V. Abrosimov, V. M. Masalov, et al., “Growth of single crystals of high-temperature superconductors in the systems Ln2O3 —BaO(SrO)—CuO (Ln = RE and Y) and their characteristics,” in: Abstracts of Papers of the Seventh All-Union Conf. on Crystal Growth, Vol. 2 [in Russian], Moscow (1988), pp. 400–402.Google Scholar
  36. 36.
    V. A. Tatarchenko, G. A. Emelchenko, N. V. Abrosimov, et al., “Single crystal growth of high temperature superconductors and investigation of their physical properties,” Int. J. Mod Phys. B, 3, No. 1, 71–83 (1989).Google Scholar
  37. 37.
    S. Takekawa and N. Iyi, “Single crystal preparation of Ba2YCu3Ox from non-stoichiometric melts,” Jpn. J. Appl. Phys., 26, No. 5, L851–L853 (1987).CrossRefGoogle Scholar
  38. 38.
    K. Oka and H. Unoki, “Phase diagram of the La2O3—CuO system and crystal growth of (LaBa)2CuO4,” Jpn. J. Appl. Phys., 26, No. 10, L1590–L1592 (1987).CrossRefGoogle Scholar
  39. 39.
    G. A. Emel’chenko, M. V. Kartsovnik, P. A. Kononovich, et al., “Bulk nature of the superconductivity of YBa2Cu3Ox single crystals„” Pisma Zh. Eksp. Teor. Fiz, 46, No. 4, 162–164 (1987).Google Scholar
  40. 40.
    A. B. Bykov, L. N. Dem’yanets, N. D. Zakharov, et al., “Superconductivity and crystal structure of (La1-xSrx)CuO4-y single crystal,” Pis’ma Zh. Eksp. Teor. Fiz, 46, Suppl., 19–22 (1987).Google Scholar
  41. 41.
    L. F. Schneemeyer, J. V. Waszczak, T. Siegrist, et al., “Superconductivity in YBa2Cu3O7 single crystals,” Nature, 328, 601–605 (1987).CrossRefGoogle Scholar
  42. 42.
    R. C. Linares, “Substitution of aluminum and gallium in single crystal yttrium iron garnets,” J. Am. Ceram. Soc., 48, No. 2, 68–80 (1965).CrossRefGoogle Scholar
  43. 43.
    D. Jonker, “Investigation of phase diagram of the system PbO—B2O3—Fe2O3—Y2O3 for growth of single crystals of Y2Fe5O12,” J. CrysL Growth, 28, No. 2, 231–239 (1975).CrossRefGoogle Scholar
  44. 44.
    Inventor’s Certificate No. 1,345,681 (USSR), “Apparatus for growing single crystals of solid solutions,” ByulL Izobret, No. 38 (1987).Google Scholar
  45. 45.
    V. Nikolov, K. Iliev, and P. Peshev, “Relationship between the hydrodynamics in the melt and the shape of the crystal/melt interface during Czochralski growth of oxide single crystals,” J. CrysL Growth, 89, No. 2/3, 313–330 (1988).Google Scholar
  46. 46.
    C. D. Brandle, “Simulation of fluid flow in Gd3Ga5O12 melts,” J. CrysL Growth, 42, 400–404 (1977).CrossRefGoogle Scholar
  47. 47.
    C. M. Lawrence and D. Elwell, “Mass transport limitation of top-seeded solution growth rate,” J. CrysL Growth, 32, No. 3, 287–292 (1976).CrossRefGoogle Scholar
  48. 48.
    E. O. Schulz-Dubois, “Accelerated crucible rotation: Hydrodynamics and stirring effect,” J. Cryst. Growth, 12, 81–87 (1972).CrossRefGoogle Scholar
  49. 49.
    G. M. Galaktionova, S. Sh. Gendelev, and Yu. R. Shil’nikov, “Ferromagnetic resonance in zonar iron garnet crystals,” Kristallograftya, 29, No. 6, 1109–1113 (1984).Google Scholar
  50. 50.
    J. M. Tarascon, L. H. Greene, W. R. Mckinnon, et al., “Superconductivity at 40 K in the oxygen-defect perovskites La2-xSrxCuO4-y,” Science (Washington, D. C., 1883-), 235, No. 4794, 1373–1376 (1987).CrossRefGoogle Scholar
  51. 51.
    A. Katsui, Y. Hidaka, and H. Ohtsuka, “Single crystal growth of Ba2NdCu3O7- δ, from BaCO3—Nd2O3—CuO solution,” Jpn. J. Appt Phys., 26, No. 9, L1521–L1523 (1987).CrossRefGoogle Scholar
  52. 52.
    J. G. Bednorz and K. A. Muller, “Possible high Tc superconductivity in the Ba—La—Cu—O system,” Z. Phys. B: Condens. Matter,64, 189–193 (1986).CrossRefGoogle Scholar
  53. 53.
    M. K. Wu, J. R. Ashburn, C. J. Tomg, et al., “Superconductivity at 93 K in a new mixed-phase Y—Ba—Cu—O compound system at ambient pressure,” Phys. Rev. Lett, 58, No. 9, 908–910 (1987).CrossRefGoogle Scholar
  54. 54.
    Y. Hidaka, Y. Enomoto, M. Suzuki, et al., “Single crystal growth of (La1-xAx)2CuO4 (A = Ba or Sr) and Ba2YCu3O7-y’J. CrysL Growth, 85, 581–584 (1987).CrossRefGoogle Scholar
  55. 55.
    A. A. Zhokhov, G. A. Emel’chenko, N. V. Abrosimov, et al., “Phase formation in the system Y2O3—BaO—CuO and synthesis of YBa2Cu3O7-δ single crystals,” in: Abstracts of Papers of the First All-Union Conf. on the Physics, Chemistry, and Technology of High-Temperature Superconductors [in Russian], Moscow (1988), pp. 51–52.Google Scholar

Copyright information

© Consultants Bureau, New York 1992

Authors and Affiliations

  • G. A. Emel’chenko
  • V. M. Masalov
  • V. A. Tatarchenko

There are no affiliations available

Personalised recommendations