Skip to main content

Abstract

This chapter serves as an introduction to IC fabrication of CMOS, bipolar and BiCMOS devices. Section 2.1. is a review of CMOS process technologies. Examples for an N-well CMOS process and a twin-tub CMOS process are considered. Section 2.2. deals with bipolar technology with emphasis on advanced bipolar structures. The topic of the isolation techniques used for both bipolar and CMOS is addressed in Section 2.3. In Section 2.4. we discuss the similarities between advanced CMOS and advanced bipolar transistor structures to demonstrate how both technologies are indeed converging. The BiCMOS technologies are introduced in Section 2.5. with emphasis on CMOS-based processes. Three BiCMOS technologies, with different performance/cost, are presented. Section 2.6. introduces a complementary BiCMOS structure, where a vertical isolated PNP transistor is merged with an NPN transistor in a CMOS process. Finally, in Section 2.7, a table with the design rules of a 0.81.μm BiCMOS process is supplied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.M. Wanlass, and C.T. Sah, “Nanowatt Logic using Filed-Effect MOS Triodes,” International Solid-State Circuits Conference Tech. Dig., p. 32 (1963).

    Google Scholar 

  2. L.C. Parrillo, R.S. Payne, R.E. Davis, G.W. Reutlinger, and R.L. Field, “Twin-Tub CMOS: A Technology for VLSI Circuits,” International Electron Devices Meeting Tech. Dig., pp. 752–755 (1980).

    Google Scholar 

  3. K. Ehinger et al., “Narrow BF2 Implanted Bases For 35 GHz/24ps High-Speed Si Bipolar Technology,” International Electron Devices Meeting Tech. Dig., pp. 459–462 (1991).

    Google Scholar 

  4. T.H. Ning, and D.D. Tang, “Bipolar Trends,” Proc. IEEE, Vol. 74, No. 12 pp. 1669–1677 (December 1986).

    Article  Google Scholar 

  5. T. Nakamura, T. Miyazaki, S. Takahashi, T. Kure, T. Okabe, and M. Nagata, “Self-Aligned Bipolar Transistor with Polysilicon Sidewall Base Electrode for High Packing Density and High Speed,” IEEE Journal of Solid-State Circuits, Vol. SC-17, No. 2 pp. 226–230 (April 1982).

    Article  Google Scholar 

  6. T.H. Ning, and R. D. Isaac, “Effect of Emitter Contact on Current Gain of Silicon Bipolar Devices,” IEEE Electron Device Letters, ED-27 pp. 2051–2055 (Nov. 1980).

    Article  Google Scholar 

  7. A.K. Kapoor and D.J. Roulston, Polysilicon Emitter Bipolar Transistors, IEEE Press (1989).

    Google Scholar 

  8. M.I. Elmasry, Digital Bipolar Integrated Circuits, John Wiley Sons, New York (1983).

    Google Scholar 

  9. E. Kooi, J.G. Van Lierop, and J.A. Appels, “Formation of Silicon Nitride at a Si-S¨ª02 Interface during Local Oxidation of Silicon and During Heat Treatment of Oxidized Silicon in NH 3 Gaz,“ J. Electrochem. Soc., Vol. 123 p. 11–17 (1976).

    Article  Google Scholar 

  10. R.D. Rung, H. Momose, and Y. Nagakubo, “Deep-Trench Isolated CMOS Devices,” International Electron Devices Meeting Tech. Dig., p. 6 (1982).

    Google Scholar 

  11. T. Yamaguchi, S. Morimoto, G. Kawamoto, H.K. Park, and G.C. Eiden, “High-Speed Latch-up Free 0.5 pm-Channel CMOS using Self-Aligned Ti-Si and Deep-Trench Isolation Technologies,” International Electron Devices Meeting Tech. Dig., p. 522 (1983).

    Google Scholar 

  12. R.D. Rung, “Trench Isolation Prospects for Application in CMOS VLSI,” International Electron Devices Meeting Tech. Dig., pp. 574–577 (1984).

    Google Scholar 

  13. H. Mikoshiba, T. Homma, and K. Hamano, “A New Trench Isolation Technology as a Replacement for LOCOS,” International Electron Devices Meeting Tech. Dig., pp. 578–581 (1984).

    Google Scholar 

  14. P. Singer, “Selective Epitaxial Growth Finds New Applications,” Semiconductor International, p. 15 (January 1988).

    Google Scholar 

  15. R.A. Chapman, et al., “An 0.8 pm CMOS Technology for High-Performance Logic Applications,” International Electron Devices Meeting Tech. Dig., p. 362 (1987).

    Google Scholar 

  16. K.Y. Chiu, R. Fang, J. Lin, and J.L. Moll, “The SWAMI- A Defect Free and Near-Zero Bird’s Beak Local Oxidation Technology for VLSI,” Symp. on VLSI Technology Tech. Dig., pp. 28–29 (1982).

    Google Scholar 

  17. K.Y. Chiu, J.L. Moll, and J. Manoliu, “A Bird’s Beak Free Local Oxidation Technology Feasible for VLSI Circuits Fabrication,” IEEE Trans. on Electron Devices, Vol. ED-29 pp. 536–540 (1982).

    Article  Google Scholar 

  18. J. Hui, P. Van de Voorde and J. Moll, “Scaling Limitations of Submicron Local Oxidation Technology,” International Electron Devices Meeting Tech. Dig., pp. 392- (1985).

    Google Scholar 

  19. H.B. Pogge, “Trench Isolation Technology,” Bipolar Circuits and Technology Meeting Tech. Dig., pp. 18–25 (September 1990).

    Google Scholar 

  20. Y. Niitsu, “Latch-up Free CMOS Structure using Shallow Trench Isolation,” International Electron Devices Meeting Tech. Dig., p. 509 (December 1985).

    Google Scholar 

  21. H. Yamamoto, O. Mizuno, T. Kubota, M. Nakamae, H. Shiraki, and Y. Ikushima, “High-Speed Performance of a Basic ECL Gate with 1.25 Micron Design Rule,” Symp. on VLSI Technology Tech. Dig., pp. 38–39 (1981).

    Google Scholar 

  22. Y. Tamald, T. Shiba, N. Honma, S. Mizuo, and A. Hayazaka, “New U-Groove Isolation Technology for High-Speed Bipolar Memory,” Symp. VLSI Technology Tech. Dig., pp. 24–25 (1983).

    Google Scholar 

  23. D.D. Tang, P.M. Solomon, T.H. Ning, R.D. Isaac, and R.E. Burger, “1.25 pm Deep-Groove-Isolated Self-Aligned Bipolar Circuits,” IEEE Journal of Solid-State Circuits, Vol. SC-17 pp. 925–931 (1982).

    Article  Google Scholar 

  24. H.C. Lin, J.C. Ho, R.R. Iyer, and K. Kwong, “CMOS-Bipolar Transistor Structure,” IEEE Trans. on Electron Devices, Vol. ED-6, No. 11 pp. 945–951 (November 1969).

    Google Scholar 

  25. H. Momose, “High Performance 1.0 Micron N-Well CMOS/Bipolar Technology,” Symp. on VLSI Technology Tech. Dig., pp. 40–41 (1983).

    Google Scholar 

  26. T. Ikeda, A. Watanabe, Y. Nishio, I. Masuda, N. Tamba, M. Okada, and K. Ogiue, “High-Speed BiCMOS Technology with a Buried Twin Well Structure,” IEEE Trans. on Electron Devices, Vol ED-34, No. 6 pp. 1304–1309 (June 1987).

    Article  Google Scholar 

  27. H. Momose, K.M. Cham, C.I. Drowley, H.R. Grinolds, and H.S. Fu, “0.5 Micron BiCMOS Technology,” International Electron Devices Meeting Tech. Dig., pp. 838–840 (Dec. 1987).

    Google Scholar 

  28. A.R. Alvarez, J. Teplik, D.W. Schucker, T. Hulseweh, H.B. Liang, M. Dydyk,and I. Rahim, “Second Generation BiCMOS Gate Array Technology,” Bipolar Circuits and Technology Meeting Tech. Dig., pp. 113–117 (1987).

    Google Scholar 

  29. B. Bastani, C. Lage, L. Wong, J. Small, R. Lahri, L. Bouknight, T. Bowman, J. Manoliu, and T. Tuntasood, “Advanced 1 Micron BiCMOS Technology for High Speed 256k SRAM’s,” Symp. on VLSI Technology Tech. Dig., pp. 41–42 (1987).

    Google Scholar 

  30. T. Yamaguchi and T.H. Yuzuriha, “Process Integration and Device Performance of a Submicron BiCMOS with 16-GHz f, Double Poly-Bipolar Devices,” IEEE Trans. on Electron Devices, 36, No. 5 pp. 890–896 (May 1989).

    Article  Google Scholar 

  31. Shin, “Performance Comparison of Driver Configurations and Full-Swing Techniques for BiCMOS Logic Circuits,” IEEE Journal of Solid-State Circuit, Vol. 25, No3 pp. 863–865 (June 1990).

    Article  Google Scholar 

  32. S.H.K. Embabi, A. Bellaouar, M.I. Elmasry, and R.A. Hadaway, “New FullVoltage-Swing BiCMOS Buffers,” IEEE Journal of Solid-State Circuits, Vol. SC-26 pp. 150–153 (Feb. 1991).

    Article  Google Scholar 

  33. Y. Kobayashi, C. Yamaguchi, Y. Amemiya, and T. Sakai, “High Performance LSI Process Technology: SST CBiCMOS,” International Electron Devices Meeting Tech. Dig., pp. 760–763 (December 1988).

    Google Scholar 

  34. K. Higashitani, H. Honda, K. Ueda, M. Hatanaka, and S. Nagao, “A Novel CBi-CMOS Technology by DIIP Process,” Symp. on VLSI Technology, pp. 77–78 (1990).

    Google Scholar 

  35. T. Maeda, K. Ishimaru, and H. Momose, “Lower Submicron FCBiMOS (Fully Complementary BiMOS) Process with RTP and MeV Implanted 5GHz Vertical PNP Transistor,” Symp. on VLSI Technology, pp. 79–80 (1990).

    Google Scholar 

  36. W.R. Burger, C. Lage, B. Landau, M. DeLong, and J. Small, “An Advanced 0.8 Micron Complementary BiCMOS Technology for Ultra-High Speed Circuit Performance,” Bipolar Circuits and Technology Meeting Tech. Dig., pp. 78–81 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Embabi, S.H.K., Bellaouar, A., Elmasry, M.I. (1993). Process Technology. In: Digital BiCMOS Integrated Circuit Design. The Springer International Series in Engineering and Computer Science, vol 193. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3174-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3174-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6391-0

  • Online ISBN: 978-1-4615-3174-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics