Modeling Chemotaxis in the Nematode C. elegans

  • Shawn R. Lockery
  • Steven J. Nowlan
  • Terrence J. Sejnowski


To elucidate the neural mechanisms of chemotaxis in the nematode C. elegans, we constructed a model based on the anatomically defined neural circuitry associated with identified chemosensory neurons. The model combines the temporal derivative of chemosensory input with an internal representation of behavioral state to produce a duty-cycle controller of head angle during swimming movements. The model reproduces observed chemotactic behavior and suggests that separate control circuitry is required when moving up as opposed to down the concentration gradient.


Motor Neuron Behavioral State Temporal Derivative Swimming Movement Electrical Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ward, S. 1978. Nematode chemotaxis and chemoreceptors. Taxis and Behavior. G. L. Hazelbauer (eds.) Chapman and Hall, London.Google Scholar
  2. 2.
    Achacoso, T. B. and W. S. Yamamoto 1992. AY’s Neuroanatomy of C. elegans for Computation. CRC Press, Boca Raton.Google Scholar
  3. 3.
    Bargmann, C. I. and H. R. Horvitz 1991. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7:729–742.CrossRefGoogle Scholar
  4. 4.
    Niebur, E. and P. Erdos 1992. Theory of the locomotion of nematodes: Dynamics of undulatory progression on a surface. Biophys. J. 60:1132–1146.CrossRefGoogle Scholar
  5. 5.
    Davis, R. E. and A. O. W. Stretton 1989. Signaling properties of Ascaris Motorneurons: Graded active responses, graded synaptic transmission, and tonic transmitter release. J. Neurosci. 9:415–425.Google Scholar
  6. 6.
    White, J. G., E. Southgate, J. N. Thomson and S. Brenner 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. 314:1–340.CrossRefGoogle Scholar
  7. 7.
    Claiborne, B. J., A. M. Zador, Z. F. Mainen and T. H. Brown 1992. Computational models of hippocampal neurons. Single Neuron Computation. T. McKenna, J. Davis and S. F. Zornetzer (eds.) Academic Press, San Diego, CA.Google Scholar
  8. 8.
    Rumelhart, D. E., G. E. Hinton and R. J. Williams 1986. Learning internal representations by back-propagating errors. Nature 323:533–536.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Shawn R. Lockery
    • 1
  • Steven J. Nowlan
    • 1
  • Terrence J. Sejnowski
    • 1
  1. 1.Computational Neurobiology LaboratorySalk Institute and Howard Hughes Medical InstituteLa JollaUSA

Personalised recommendations