Skip to main content

Formal Methods for Solving the Algebraic Path Problem

  • Chapter
  • 74 Accesses

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 228))

Abstract

This chapter deals with the interplay between algorithm design and synthesis methodologies. The algebraic path problem is used throughout the text as a target computational kernel. First, we present pioneering and state-of-art systolic implementations; then, we describe how synthesis methodologies have been extended (space-time optimality, partitioning techniques) to cope with advances in the algorithmic field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. M. Ahmed, J. M. Delosme, and M. Morf. Highly concurrent computing structures for matrix arithmetic and signal processing. Computer, 15, number 1, pages 65–82, 1982.

    Article  Google Scholar 

  2. A. Benaini, P. Quinton, Y. Robert, B. Tourancheau, and Y. Saouter. Synthesis of a new systolic architecture for the algebraic path problem. Science of Computer Programming, 15, number 2-3, pages 135–158, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Benaini and Y. Robert. Space-time-minimal systolic arrays for gaussian elimination and the algebraic path problem. Parallel Computing, 15, pages 211–225, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Benaini, Y. Robert, B. Tourancheau. A new systolic architecture for the algebraic path problem. In J. McCanny et al., editors, Systolic array processors, pages 73–82. Prentice Hall, 1989.

    Google Scholar 

  5. J. Bu, P. Dewilde, and E. F. Deprettere. A design methodology for fixed-size systolic arrays. In S. Y. Kung et al., editors, Application specific array processors, pages 591–602. IEEE Computer Society Press, 1991.

    Google Scholar 

  6. P. R. Cappello. A space-time-minimal systolic array for matrix product. In J. McCanny et al., editors, Systolic array processors, pages 347–356.Prentice Hall, 1989.

    Google Scholar 

  7. P. R Cappello and C. J. Scheiman. A processor-time minimal systolic array for transitive closure. In S. Y. Kung et al., editors, Application specific array processors, pages 19–30. IEEE Computer Society Press, 1990.

    Google Scholar 

  8. P. Cappello and Y. Yaacoby. Bounded broadcast in systolic arrays. Technical Report TRCS88-13, Department of Computer Science, University of California, Santa Barbara, 1988.

    Google Scholar 

  9. Y. H. Cheng and K. Hwang. Partitioned matrix algorithm for VLSI arithmetic systems. IEEE Trans, on Computers, C-31, pages 1215–1224, Mar 1982.

    Google Scholar 

  10. L. A. Conway and C. A. Mead. Introduction to VLSI systems, Addison-Wesley, 1980.

    Google Scholar 

  11. A. Darte. Regular partitioning for synthesizing fixed-size systolic arrays. Integration, the VLSI Journal, 12, number 3, pages 293–304, 1991.

    Article  Google Scholar 

  12. A. Darte and J. M. Delosme. Partitioning for array processors. Technical Report 90-23, LIP-IMAG, Ecole Normale Superieure de Lyon, France, 1991.

    Google Scholar 

  13. A. Darte, T. Risset, and Y. Robert. Synthesizing systolic arrays: some recent developments. In M. Valero et al., editors, Application specific array processors, pages 372–386. IEEE Computer Society Press, 1991.

    Google Scholar 

  14. J. M. Delosme. A parallel algorithm for the algebraic path problem. In M. Cosnard et al., editors, Parallel and Distributed Algorithms, pages 67–780. North Holland, 1989.

    Google Scholar 

  15. V. Van Dongen and P. Quinton. Uniformization of linear recurrence equations: a step towards the automatic synthesis of systolic arrays. In K. Bromley et al., editors, International Conference on Systolic Arrays, pages 473–482. IEEE Computer Society Press, 1988.

    Google Scholar 

  16. R. Dorairaj and G. Lakhani. A VLSI implementation of all-pair shortest path problem. In ICPP 87 pages 207–209. S. K. Sahni, editor, The Pennsylvania State University Press, 1987.

    Google Scholar 

  17. L. J. Guibas, H. T. Kung, and C. D. Thompson. Direct VLSI implementation of combinatorial algorithms. In Caltech Conference on VLSI, pages 509–525, 19791.

    Google Scholar 

  18. S. Hansen and J. G. Nash. Modified Faddeev algorithm for matrix manipulation. In Real-time Signal Processing VII, pages 39–46. Society of Photo-Optical Instrumentation Engineers, 1984.

    Google Scholar 

  19. S. Y. Kimg. VLSI array processors. Prentice Hall, 1988.

    Google Scholar 

  20. H. T. Kung and M. S. Lam. Fault-tolerance and two-level pipelining in vlsi systolic arrays. Journal of Parallel and Distributed Computing, 1, pages 3263, 1984.

    Article  Google Scholar 

  21. H. T. Kung and C. E. Leiserson. Systolic arrays for VLSI. In C. A. Mead and L. A. Conway, Introduction to VLSI systems, chapter 8.3. Addison-Wesley, pp 1980.

    Google Scholar 

  22. S. Y. Kung and P. S. Lewis. An optimal systolic array for the algebraic path problem. IEEE Trans, on Computers, C-40, pages 100–105, 1991.

    Article  Google Scholar 

  23. S. Y. Kung, P. S. Lewis, and S. C. Lo. Optimal systolic design for the transitive closure and shortest path problems. IEEE Trans, on Computers, C-36, number 5, pages 603–614, 1987.

    Article  Google Scholar 

  24. S. Y. Kung and S. C. Lo. A spiral systolic architecture/algorithm for transitive closure problems. Proc. IEEE Int. Conf. on Computer Design, Port Chester, NY, pages 622–626, Oct 1985.

    Google Scholar 

  25. M. R. Kramer and J. Van Leeuwen. Systolic computation and VLSI. Foundations of Computer Science IV, 36, pages 75–103, 1983.

    Google Scholar 

  26. T. Lang and J. H. Moreno. Matrix computations on systolic-type meshes: an introduction to the multi-mesh graph. Computer, 24, number 4, pages 32–51 1990.

    Google Scholar 

  27. D. I. Moldovan. Mapping an arbitrarily large QR algorithm into fixed size systolic arrays. IEEE Trans, on Computers, C-35, number 1, pages 1–12, 1986.

    Article  MATH  Google Scholar 

  28. P. Quinton. Mapping recurrences on parallel architectures. In L. P. Kar-tashev and S. I. Kartashev, editors, Supercomputing ICS 88, pages 39–46. International Supercomputing Institute, 1988.

    Google Scholar 

  29. P. Quinton and Y. Robert. Algorithmes et Architectures Systoliques. Mas-son, 1989.

    Google Scholar 

  30. T. Risset. Linear systolic arrays for matrix multiplication: comparisons of existing methods and new results. In Proc. 2nd Workshop on Algorithms and VLSI parallel architecture, pages 163-174, 1991.

    Google Scholar 

  31. T. Risset and Y. Robert. Uniform but non-local DAGs: a trade-off between pure systolic and SIMD solutions. In Application Specific Array Processors 91, pages 296–308. IEEE Computer Society Press, 1991.

    Google Scholar 

  32. T. Risset and Y. Robert. Synthesis of processor arrays for the algebraic path problem: unifying old results and deriving new architectures. Parallel Processing Letters, 1, pages 19–28, 1991.

    Article  Google Scholar 

  33. Y. Robert and M. Tchuente. Resolution systolique de systemes lineaires denses. RAIRO Modelisation et Analyse Numerique, 19, pages 315–326, 1985.

    MathSciNet  MATH  Google Scholar 

  34. Y. Robert and D. Tryst ram. Systolic solution of the algebraic path problem. In W. Moore, A. McCabe, and R. Urquhart, editors, Systolic Arrays, pages 171–180. Adam Hilger, Bristol, 1987.

    Google Scholar 

  35. G. Rote. A systolic array algorithm for the algebraic path problem (shortest paths; matrix inversion). Computing, 34, pages 191–219, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. D. Ullman. Computational aspects of VLSI. Computer Science Press, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Darte, A., Risset, T., Robert, Y. (1993). Formal Methods for Solving the Algebraic Path Problem. In: Catthoor, F., Svensson, L. (eds) Application-Driven Architecture Synthesis. The Kluwer International Series in Engineering and Computer Science, vol 228. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3242-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3242-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6425-2

  • Online ISBN: 978-1-4615-3242-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics