Advertisement

Abstract

The translinear (TL) circuit principle was originally formulated as a practical means of implementing nonlinear signal processing functions by bipolar analog electronic circuits [1]. The concepttranslinearwas based on a fundamental property of bipolar transistors, namely transconductancelinearwith collector current. This property, when applied in circuits arranged in loops of junction voltages and having inputs and outputs in the form of currents, allows the implementation of exact, temperature-and process-insensitive signal processing functions.

Keywords

Bipolar Transistor Electrical Variable Transconductance Linear Circuit Principle Translinear Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Gilbert,“Translinear circuits: a proposed classification”, Electron. Lett., Vol. 11, pp. 14–16, 1975, and “Errata”, ibid., p.136.CrossRefGoogle Scholar
  2. [2]
    E.Vittoz and J.Fellrath, “CMOS analog integrated circuits based on weak-inversion operation”,IEEE J.Solid-State Circuits,Vol.SC-12, pp. 224–231,1977CrossRefGoogle Scholar
  3. [3]
    E. Seevinck, “Analysis and synthesis of translinear integrated circuits”, D.Sc. dissertation, Univ. of Pretoria, Pretoria, S.Africa, 1981.Google Scholar
  4. [4]
    J.A. de Lima, “Design of a micropower CMOS four-quadrant multiplier based on the translinear principle”, in Proc. ESSCIRC, 1989, pp. 260–263.Google Scholar
  5. [5]
    K. Bult and H. Wallinga, “A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation”, IEEE J. Solid-State Circuits, Vol. SC-22, pp. 357–365, 1987.CrossRefGoogle Scholar
  6. [6]
    E. Seevinck, “Design and application of integrated analog interface circuits”, in Proc. ISCAS, 1988, pp. 1923–1926.Google Scholar
  7. [7]
    E. Seevinck and R.J. Wiegerink, “Generalized translinear circuit principle”, IEEE J. Solid-State Circuits, Vol. SC-26, pp. 1098–1102, 1991.CrossRefGoogle Scholar
  8. [8]
    W.L. Paterson, “Multiplication and logarithmic conversion by operational amplifier-transistor circuits”, Rev. Sci. Instr., Vol. 34, pp. 1311–1316, 1963.CrossRefGoogle Scholar
  9. [9]
    G.R. Wilson, “A monolithic junction fet-npn operational amplifier”, IEEE J. Solid-State Circuits, Vol. SC-3, pp. 341–348, 1968.CrossRefGoogle Scholar
  10. [10]
    B. Gilbert, “A dc-500 MHz amplifier/multiplier principle”, in Proc. ISSCC, 1968, pp. 114–115.Google Scholar
  11. [11]
    B. Gilbert, “A new wide-band amplifier technique”, IEEE J. Solid-State Circuits, Vol. SC-3, pp. 353–365, 1968.CrossRefGoogle Scholar
  12. [12]
    B. Gilbert, “A precise four-quadrant multiplier with subnanosecond response”, IEEE J. Solid-State Circuits, Vol. SC-3, pp. 365–373, 1968.CrossRefGoogle Scholar
  13. [13]
    H. Brüggemann, “Feedback stabilized four-quadrant analog multiplier”, IEEE J. Solid-State Circuits, Vol. SC-5, pp. 150–159, 1970.CrossRefGoogle Scholar
  14. [14]
    E.W. Scratchley, “Single-ended-input single-ended-output four-quadrant analog multiplier”, IEEE J. Solid-State Circuits, Vol. SC-6, pp. 394–395, 1971, comment by B. Gilbert, ibid. Vol. SC-7, p. 434, 1972.CrossRefGoogle Scholar
  15. [15]
    B.J.M. Overgoor, “Error sources in analog multipliers”, Electron. Appl. Bull., Vol. 31, pp. 187–204, 1972.Google Scholar
  16. [16]
    K.G. Schlotzhauer and T.R. Viswanathan, “New bipolar analogue multiplier”, Electron. Lett., Vol. 8, pp. 425–427, 1972.CrossRefGoogle Scholar
  17. [17]
    W.M.C. Sansen and R.G. Meyer, “Distortion in bipolar transistor variable-gain amplifiers”, IEEE J. Solid-State Circuits, Vol. SC-8, pp. 275–282, 1973.CrossRefGoogle Scholar
  18. [18]
    B. Gilbert, “High-accuracy vector-difference and vector-sum circuits”, Electron. Lett., Vol. 12, pp. 293–294, 1976.CrossRefGoogle Scholar
  19. [19]
    R.G. van Vliet, “Integrated class-B end stage”, Electron. Lett.,V ol. 10, pp. 317–319, 1974.CrossRefGoogle Scholar
  20. [20]
    J.H. Huijsing and F. Tol, “Monolithic operational amplifier design with improved HF behaviour”, IEEE J. Solid-State Circuits, Vol. SC-11, pp. 323–328, 1976.CrossRefGoogle Scholar
  21. [21]
    R.W.J. Barker and B.L. Hart, “Root-law circuit using monolithic bipolar-transistor arrays”, Electron. Lett., Vol. 10, pp. 439–440, 1974.CrossRefGoogle Scholar
  22. [22]
    E. Traa, “An integrated function generator with two-dimensional electronic programming capability”, IEEE J. Solid-State Circuits, Vol. SC-10, pp. 458–463, 1975.CrossRefGoogle Scholar
  23. [23]
    B. Gilbert and L.W. Counts, “A monolithic RMS-DC converter with crest-factor compensation”, in Proc. ISSCC, 1976, pp. 110–111.Google Scholar
  24. [24]
    S. Ashok, “Translinear root-difference-of-squares circuit”, Electron. Lett., Vol. 12, pp. 194–195, 1976.CrossRefGoogle Scholar
  25. [25]
    S. Ashok, “Integrable sinusoidal frequency doubler”, IEEE J. Solid-State Circuits, Vol. SC-11, pp. 341–343, 1976.CrossRefGoogle Scholar
  26. [26]
    F. Doorenbosch and Y. Goinga, “Integrable, wideband, automatic volume control (A.V.C.) using Pythagoras’ law for amplitude detection”, Electron. Lett., Vol. 12, pp. 418–420, 1976.CrossRefGoogle Scholar
  27. [27]
    P.A. McGovern, “Linearisation of microwave point-contact-detector characteristics”, Electron. Lett., Vol. 12, pp. 585, 1976.CrossRefGoogle Scholar
  28. [28]
    P.A. McGovern, “Tangent sweep circuit”, Electron. Lett., Vol. 12, pp. 613–614, 1976.CrossRefGoogle Scholar
  29. [29]
    E. Seevinck and G.H. Renkema, “A 4-quadrant cosine-synthesis circuit”, in ISSCC Dig. Tech. Papers, 1982, pp. 40–41.Google Scholar
  30. [30]
    R.F. Wassenaar, E. Seevinck, M.G. van Leeuwen, C. Speelman and E. Holle, “New techniques for high-frequency rms-to-dc conversion based on a multifunctional V-to-I converter”, IEEE J. Solid-State Circuits, Vol. 23, pp. 802–815, 1988.CrossRefGoogle Scholar
  31. [31]
    E. Seevinck, W. de Jager and P. Buitendijk, “A low-distortion output stage with improved stability for monolitic power amplifiers”, IEEE J. Solid-State Circuits, Vol. 23, pp. 794–801, 1988.CrossRefGoogle Scholar
  32. [32]
    I. Hazman, “Four-quadrant multiplier using M.O.S.F.E.T. differential amplifiers”, Electron. Lett., Vol. 8, pp. 63–65, 1972.CrossRefGoogle Scholar
  33. [33]
    D.C. Soo and R.G. Meyer, “A four-quadrant NMOS analog multiplier”, IEEE J. Solid-State Circuits, Vol. SC-17, pp. 1174–1178, 1982.CrossRefGoogle Scholar
  34. [34]
    P.B. Denyer et al, “A monolithic adaptive filter”, IEEE J. Solid-State circuits, Vol. SC-18, pp. 291–296, 1983.CrossRefGoogle Scholar
  35. [35]
    Z. Hong and H. Melchior, “Four-quadrant CMOS analogue multiplier”, Electron. Lett., Vol. 20, pp. 1015–1016, 1984.CrossRefGoogle Scholar
  36. [36]
    Z. Hong and H. Melchior, “Four-quadrant multiplier core with lateral bipolar transistors in CMOS technology”, Electron. Lett., Vol. 21, pp. 72–73, 1985.CrossRefGoogle Scholar
  37. [37]
    K. Bult and H. Wallinga, “Four-quadrant CMOS analog multiplier”, in Proc. ESSCIRC, 1985, pp. 296–299.Google Scholar
  38. [38]
    K. Bult and H. Wallinga, “A CMOS four-quadrant analog multiplier”, IEEE J. Solid-State Circuits, Vol. SC-21, pp. 430–435, 1986.CrossRefGoogle Scholar
  39. [39]
    A. Nedungadi and T.R. Viswanathan, “Design of linear CMOS transconductance elements”, IEEE Trans. Circuits and Systems, Vol. CAS-31, pp. 891–894, 1984.CrossRefGoogle Scholar
  40. [40]
    J.L. Pennock, “CMOS triode transconductor for continuous-time active integrated filters”, Electron. Leu., Vol. 21, pp. 817–818, 1985.CrossRefGoogle Scholar
  41. [41]
    R.R. Torrance, T.R. Viswanathan, and J.V. Hanson, “CMOS voltage to current transducers”, IEEE Trans. Circuits and systems, Vol. CAS-32, pp. 1097–1104, 1985.CrossRefGoogle Scholar
  42. [42]
    E. Seevinck, R.F. Wassenaar, and M.C. van den Berg, “Realisation of linear high-frequency transconductance in CMOS technology”, in Proc. ESSCIRC, 1986, pp. 125–127.Google Scholar
  43. [43]
    E. Seevinck and R.F. Wassenaar, “A versatile CMOS linear transconductor/ square-law function circuit”, IEEE J. Solid-State Circuits, Vol. SC-22, pp. 366–377, 1987.CrossRefGoogle Scholar
  44. [44]
    K. Bult, “Analog CMOS square-law circuits”, Ph.D. dissertation, Univ. of Twente, Enschede, The Netherlands, 1988.Google Scholar
  45. [45]
    O. Landolt, E. Vittoz, and P. Heim, “CMOS selfbiased euclidean distance computing circuit with high dynamic range”, Electronics Letters, Vol. 28, pp. 352–354, 1992.CrossRefGoogle Scholar
  46. [46]
    R.J. Wiegerink, “A CMOS four-quadrant analog current multiplier”, in Proc. ISCAS, 1991, pp. 2244–2247.Google Scholar
  47. [47]
    R.J. Wiegerink, “A CMOS wideband linear current attenuator with electronically variable gain”, in Proc. ISCAS, 1993.Google Scholar
  48. [48]
    W. Surakampontom and K. Kumwachara, “CMOS-based electronically tunable current conveyor”, Electronics Letters, Vol. 28, pp. 1316–1317, 1992.CrossRefGoogle Scholar
  49. [49]
    R. Hogervorst, R.J. Wiegerink, P.A.L. de Jong, J. Fonderie, R.F. Wassenaar, and J.H. Huijsing, “Low-voltage CMOS opamp with rail-to-rail input and output voltage range”, in Proc. ISCAS, 1992, pp. 2876–2879.Google Scholar
  50. [50]
    J.H. Botma, R.F. Wassenaar, and R.J. Wiegerink, “A low-voltage CMOS Op Amp with a rail-to-rail constant-gm input stage and a class AB rail-to-rail output stage”, in Proc. ISCAS, 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Remco J. Wiegerink
    • 1
  1. 1.MESA Research InstituteUniversity of TwenteTwente

Personalised recommendations