Skip to main content

Abstract

In this chapter, we introduce a variety of digital BiCMOS circuit structures such as the totem-pole BiCMOS gate and the merged MOS/bipolar current mode circuits. This chapter starts with a brief comparison between MOS and bipolar devices in terms of their current drive capabilities. The advantage of using bipolar devices for the totem-pole structure is demonstrated in Section 7.2. In that, we study the DC and transient characteristics of the BiCMOS inverter. The transient behaviour is analyzed in detail to derive a delay model. This model is then used to understand the critical device and circuit parameters for the design of the BiCMOS gate. It also serves as the basis for a comparison between CMOS and BiCMOS for different loading conditions. In Section 7.3, we discuss the performance of conventional totem-pole circuits for low power supply voltage. Several full-swing BiCMOS structures, which are suitable for low voltage applications, are introduced. In Section 7.4, we also consider the use of BiCMOS for integrating CMOS with current mode logic in a single system. Some of the basic cells required for such applications are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Warner, Jr and R.D. Schrimpf, “BJT-MOSFET Transconductance Comparisons,”IEEE Trans. on Electron Devicespp. 1061–1065 (May 1987).

    Google Scholar 

  2. W.R. Burger, C. Lage, B. Landau, M. DeLong, and J. Small, “An Advanced 0.8 Micron Complementary BiCMOS Technology for Ultra-High Speed Circuit Performance,”Bipolar Circuits and Technology Meeting Tech. Dig.pp. 78–81 (1990).

    Google Scholar 

  3. H.C. Lin, J.C. Ho, R.R. Iyer, and K. Kwong, “CMOS-Bipolar Transistor Structure,”IEEE Trans. on Electron DevicesVol. ED-6, No. 11 pp. 9S Gate Array with Configurable 3-Port 4.6K SRAM,“IEEE Custom Integrated Circuits C45–951 (November 1969).

    Google Scholar 

  4. Y. Nishio, et al., “0.45ns 7K Hi-BiCMOonference Tech. Dig.pp. 203–204 (1987).

    Google Scholar 

  5. T. Ikeda, A. Watanabe, Y. Nishio, I. Masuda, N. Tamba, M. Okada, and K. Ogiue, “High-Speed BiCMOS Technology with a Buried Twin Well Structure,”IEEE Trans. on Electron DevicesVol. ED-34, No. 6 pp. 1304–1309 (June 1987).

    Article  Google Scholar 

  6. H. De Los Santos and B. Hoefflinger, “Optimization and Scaling of CMOSBipolar Drivers for VLSI Interconnects,”IEEE Trans. on Electron DevicesED-33, No. 11 pp. 1722–1730 (Nov. 1986).

    Article  Google Scholar 

  7. N. Weste and K. EshraghianPrinciples of CMOS VLSI DesignAddison-Wesley, Reading, MA (1985).

    Google Scholar 

  8. E.W. Greenich and K.L. McLaughlin, “Analysis and Characterization of BiCMOS for High Speed Digital Logic,” IEEE Journal of Solid-State Circuits, SC-23,No 2 pp. 566–572 (April 1988).

    Google Scholar 

  9. G.P. Rosseel and R.W. Dutton, “Infleunce of Device Parameters on the Switching Speed of BiCMOS Buffers,”IEEE Journal of Solid-State Circuits24, No 1 pp. 90–99 (Feb. 1989).

    Article  Google Scholar 

  10. P.L. Heedley and R.C. Jaeger, “An Analytical Model for BiCMOS Logic Transient Response Allowing Parameter Variations,”IEEE Custom Integrated Circuits Conference Tech. Dig.(1989).

    Google Scholar 

  11. P. Raje, K. Cham and K. Saraswat, `BiCMOS Gate Performance Optimization using Unified Delay Model,“Symposium on VLSI Technology Tech. Dig.pp. 91–92 (1990).

    Google Scholar 

  12. C.H. Diaz, S-M. Kang and Y. Leblebici, “An Accurate Analytical Delay Model for BiCMOS Driver Circuits,”IEEE Trans. on Computer Aided Designpp. 577–588 (1991).

    Google Scholar 

  13. M. Fujishima, K. Asada and T. Sugano, “Appraisal of BiCMOS from Circuit Voltage and DelayTime ” Symposium on VLSI Circuits Technology Tech. Dig. pp. 91–92 (1990).

    Google Scholar 

  14. S.H.K. Embabi, A. Bellaouar and M. I. Elmasry, “Analysis and Optimization of BiCMOS Digital Circuit Structures,”IEEE Journal of Solid-State Circuitspp. 676–679 (April 1991).

    Google Scholar 

  15. J. Wamock et al., “A 27 GHz 20 ps PNP Technology,”International Electron Devices Meeting Tech. Dig.(1989).

    Google Scholar 

  16. D. de Lang, E. Bladt, A. v.d. Goor and W. Josquin, “Integration of Vertical PNP Transistors in a Double-Polysilicon BI-CMOS Process,”Bipolar Circuit and Technology Meeting Tech. Dig.(1989).

    Google Scholar 

  17. C. Yamaguchi, Y. Kobayashi and T. Sakai, “A 7GHz PNP Transistor for Complementary Bipolar LSI,”Symposium on VLSI Technology Tech. Dig.pp. 39–40 (1987).

    Google Scholar 

  18. P-F Lu and D.D. Tang, “Simulations of Collector resistance of PNP Transistors for Complementary Bipolar Technology,”Solid State Electronics32 no.8 pp. 675–678 (1989).

    Article  Google Scholar 

  19. A.R. AlvarezBiCMOS Technology and ApplicationsKluwer Academic Pub. (1989).

    Google Scholar 

  20. Y. Nishio, et al., “A BiCMOS Logic Gate with Positive Feedback,”International Solid-State Circuits Conference Tech. Dig.pp. 116–117 (Feb. 1989).

    Google Scholar 

  21. H.J. Shin, “Full-Swing Logic Circuits in a Complementary BiCMOS Technology,”Symposium on VLSI Circuits Tech. Dig.pp. 89–90 (1990).

    Google Scholar 

  22. N. Rovedo et al., “Process Design for Mergerd Complementary BiCMOS,”International Electron Devices Meeting Tech. Dig.pp. 485–488 (1990).

    Google Scholar 

  23. H.J. Shin, “Performance Comparison of Driver Configurations and Full-Swing Techniques for BiCMOS Logic Circuits,”IEEE Journal of Solid-State CircuitVol. 25, No.3 pp. 863–865 (June 1990).

    Article  Google Scholar 

  24. M.I. Elmasry, “Multidrain NMOS for VLSI Logic Design,”IEEE Journal of Solid-State Circuitspp. 779–781 (April, 1982).

    Google Scholar 

  25. S.H.K. Embabi, A. Bellaouar, M.I. Elmasry, and R.A. Hadaway, “New FullVoltage-Swing BiCMOS Buffers,”IEEE Journal of Solid-State CircuitsVol. SC-26 pp. 150–153 (Feb. 1991).

    Article  Google Scholar 

  26. P. Raje, K. Saraswat and K. Cham, “A New BiCMOS/CMOS Gate Comparison/Design Methodology and Supply Voltage Scaling Model,”International Electron Devices Meeting Tech. Dig.pp. 433–436 (Dec. 1989).

    Chapter  Google Scholar 

  27. W. Heimsch, et al., “Merged CMOS/Bipolar Current Switch Logic (MCSL),”IEEE Journal of Solid-State CircuitsVol. SC-24 pp. 1307–1311 (Oct. 1989).

    Article  Google Scholar 

  28. M. Elrabaa and M.I. Elmasry, “Multi-Emitter BiCMOS CML Circuits,”IEEE Journal of Solid-State Circuitspp. 454–458 (March 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Embabi, S.H.K., Bellaouar, A., Elmasry, M.I. (1993). BiCMOS Digital Integrated Circuits. In: Digital BiCMOS Integrated Circuit Design. The Springer International Series in Engineering and Computer Science, vol 193. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3174-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3174-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6391-0

  • Online ISBN: 978-1-4615-3174-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics