Skip to main content

A Survey of Light-Weight Protocols for High-Speed Networks

  • Chapter

Part of the The Springer International Series in Engineering and Computer Science book series (SECS,volume 237)

Abstract

Made possible by progress in fiber-optic and VLSI technologies, networks offering increasing transmission capacity at decreasing error rates are becoming available. New applications would benefit from this bandwidth but software protocol processing rates have not kept up with available raw transmission speed. We present a comparative survey of techniques used at the transport layer in eight representative protocols, most of which were designed to improve this situation. The protocols are the relevant portions of the APPN, Datakit, Delta-t, NETBLT, OSIITP4, TCP, VMTP, and XTP architectures. We then go on to discuss which of those techniques seem the most promising to us. An extensive list of references is included.

Keywords

  • Flow Control
  • Transmission Control Protocol
  • Transport Layer
  • Asynchronous Transfer Mode
  • Transport Protocol

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Based on “A Survey of Light-Weight Transport Protocols for High-Speed Networks” by WA Doeringer, D. Dykeman, M. Kaiserswerth, B.W. Meister, H. Rudin and R. Williamson, which appeared in IEEE Transactions on Communications, Vol. 38, No. 11, pp. 2025-2039 (November 1990). © 1990 IEEE.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheriton, D. and Williamson, C. (1989) “VMTP as the transport layer for high-performance distributed systems,” IEEE Commun. Magazine Vol. 27, No. 6, pp. 37–44

    CrossRef  Google Scholar 

  2. Chesson, G. (1989) “XTP/PE design considerations,” Proc. IFIP Workshop on Protocols for High-Speed Networks (Rüschlikon, Switzerland, May 1989), North Holland, pp. 27–33

    Google Scholar 

  3. Clark, D.D. (1982) “Modularity and efficiency in protocol implementation,” RFC 817, July (Network Information Center)

    Google Scholar 

  4. Clark, D.D., Jacobson, V., Romkey, J. and Salwen, H. (1989) “An analysis of TCP processing overhead,” IEEE Commun. Magazine Vol. 27, No. 6, pp. 23–29

    CrossRef  Google Scholar 

  5. Jacobson, V. (1988) “Congestion avoidance and control,” Proc. ACM SIGCOMM ′88 Symposium (Stanford, CA, Aug. 1988), pp. 314–329

    CrossRef  Google Scholar 

  6. Serpanos, DJM. (1992) “Communication subsystems for high speed networks: protocol processing” IBM Research Report RC 18098

    Google Scholar 

  7. Svobodova, L. (1989) “Implementing OSI systems” IEEE JSAC on “Architecture and Protocols for Computer Networks: The State-of-the-Art”, Vol. 7, No. 7, pp. 1115–1130

    Google Scholar 

  8. Watson, R.W. and Mamrak, SA. (1987) “Gaining efficiency in transport services by appropriate design and implementation choices,” ACM Trans. Computer Systems Vol. 5, No. 2, pp. 97–120

    CrossRef  Google Scholar 

  9. Zimmermann, H. (1980) “OSI reference model — the ISO model of architecture for Open Systems Interconnection,” IEEE Trans. Commun Vol. COM-28, April, pp. 425–432. Also reprinted in: P.E. Green, Ed. (1982) Computer Network Architectures and Protocols Plenum, New York, pp. 33–54

    Google Scholar 

  10. Rudin, H. and Williamson R., Eds. (1989) Protocols for High-Speed Networks Proc. IFIP Workshop on High-Speed Networks, (Rüschlikon, Switzerland, 1989) North-Holland, Amsterdam

    Google Scholar 

  11. Johnson, M.J., Ed. (1990) Protocols for High-Speed Networks, II Proc. IFIP Workshop on High-Speed Networks (Palo Alto, CA, 1990) North-Holland, Amsterdam

    Google Scholar 

  12. Jacobson, V., Braden, R. and Borman, D. (1992) “TCP extensions for high performance” RFC 1323 May (Network Information Center)

    Google Scholar 

  13. UltraNetwork Technologies (1992) UltraNet Product Description UltraNetwork Publications, San Jose, CA

    Google Scholar 

  14. Baratz, A.E., Gray, J.P., Green, P.E., Jaffe, J.M. and Pozefsky, D.P. (1985) “SNA Networks of small systems,” IEEE J. Selected Areas Commun Vol. SAC-3, No. 3, pp. 416–426

    CrossRef  Google Scholar 

  15. Martin, J. (1987) SNA: IBM’s Networking Solution Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  16. Cypser, R.J. (1991) Communications for Cooperating Systems Addison-Wesley, Reading, MA

    Google Scholar 

  17. Chesson, G.L. (1979) “Datakit software architecture,” Proc. ICC79 IEEE, pp. 20.2.1–20.2.5

    Google Scholar 

  18. Fraser, A.G. (1983) “Towards a universal data transport system,” IEEE J. Selected Areas Commun Vol. SAC-1, No. 5, pp. 803–816

    CrossRef  Google Scholar 

  19. Fraser, A.G. (1992) “Designing a public network,” IEEE Commun. Magazine October, pp. 31–35

    Google Scholar 

  20. Nassehi, Mehdi (1990) “CRMA: An access scheme for high-speed LANs and MANs” Proc. IEEE ICC Conf (Atlanta, GA), pp. 1697–1702

    Google Scholar 

  21. “Distributed Queue Dual Bus (DQDB) Subnetwork of a Metropolitan Network (MAN),” IEEE 802.6 Working Group (1990)

    Google Scholar 

  22. Mollenauer, J.M. (1988) “Metropolitan area networks and ATM technology,” Int’l J. Digital and Analog Cabled Systems Vol. 1, pp. 223–228

    CrossRef  Google Scholar 

  23. Byrne, W.R. (1989) “Broadband ISDN technology and architecture,” IEEE Network Vol. 3, No. 1, pp. 23–28

    CrossRef  Google Scholar 

  24. Haendel, R. (1989) “Evolution of ISDN towards broadband ISDN,” IEEE Network Vol. 3, No. 1, pp. 7–13

    CrossRef  Google Scholar 

  25. Schroeder, M.E., Birrell, A.D., Burrows, M., Murray, H., Needham, RM., Rodeheffer, T.L., Satterwhaite, E.H. and Thacker, C.P. (1991) “Autonet A high-speed selfconfiguring local area network using point-to-point links,” IEEE J. Selected Areas Commun Vol. 9, No. 9, pp. 1318–1333

    CrossRef  Google Scholar 

  26. Rider, M.J. (1988) “Protocols for ATM access networks,” Proc. IEEE Globecom 88 Conf, pp. 112–117

    Google Scholar 

  27. Gechter, J. and O’Reilly, P. (1989) “Conceptual issues for ATM,” IEEE Network Vol. 3, No. 1, pp. 14–16

    CrossRef  Google Scholar 

  28. Vorstermans, J.P. and De Vleeschouwer, A.P. (1988), “Layered ATM systems and architectural concepts for subscriber’s premises networks,” IEEE J. Selected Areas Commun Vol. 6, No. 2

    Google Scholar 

  29. Fletcher, J.G. and Watson, R.W. (1978) “Mechanisms for a reliable timer-based protocol, “ Computer Networks Vol. 2, pp. 271–290

    Google Scholar 

  30. Watson, R.W. (1981) “Timer-based mechanisms in reliable transport protocol connection management,” Computer Networks Vol. 5, pp. 47–56

    Google Scholar 

  31. Watson, R.W. (1983) “Delta-t protocol specification,” Report UCID-19293 Lawrence Livermore Laboratory (April 15, 1983)

    Google Scholar 

  32. Clark, D., Lambert, M.L. and Zhang, L. (1987) “NETBLT: a bulk data transfer protocol, ” Network Working Group Request for Comments, RFC 998 (March 1987)

    Google Scholar 

  33. OSI transport protocol specification. Standard ISO-8073, 1986

    Google Scholar 

  34. Cerf, V.G. and Cain, E. (1983) “The DoD internet architecture model,” Computer Networks, Vol. 7, No. 5, pp. 307–318

    Google Scholar 

  35. Clark, D.D. (1988) “The design philosophy of the DARPA Internet Protocols,ℍ Proc. ACMSIGCOMM ′88 Symposium (Stanford, CA, Aug. 16-19, 1988), pp. 106–114

    Google Scholar 

  36. Comer, D.E. (1988) Internetworking with TCP/IP: Principles, Protocols and Architecture, Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  37. Postel, J. (1980) “Internetwork protocol approaches,” IEEE Trans. Commun Vol. COM-28, No. 4, pp. 604–619

    CrossRef  Google Scholar 

  38. Postel, J. (1981) “Transmission control protocol,” RFC 793 September (Network Information Center)

    Google Scholar 

  39. Cheriton, D. (1986) “VMTP: a protocol for the next generation of communication systems,” Proc. ACMSIGCOMM '′86 Symposium (Stowe, Vermont, Aug. 5-7, 1986), pp. 406–15

    Google Scholar 

  40. Cheriton, D. (1988) “VMTP: versatile message transaction protocol — protocol specification, ” Network Working Group Request for Comments, RFC 1045 (February 1988)

    Google Scholar 

  41. Cheriton, D. and Williamson, C. (1987) “Network measurement of the VMTP request-response protocol in the V distributed system,” Rep. STAN-CS-87-1145, Stanford Univ. (February 1987)

    Google Scholar 

  42. Protocol Engines, Inc., XTP Protocol Definition, Revision 3.6, 1991

    Google Scholar 

  43. Balraj, T.S. and Yemini, Y. (1992) “Putting the transport layer on VLSI— the PROMPT protocol chip” Proc. IFIP Workshop on Protocols for High-Speed Networks (Stockholm, Sweden, May 1992)

    Google Scholar 

  44. Gopal, Inder S. and Guerin, Roch A. (1992) “Network transparency: The plaNET approach,” Proc. IEEE Infocom ′92 (Florence, Italy, May 1992), pp. 590–601

    Google Scholar 

  45. Sunshine, C.A. and Dalai, Y.K. (1978) “Connection Management in Transport Protocols,” Computer Networks Vol. 2, pp. 454–473

    Google Scholar 

  46. Braden, R. (1992) “TIME-WATT Assassination Hazards in TCP,” RFC 1337 May (Network Information Center)

    Google Scholar 

  47. Eckberg, A.E., Doshi, B.T. and Zoccolillo, R. (1991) 73x201C;Controlling congestion in B-ISDN/ATM: Issues and strategies,” IEEE Commun. Magazine September, pp. 64–70

    Google Scholar 

  48. Minzer, S.E. (1989) “Broadband ISDN and asynchronous transfer mode (ATM),” IEEE Commun. Magazine Vol. 27, No. 9, pp. 17–24

    CrossRef  Google Scholar 

  49. Clark, D.D. (1982) “Window and Acknowledgement Strategy in TCP,” RFC 813 July (Network Information Center)

    Google Scholar 

  50. Donnann, R.A. (1984) “Method and System for Retransmitting Incorrectly Received Numbered Frames in a Data Transmission System,” United States Patent No. 4439859 (March 1984)

    Google Scholar 

  51. Sabnani, K. and Netravali, A. (1989) “A high-speed transport protocol for datagram/virtual-circuit networks,” It Proc. ACM SIGCOMM ′89 Symposium (Austin, TX, Sept 19-22, 1989), pp. 146–157

    Google Scholar 

  52. Giarrizzo, D., Kaiserswerth, M., Wicki, T. and Williamson, R. (1989) “high-speed parallel protocol implementation” Proc. IFIP Workshop on Protocols for High-Speed Networks (Rüschlikon, Switzerland, May 9-11, 1989), North Holland, Amsterdam, pp. 165–180

    Google Scholar 

  53. Fraser, A.G. and Marshall, W.T. (1989) “Data transport in a byte-stream network,” IEEE J. Selected Areas Commun Vol. SAC-7, No. 7, pp. 1020–1033

    CrossRef  Google Scholar 

  54. Bux, W., Kermani, P. and Kleinoeder, W. (1988) “Performance of an improved data link control protocol,” Proc. ICCC ′88 (Tel Aviv, Israel, Oct 30-Nov. 3, 1988), pp. 251–258

    Google Scholar 

  55. Kleinrock, L. (1992) “.The latency/bandwidth tradeoff in gigabit networks” IEEE Commun. Magazine April, pp. 36–40

    Google Scholar 

  56. Yazid, S. and Mouftah, H.T. (1992) “Congestion control methods for BISDN,” IEEE Commun. Magazine June, pp. 42–47

    Google Scholar 

  57. Gerla, M., and Kleinrock, L. (1982) “Flow control protocols,” in P.E. Green, Ed., Computer Network Architecture and Protocols Plenum Press, New York

    Google Scholar 

  58. Bertsekas, D. and Gallager, R., (1987) Data Networks Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  59. Bohn-Nielson, Annemarie (1991), “Resource Management,” COST 224 TD(90) 019

    Google Scholar 

  60. Nagle, J. (1984) “Congestion control in TCP/IP internetworks,” RFC 896 January (Network Information Center)

    Google Scholar 

  61. Fox, R. (1989) “TCP big window and NACK options,” RFC 1106 June (Network Information Center)

    Google Scholar 

  62. McKenzie, A., (1989) “A problem with the TCP big-window option,” RFC 1110 August (Network Information Center)

    Google Scholar 

  63. Special Issue on Exchange Network-Premises Network Interface J. Digital and Analog Communication Systems (April-June, 1991)

    Google Scholar 

  64. Fraser, A.G. and Morgan, S.P. (1984) “Queueing and framing disciplines for a mixture of data traffic types,” AT&T Bell Labs Tech. J, Vol. 63, No. 6, pp. 1061–1087

    Google Scholar 

  65. Morgan, S.P. (1988) “Window flow control in a trunked byte-stream virtual ciruit,” IEEE Trans. Commun Vol. 36, No. 7, pp. 816–825

    CrossRef  Google Scholar 

  66. Bricker, A., Landweber, L., Lebeck, T. and Vernon, M. (1986) “ISO transport protocol experiments,” Publication MTR-8600002, Mitre Corporation, Washington CCCI Division, McLean, VA

    Google Scholar 

  67. Colella, R., Aronoff, R. and Mills, K. (1985) “Performance improvements for ISO transport,” Proc. Ninth Data Communications Symposium (Whistler Mountain, British Columbia, September 10-13, 1985), in: ACM SIGCOMM Comp. Comm. Rev Vol.15, No. 5, pp. 9–16

    CrossRef  Google Scholar 

  68. Mitra, D. and Mitrani, I. (1990) “Asymptotic optimality of the go-back-n protocol in high-speed data with small buffers” Proc. Fourth Int’l Conf. on Data Communication Systems and Their Performance (Barcelona, June 1990), pp. 17–31, IFIP

    Google Scholar 

  69. ISO/IEC JTC 1/SC 6, “Proposal for a new work item: Connection oriented transport protocol specification,” ANSI, 1430 Broadway, New York, NY 10018, USA (1989)

    Google Scholar 

  70. Karn, P. and Patridge, C. (1987)“Improving round-trip time estimates in reliable transport protocols” Proc. ACM SIGCOMM ′87 Symposium pp. 2–7

    Google Scholar 

  71. Partridge, C, Ed. (1989) Innovations in Internetworking Artech House Books, London

    Google Scholar 

  72. Zhang, L. (1986) “Why TCP-timers don’t work well,” Proc. ACM SIGCOMM ′86 Symposium (Stowe, Vermont, Aug. 5-7, 1986), pp. 397–405

    Google Scholar 

  73. Leiner, B. (1988) “Critical Issues in High Bandwidth Networking,” RFC 1077 November (Network Information Center)

    Google Scholar 

  74. Cassel, L., Partridge, C. and Westcott, J. (1989) “Network management architectures and protocols: Problems and approaches,” IEEE JSAC on “Architecture and Protocols for Computer Networks: The State-of-the-Art” Vol. 7, No. 7, pp. 1104–1129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doeringer, W.A., Dykeman, H.D., Kaiserswerth, M., Meister, B.W., Rudin, H., Williamson, R. (1994). A Survey of Light-Weight Protocols for High-Speed Networks. In: Tantawy, A.N. (eds) High Performance Networks. The Springer International Series in Engineering and Computer Science, vol 237. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3194-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3194-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6401-6

  • Online ISBN: 978-1-4615-3194-4

  • eBook Packages: Springer Book Archive