The Role of NOAA Satellite Data in Drought Early Warning and Monitoring: Selected Case Studies

  • Gary E. Johnson
  • V. Rao Achutuni
  • S. Thiruvengadachari
  • Felix Kogan
Chapter
Part of the Natural Resource Management and Policy book series (NRMP, volume 2)

Abstract

Although drought is a phenomenon that dates to prehistoric times, recent technological advances permit evaluation of drought from a new perspective. Satellite remote sensing, the ability to detect the characteristics of features from a distance (i.e., without coming into direct contact with them), is a powerful tool for evaluating the temporal and spatial aspects of drought.

Keywords

Biomass Corn Radar Stratification Remote Sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achutuni, V. R.; S. Weisman; T. Phillips; and R. Terry. 1991 a. Large-scale vegetation monitoring in Southeast Asia. 20th Conference on Agricultural and Forest Meteorology. American Meteorological Society, Boston.Google Scholar
  2. Achutuni, R.; R. Terry; and S. Weisman. 199lb. Satellite Crop Monitoring Project (Phase II). Final Report to the United Nations Economic and Social Commission for Asia and the Pacific (UN/ESCAP), Bangkok, Thailand. Available from NOAA/ NESDIS Physical Sciences Branch, Rm. 600, World Weather Building, 5200 Auth Road, Washington, D.C. 20233.Google Scholar
  3. Doraiswamy, P. C.; and E. Perry. 1991. The relationship between satellite-based surface temperature and vegetation indices over semi-arid rangeland watershed. Proceedings of the 10th Conference on Biometeorology and Aerobiology. American Meteorological Society, Boston.Google Scholar
  4. Gutman, G. G. 1991. Vegetation indices from AVHRR: An update and future prospects. Remote Sensing of the Environment 35:121–36.CrossRefGoogle Scholar
  5. Gutman, G. G. 1987. The derivation of vegetation indices from AVHRR data. International Journal of Remote Sensing 8:1235–42.CrossRefGoogle Scholar
  6. Holben, B. N. 1986. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing 7(11):1417–34.CrossRefGoogle Scholar
  7. Justice, C. O.; J. R. G. Townshend; B. N. Holben; and C. J. Tucker. 1985. Analysis of the phenology of global vegetation using meteorological satellite data. International Journal of Remote Sensing 6(8):1271–1318.CrossRefGoogle Scholar
  8. Kidwell, K. B. 1991. NOAA Polar Orbiter Data User’s Guide: TIROS-n, NOAA-6, NOAA-7, NOAH-8, NOAH-9, NOM-10, NOAH-11, and NOAA-12. Published by the U.S. Department of Commerce, NOAA/NESDIS Satellite Data Services Division, Washington, D.C. 20233.Google Scholar
  9. Kidwell, K. B. 1990. Global Vegetation Index User’s Guide. Published by the U.S. Department of Commerce, NOAA/NESDIS Satellite Data Services Division, Washington, D.C. 20233.Google Scholar
  10. Kogan, F. N. 1991. Drought Watch System Using Satellite Observations. Proceedings 7th International Conference on Interactive Information andProcessing Systems for Meteorology, Oceanography, andHydrology; pp. 379–82. American Meteorological Society, Boston.Google Scholar
  11. Kogan, F. N. 1990a. Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing 11(8):1405–19. CrossRefGoogle Scholar
  12. Kogan, F. N. 1990b. Monitoring the 1988 U.S. drought from satellite. Proceedings 5th Conference on Satellite Meteorology and Oceanography; pp. 186–89. 3–7 September, London.Google Scholar
  13. Kogan, F. N. 1987. Vegetation index for areal analysis of crop conditions. Proceedings of the 18th Conference on Agricultural and Forest Meteorology; p. 103. American Meteorological Society, Boston.Google Scholar
  14. Kunkel, K. E.; S. E. Hollinger; F. N. Kogan. 1991. Soil moisture/evaporation/ precipitation feedback: A case study of the 1988 drought. Proceedings of the 10th Conference on Biometeorology and Aerobiology. American Meteorological Society, Boston.Google Scholar
  15. Malingreau, J. P. 1986. Global vegetation dynamics: Satellite observations over Asia. International Journal of Remote Sensing 7:1121–46.CrossRefGoogle Scholar
  16. Perry, C. R.; and L. F. Lautenschlager. 1984. Functional equivalence of spectral vegetation indices. Remote Sensing of the Environment 14:169–82.CrossRefGoogle Scholar
  17. Rasmussen, M. S. 1991. Crop yield assessment in Senegal and Burkina Faso using NOAA AVHRR data. Proceedings 5th AVHRR Data User’s Meeting; pp. 421–26. Tromso, Norway, 25–28 June.Google Scholar
  18. Tarpley, J. P.; S. R. Schnieder; R. L. Money. 1984. Global vegetation indices from NOAA-7 Meteorological satellite. Journal of Climate and Applied Meteorology 23:491.CrossRefGoogle Scholar
  19. Tucker, C. J.; J. Gatlin; S. R. Schneider; M. A. Kuchinos. 1982. Monitoring large scale vegetation dynamics in the Nile delta and river valley from NOAA AVHRR data. Proceedings of Conference on Remote Sensing of Arid and Semi-Arid Lands; p. 973. Cairo, Egypt.Google Scholar
  20. Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of the Environment 8:127–50.CrossRefGoogle Scholar
  21. Thiruvengadachari, S. 1990. Satellite surveillance for improved countrywide monitoring of agricultural drought conditions. Proceedings of the National Symposium of Remote Sensing for Agricultural Applications; pp. 389–407. New Delhi.Google Scholar
  22. van Dijk, A.; S. L. Callis; C. M. Sakamoto; and W. L. Decker. 1987. Smoothing vegetation index profiles: An alternative method for reducing radiometric disturbance in NOAA/AVHRR data. Photogrammetry Engineering and Remote Sensing 53:1059–67.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Gary E. Johnson
  • V. Rao Achutuni
  • S. Thiruvengadachari
  • Felix Kogan

There are no affiliations available

Personalised recommendations