Skip to main content

Vector Quantization for Video Data Compression

  • Chapter
Book cover Motion Analysis and Image Sequence Processing

Abstract

Visual signals, even more than audio signals, typically contain an exorbitant amount of information. It is not uncommon for the visual component of a motion picture or television signal to contain several orders of magnitude more data than the audio component. During this age of visual information transmission and storage, efficient methods for compressing video have become particularly important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Gray, “Vector quantization,” ASSP Magazine, pp. 4–29, April 1984.

    Google Scholar 

  2. A. Gersho and R. Gray, “Vector quantization and signal compression,” Kluwer Academic Publishers, 1992.

    Google Scholar 

  3. W. H. Equitz, “New vector quantization clustering algorithm,” IEEE Trans. Acoustics, Speech, Signal Processing, vol. ASSP-37, pp. 1568–1575, October 1989.

    Article  Google Scholar 

  4. K. K. Truong and R. M. Mersereau, “Structural image codebooks and the self-organizing feature map algorithm,” Proc. 1990 IEEE Int. Conf. Acoustics, Speech, Signal Processing, pp. 2789–2792.

    Google Scholar 

  5. N. Nasrabadi and R. Feng, “Vector quantization of images based upon Koho-nen self-organizing feature map,” Proc. 1988 IEEE Int. Conf. Neural Networks, pp. 101–108.

    Google Scholar 

  6. K. K. Truong, “Multilayer Kohonen image codebooks with a logarithmic search complexity,” Proc. 1991 IEEE Int. Conf. Acoustics, Speech, and Signal Processing, pp. 2789–2792.

    Google Scholar 

  7. B. H. Juang and A. H. Gray, “Multiple stage vector quantization for speech coding,” Proc. 1982 IEEE Int. Conf. Acoustics, Speech, Signal Processing, pp. 597–600.

    Google Scholar 

  8. J. Foster, R. M. Gray and M. O. Dunham, “Finite-State Vector Quantization for Waveform Coding,” IEEE Trans. Info. Th., vol. IT-31, pp. 348–359, May 1985.

    Article  Google Scholar 

  9. R. Aravind and A. Gersho, “Low-rate image coding with finite-state vector quantization,” Proc. 1986 IEEE Int. Conf. Acoust, Speech, Signal Processing, pp. 137–140.

    Google Scholar 

  10. J. Makhoul, S. Roucos, and H. Gish, “Vector quantization in speech coding,” Proc. IEEE, vol. 73, pp. 1551–1581, November 1985.

    Article  Google Scholar 

  11. F. Kossentini, M. Smith, and C. Barnes, “Image coding with variable rate RVQ,” Proc. 1992 IEEE Int. Conf. Acoustics, Speech Signal Proc, pp. 369–372.

    Google Scholar 

  12. C. F. Barnes, Residual Quantizers, PhD thesis, Brigham Young University, Provo, Utah, Dec. 1989.

    Google Scholar 

  13. F. Kossentini, M. Smith, and C. Barnes, “Large block RVQ with multipath searching,” Proc. 1992 IEEE Int. Symp. Circ. Syst., pp. 300–303.

    Google Scholar 

  14. F. Kossentini, M. Smith, and C. Barnes, “Finite-state residual vector quantization” submitted to J. Vis. Commun. Im. Rep., 1992.

    Google Scholar 

  15. K. K. Truong and R. M. Mersereau, “Variable rate vector quantization for images based on principles of cache memory design,”submitted to IEEE Trans. Image Processing, 1992.

    Google Scholar 

  16. M. Liou, “Overview of the px64 kbit/s video coding standard,” Comm. ACM, vol. 34, pp. 59–63, April 1991.

    Article  Google Scholar 

  17. D. A. Huffman, “A method for the construction of minimum redundancy codes,” Proc. IEEE, vol. 40, pp. 1098–1101, 1952.

    Google Scholar 

  18. E. G. Coffman and P. J. Denning, Operating Systems Theory, Prentice-Hall, 1973.

    Google Scholar 

  19. H. S. Stone, High-Performance Computer Architecture, Addison-Wesley, 1987.

    Google Scholar 

  20. J. W. Woods and S. D. O’Neil, “Subband coding of images,” IEEE Trans. Acoustics, Speech, Signal Processing, vol. ASSP-34, pp. 1278–1288, October 1986.

    Article  Google Scholar 

  21. C. S. Kim, J. Bruder, M. J. T. Smith, and R. M. Mersereau, “Subband coding of color images using finite state vector quantization,” Proc. 1988 IEEE Int. Conf. Acoustics, Speech, Signal Processing, pp. 753–756.

    Google Scholar 

  22. P. H. Westerink, Subband Coding of Images, Ph.D. Thesis, Technische Universiteit Delft, 1989.

    Google Scholar 

  23. M. Smith and S. Eddins, “Analysis/synthesis systems for subband image coding,” Trans. Acoustics, Speech, Signal Processing, vol. ASSP-38, pp. 1446–1457, August 1990.

    Article  Google Scholar 

  24. R. de Quieroz, “Subband processing of finite length signals without border distortion,” Proc. 1992 Int. Conf. Acoustics, Speech, Signal Processing, vol. 4, pp. 613–616.

    Google Scholar 

  25. S. A. Martucci, “Signal extension and noncausal filtering for subband coding of images,” SPIE Conf. Vis. Commun. Image Proc. ′91: Visual Communication, vol. 1605, pp. 137–148.

    Google Scholar 

  26. R. Ansari, “Advanced television coding using exact reconstruction filter banks,” in Subband Image Coding, (J. Woods, editor), Kluwer Academic Publishers, 1991.

    Google Scholar 

  27. C. S. Kim, M. J. T. Smith, and R. M. Mersereau, “Two-stage multirate coding of color images,” Signal Processing: Image Communications, vol. 3, pp. 79–89, February 1991.

    Article  Google Scholar 

  28. T. Koga et al., “Motion compensation interframe coding for video conferencing,” Proc. Nat. Telecommun. Conf., pp. G5.3.1–5, 1981.

    Google Scholar 

  29. N. S. Jayant and P. Noll, Digital Coding of Waveforms, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

    Google Scholar 

  30. CCITT SGXV Recommendation Ref. Model 8, “Coding for visual telephony, ” Document 525, June 1989.

    Google Scholar 

  31. K. K. Truong and R. M. Mersereau, “Low rate video coding using hierarchical vector quantization,” submitted to IEEE Trans. Circ. Syst. Vid. Tech.,1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mersereau, R.M., Smith, M.J.T., Kim, C.S., Kossentini, F., Truong, K.K. (1993). Vector Quantization for Video Data Compression. In: Sezan, M.I., Lagendijk, R.L. (eds) Motion Analysis and Image Sequence Processing. The Springer International Series in Engineering and Computer Science, vol 220. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3236-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3236-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6422-1

  • Online ISBN: 978-1-4615-3236-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics