Advertisement

An Entropy Measure for Revealing Deterministic Structure in Spike Train Data

  • Garrett T. Kenyon
  • David C. Tam

Abstract

The limiting behavior of the time-dependent Kolmogorov entropy, K Δt (T), obtained from computer generated spike trains digitized using rectilinear grids of length T→∞ and grid spacing Δt→0, is used to identify chaotic (i.e., deterministic) structure, which is a necessary (but not a sufficient) condition for significant information to be encoded in the precise temporal spike sequence.

Keywords

Spike Train Firing Pattern Ensemble Size Pattern Size Deterministic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Reitboeck HJ, Biol Cyber., 60 (1988) 121.CrossRefGoogle Scholar
  2. 2.
    Gray CM, König P, Engel AK, Singer W, Nature, 388 (1989) 334.ADSCrossRefGoogle Scholar
  3. 3.
    Carr CE, Konishi M, J. Neurosci., 10(10) (1990) 3227.Google Scholar
  4. 4.
    Reinis S, Weiss DS, Landolt JP, Biol Cyber., 59 (1988) 41.CrossRefGoogle Scholar
  5. 5.
    Abeles M, IEEE Trans. Biomed. Eng., 30 (1983) 235.CrossRefGoogle Scholar
  6. 6.
    Dayhoff JE, Gerstein GL, J. Neurophys., 49 (1983) 1349.Google Scholar
  7. 7.
    Mpitsos GJ, Burton Jr RM, Creech HC, Soinila SO, Brain Res. Bull, 21 (1988) 529CrossRefGoogle Scholar
  8. 8.
    Kenyon GT, Fetz EE, Puff RD, in Advances in Neural Information Processing Systems #2. Touretzky DS (ed) (Morgan Kaufmann 1990) 141.Google Scholar
  9. 9.
    Kenyon GT, Puff RD, Fetz EE, Biol. Cyber., 67 (1992) 133.MATHCrossRefGoogle Scholar
  10. 10.
    van der Malsburg, in Brain Theory, Palm G, Aertsen (eds), (Spinger-Verlag, Berlin, 1986) 161.CrossRefGoogle Scholar
  11. 11.
    Kenyon GT, Tarn DC, to appear in Proceedings of the Second Annual Conference on EEG and Nonlinear Dynamics, Jansen B (ed) (World Sci. Pub. Co.)Google Scholar
  12. 12.
    Kolmogorov AN, JDokl. Akad. Nauk., 124 (1959) 754.MathSciNetMATHGoogle Scholar
  13. 13.
    Sinai J, JMath USSR Sb., 63 (1964) 23.MathSciNetGoogle Scholar
  14. 14.
    Takens F, in: Lecture Notes in Mathematics, Rand DA, Young LS, (eds.) (Springer, New York, 1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Garrett T. Kenyon
    • 1
  • David C. Tam
    • 2
  1. 1.Department of Neurobiology and AnatomyUniversity of Texas Medical SchoolHoustonUSA
  2. 2.Center for Network Neuroscience, Department of Biological SciencesUniversity of North TexasDentonUSA

Personalised recommendations