Skip to main content

Morphological Analysis of Discrete Random Shapes

  • Chapter
Mathematical Nonlinear Image Processing
  • 82 Accesses

Abstract

In this paper I discuss a number of theoretical issues regarding the morphological analysis of discrete random shapes by means of Matheron’s random set theory. I revisit this theory by limiting myself to the discrete case, since most image data are available in a discrete form. Although it may seem that the transition from the continuous to the discrete case is straightforward (since most of Matheron’s theory is general enough to incorporate the discrete case as a special case), this transition is often challenging and full of exciting and, surprisingly, pleasant results. I introduce the concept of the cumulative-distribution functional of a discrete random set and review some fundamental properties of the capacity functional (a fundamental statistical quantity that uniquely defines a random set and relates random set theory to mathematical morphology). In analogy to a recent result and under a natural boundness condition, I show that there exists a one-to-one correspondence between the probability-mass function of a discrete binary random field and the corresponding cumulative-distribution functional. The relationship between the cumulative-distribution functional and the capacity functional of a discrete random set is also established. The cumulative-distribution and capacity functionals are related to the higher-order moments of a discrete binary random field, and, therefore, their computation is equivalent to computing these moments. A brief discussion of how to perform such computations for a certain class of discrete random sets is provided. The capacity functional of a morphologically transformed, continuous random set cannot be associated to the capacity functional of the random set itself, except in the case of dilation. I show that the derivation of such an association is possible in the discrete case and for the cases of dilation and erosion and more complicated morphological transformations, such as opening and closing. These relationships are then used to derive a fundamental result regarding the statistical behavior of opening and closing morphological filters. I also show that the probability-mass function of a discrete binary random field may be expressed in terms of the cumulative-distribution functional or the capacity functional of a morphologically transformed discrete random set by means of a hit-or-miss transformation. I also introduce moments for discrete random sets, which permit generalization of the concepts of autocorrelation and contact distribution. Furthermore, I demonstrate the fact that the class of opening-based size distributions, introduced axiomatically by Matheron, are higher-order moments of a discrete random set, therefore statistically demonstrating that size distributions are good statistical summaries for shape. Finally, convex random sets are viewed in the discrete domain. My final result regarding convexity, is similar to Matheron’s. However, the tools used here for the derivation of such a result are different from the ones used by Matheron, whose approach to this subject is limited to the continuous case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Grenander, Lectures in Pattern Theory, vols. 1–3, Springer-Verlag: New York, 1976, 1978, 1981.

    Google Scholar 

  2. J. Serra, Image Analysis and Mathematical Morphology, Academic Press: London, 1982.

    MATH  Google Scholar 

  3. A.K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall: Englewood Cliffs, NJ, 1989.

    MATH  Google Scholar 

  4. B.D. Ripley, “Modelling spatial patterns (with discussion),” J. Roy. Statist. Soc. Ser. B, vol. 39, pp. 172–212, 1977.

    MathSciNet  Google Scholar 

  5. D. Stoyan, “Applied stochastic geometry: a survey,” Biomed. J., vol. 21, pp. 693–715, 1979.

    MathSciNet  MATH  Google Scholar 

  6. R.E. Miles, “A survey of geometrical probability in the plane, with emphasis on stochastic image modelling,” Comput. Graph. Image Process., vol. 12, pp. 1–24, 1980.

    Article  Google Scholar 

  7. A. Baddeley, “Stochastic geometry: an introduction and reading-list,” Internat. Statist. Rev., vol. 50, pp. 179–193, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  8. A.J. Baddeley, “Stochastic geometry and image analysis,” CWI Newsletter, no. 4, pp. 2–20, 1984.

    MathSciNet  Google Scholar 

  9. D. Stoyan, W.S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications, John Wiley: Berlin, 1987.

    MATH  Google Scholar 

  10. D.L. Snyder and M.I. Miller, Random Point Processes in Time and Space, Springer-Verlag: New York, 1991.

    Book  MATH  Google Scholar 

  11. N. Cressie, Statistics of Spatial Data, John Wiley: New York, 1991.

    Google Scholar 

  12. N. Ahuja and A. Rosenfeld, “Mosaic models for texture,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 3, pp. 1–10, 1981.

    Article  Google Scholar 

  13. N. Ahuja and B.J. Schachter, Pattern Models, John Wiley: New York, 1983.

    Google Scholar 

  14. J.W. Modestino, R.W. Fries, and A.L. Vickers, “Stochastic image models generated by random tessellations of the plane,” Comput. Graph. Image Process., vol. 12, pp. 74–98, 1980.

    Article  Google Scholar 

  15. J. Woods, “Two-dimensional discrete Markovian fields,” IEEE Trans., Informat. Theory, vol. 18, pp. 232–240, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Besag, “Spatial interaction and the statistical analysis of lattice systems (with discussion),” J. Roy. Statist. Soc. Ser. B, vol. 36, pp. 192–236, 1974.

    MathSciNet  MATH  Google Scholar 

  17. R. Chellappa, “Two-dimensional discrete Gaussian Markov random field models for image processing,” in Progress in Pattern Recognition, vol. 2, L. Kanal and A. Rosenfeld, eds., North Holland: New York, 1985, pp. 79–112.

    Google Scholar 

  18. D. Geman and S. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 6, pp. 721–741, 1984.

    Article  MATH  Google Scholar 

  19. B.D. Ripley, “Statistics, images, and pattern recognition,” Canad. J. Statist., vol. 14, pp. 83–111, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  20. B.D. Ripley, Statistical Inference for Spatial Processes. Cambridge University Press: Cambridge, England, 1988.

    Book  Google Scholar 

  21. U. Grenander, “The 1985 Rietz Lecture: advances in pattern theory,” Ann. Statist., vol. 17, pp. 1–30, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  22. R.C. Dubes and A.K. Jain, “Random field models in image analysis,” J. Appl. Statist., vol. 16, pp. 131–164, 1989.

    Article  Google Scholar 

  23. Y. Amit, U. Grenander, and M. Piccioni, “Structural image restoration through deformable templates,” J. Am. Statist. Assoc., vol. 86, pp. 376–387, 1991.

    Article  Google Scholar 

  24. U. Grenander, Y. Chow, and D.M. Keenan, Hands: A Pattern Theoretic Study of Biological Shapes, Springer-Verlag: New York, 1991.

    Google Scholar 

  25. D.G. Kendall, “A survey of the statistical theory of shape (with comments),” Statist. Sci., vol. 4, pp. 87–120, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  26. I.L. Dryden and K.V. Mardia, “Size and shape analysis of landmark data,” Biometrika, vol. 79, pp. 57–68, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  27. D.G. Kendall, “Foundations of a theory of random sets,” Stochastic Geometry, E.F. Harding and D.G. Kendall, eds., John Wiley: London, 1974, pp. 322–376.

    Google Scholar 

  28. G. Matheron, Random Sets and Integral Geometry, John Wiley: New York, 1975.

    MATH  Google Scholar 

  29. P.J. Davy, “Aspects of random set theory,” Adv. AppL. Probab., vol. 10 (suppl.), pp. 28–35, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Serra, “The Boolean model and random sets, ” Comput. Graph. Image Process., vol. 12, pp. 99–126, 1980.

    Article  Google Scholar 

  31. N. Cressie and G.M. Laslett, “Random set theory and problems of modeling,” SIAM Rev, vol. 29, pp. 557–574, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Serra (ed.), Image Analysis and Mathematical Morphology, Vol. 2: Theoretical Advances, Academic Press: New York, 1988.

    Google Scholar 

  33. R.M. Haralick, S.R. Sternberg, and X. Zhuang, “Image analysis using mathematical morphology,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 9, pp. 532–550, 1987.

    Article  Google Scholar 

  34. P. Maragos and R.W. Schafer, “Morphological systems for multidimensional signal processing,” Proc. IEEE, vol. 78, pp. 690–710, 1990.

    Article  Google Scholar 

  35. E.R. Dougherty, An Introduction to Morphological Image Processing, SPIE Optical Engineering Press: Bellingham, WA, 1992.

    Google Scholar 

  36. J. Goutsias and C. Wen, “Discrete random set models for shape synthesis and analysis,” Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1606, pp. 174–185, 1991.

    Google Scholar 

  37. A. Yuille, L. Vincent, and D. Geiger, “Statistical morphology,” Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1568, pp. 271–282, 1991.

    Google Scholar 

  38. E Chen and P.A. Kelly, “Algorithms for generating and segmenting morphologically smooth binary images,” Proc. 26th Conf. on Information Sciences and Systems, Princeton, NJ, March 18–20, 1992, pp. 902–906.

    Google Scholar 

  39. A. Yuille, L. Vincent, and D. Geiger, “Statistical morphology and Bayesian reconstruction,” J. Math. Imag. Vis., vol. 1, No. 3, 1992.

    Google Scholar 

  40. E Preteux, “Advanced mathematical morphology: from an algebraic to a stochastic point of view,” Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1769, pp. 44–58, 1992.

    MathSciNet  Google Scholar 

  41. G.S. Watson, “Mathematical morphology,” in A Survey of Statistical Design and Linear Models, J.N. Srivastava, ed., North Holland: New York, 1975, pp. 547–553.

    Google Scholar 

  42. A. Rosenfeld, “The fuzzy geometry of image subsets,” Patt. Recog. Lett., vol. 2, pp. 311–317, 1984.

    Article  Google Scholar 

  43. D. Sinha and E.R. Dougherty, “Fuzzy mathematical morphology,” J. Vis. Commun. Image Rep., vol. 3, pp. 286–302, 1992.

    Article  Google Scholar 

  44. G. Choquet, “Theory of capacities,” Ann. Inst. Fourier,vol. 5, pp. 131–295, 1953–1954.

    Article  MathSciNet  Google Scholar 

  45. G. Matheron, “Random sets theory and its applications to stereology,” J. Micros., vol. 95, pp. 15–23, 1972.

    Article  Google Scholar 

  46. B.D. Ripley, Spatial Statistics, John Wiley: New York, 1981.

    Book  MATH  Google Scholar 

  47. D. Stoyan, “Stereology and stochastic geometry,” Internat. Statist. Rev., vol. 58, pp. 227–242, 1990.

    Article  MATH  Google Scholar 

  48. D. Schonfeld and J. Goutsias, “Optimal morphological pattern restoration from noisy binary images,” IEEE Trans. Patt. Anal. Mach. IntelL, vol. 13, pp. 14–29, 1991.

    Article  Google Scholar 

  49. D. Schonfeld and J. Goutsias, “On the morphological representation of binary images in a noisy environment,” J. Vis. Commun. Image Rep., vol. 2, pp. 17–30, 1991.

    Article  Google Scholar 

  50. N.D. Sidiropoulos, “Statistical inference, filtering, and modeling of discrete random sets,” Ph.D. thesis, Department of Electrical Engineering, University of Maryland, College Park, 1992.

    Google Scholar 

  51. G.S. Watson, “Texture analysis,” Geol. Soc. Am. Bull., vol. 142, pp. 367–391, 1975.

    Google Scholar 

  52. N. Cressie and F.L. Hulting, “A special statistical analysis of tumor growth,” J. Am. Statist. Assoc., vol. 87, pp. 279–283, 1992.

    Article  Google Scholar 

  53. P.J. Diggle, “Binary mosaics and the spatial pattern of heather,” Biometrics, vol. 37, pp. 531–539, 1981.

    Article  Google Scholar 

  54. D. Jeulin, “Multi-component random models for the description of complex microstructures,” Mikroskopie, vol. 37, pp. 130–137, 1980.

    Google Scholar 

  55. D. Jeulin, “Random structure analysis and modelling by mathematical morphology,” Proc. 5th Internat. Symp. Continuum Models of Discrete Systems, Nottingham, July 14–20, 1985, pp. 217–226.

    Google Scholar 

  56. D. Jeulin, “Mathematical morphology and materials image analysis,” Scanning Micros., vol. 2 (suppl.), pp. 165–183, 1988.

    Google Scholar 

  57. J. Masounave, A.L. Rollin, and R. Denis, “Prediction of permeability of non-woven geotextiles from morphometry analysis,” J. Micros.,vol. 121, pp. 99–110, 1981.

    Article  Google Scholar 

  58. D. Jeulin, “Some aspects of mathematical morphology for physical applications,” Physica A, vol. 157, pp. 13–20, 1989.

    Article  Google Scholar 

  59. D. Jeulin and P. Jeulin, “Synthesis of rough surfaces by random morphological models,” Stereol. Iugosl., vol. 3 (suppl. 1), pp. 239–246, 1981.

    Google Scholar 

  60. J. Serra, “Boolean random functions,” J. Micros., vol. 156, pp. 41–63, 1988.

    Article  Google Scholar 

  61. D. Jeulin, “Morphological modeling of images by sequential random functions,” Signal Process., vol. 16, pp. 403–431, 1989.

    Article  MathSciNet  Google Scholar 

  62. J. Serra, “Boolean random functions,” in Image Analysis and Mathematical Morphology, Vol. 2: Theoretical Advances, J. Serra, ed., Academic Press: New York, 1988, pp. 317–342.

    Google Scholar 

  63. F. Preteux and M. Schmitt, “Boolean texture analysis and synthesis,” Image Analysis and Mathematical Morphology, Vol. 2: Theoretical Advances, J Serra, ed., Academic Press: New York, 1988, pp. 377–400.

    Google Scholar 

  64. R.M. Haralick, X. Zhuang, C. Lin, and J.S.J. Lee, “The digital morphological sampling theorem,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, pp. 2067–2090, 1989.

    Article  MATH  Google Scholar 

  65. G. Bernroider, “The foundation of computational geometry: theory and application of the point-lattice-concept within modern structure analysis,” in Lecture Notes in Biomathematics, vol. 23, R.E. Miles and J. Serra, eds., Springer-Verlag: Berlin, 1978, pp. 153–170.

    Google Scholar 

  66. H.J.A.M. Heijmans and A. Toet, “Morphological sampling,” Comput. Vis. Graph. Image Process., Image Understanding, vol. 54, pp. 384–400, 1991.

    MATH  Google Scholar 

  67. B.D. Ripley, “Locally finite random sets: foundations for point process theory,” Ann. Probab., vol. 4, pp. 983–994, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  68. B.D. Ripley, “The foundations of stochastic geometry,” Ann. Probab., vol. 4, pp. 995–998, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  69. B.D. Ripley, “On stationarity and superposition of point processes,” Ann. Probab., vol. 4, pp. 999–1005, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Baudin, “Multidimensional point processes and random closed sets,” J. Appt Probab., vol. 21, pp. 173–178, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  71. R.J. Adler, The Geometry of Random Fields, John Wiley: New York, 1981.

    MATH  Google Scholar 

  72. P. Billingsley, Probability and Measure, 2nd ed., John Wiley: New York, 1986.

    MATH  Google Scholar 

  73. G. Birkhoff, Lattice Theory, 3rd ed. American Mathematical Society: Providence, RI, 1984.

    Google Scholar 

  74. H.J.A.M. Heijmans and C. Ronse, “The algebraic basis of mathematical morphology. I. Dilations and erosions,” Computer Vis. Graph. Image Process., vol. 50, pp. 245–295, 1990.

    Article  MATH  Google Scholar 

  75. J. Goutsias, “Modeling random shapes: an introduction to random set theory,” to appear in Mathematical Morphology: Theory and Hardware, R.M. Haralick, ed., Oxford University Press: New York, 1993.

    Google Scholar 

  76. J. Goutsias, “Mutually compatible Gibbs random fields,” IEEE Trans. Informat. Theory, vol. 35, pp. 1233–1249, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  77. J. Goutsias, “Unilateral approximation of Gibbs random field images,” Comput. Vis. Graph. Image Process., Graphical Models and Image Processing, vol. 53, pp. 240–257, 1991.

    MATH  Google Scholar 

  78. D.K. Pickard, “A curious binary lattice process,” J. Appl. Probab., vol. 14, pp. 717–731, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  79. D.K. Pickard, “Unilateral Ising models,” Adv. Appl. Probab., vol. 10 (suppl.), pp. 58–64, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  80. D.K. Pickard, “Unilateral Markov fields,” Adv. Appl. Probab., vol. 12, pp. 655–671, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  81. C.J. Geyer and E.A. Thompson, “Constrained Monte Carlo maximum likelihood for dependent data (with discussion),” J. Roy. Statist. Soc. Ser. B, vol. 54, pp. 657–699, 1992.

    MathSciNet  Google Scholar 

  82. M. Potamianos and J. Goutsias, “Partition function estimation of Gibbs random field imagés using Monte Carlo simulations,” 1993, to appear, IEEE Trans. Informat. Theory.

    Google Scholar 

  83. K.S. Shanmugan and A.M. Breipohl, Random Signals: Detection,Estimation, and Data Analysis, John Wiley: New York, 1988.

    Google Scholar 

  84. R.L. Stevenson and G.R. Arce, “Morphological filters: statistics and further syntactic properties,” IEEE Trans. Circuits Syst., vol. 34, pp. 1292–1305, 1987.

    Article  Google Scholar 

  85. D.L.B. Jupp, A.H. Strahler, and C.E. Woodcock, “Auto-correlation and regularization in digital images I. Basic theory,” IEEE Trans. Geosci. Remote Sensing, vol. 26, pp. 463–473, 1988.

    Article  Google Scholar 

  86. D.L.B. Jupp, A.H. Strahler, and C.E. Woodcock, “Auto-correlation and regularization in digital images H. Simple image models,” IEEE Trans. Geosci. Remote Sensing, vol. 27, pp. 247–258, 1989.

    Article  Google Scholar 

  87. T.Y. Kong and A. Rosenfeld, “Digital topology: introduction and survey,” Comput. Vis. Graph. Image Process., vol. 48, pp. 357–393, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goutsias, J. (1993). Morphological Analysis of Discrete Random Shapes. In: Dougherty, E.R., Astola, J. (eds) Mathematical Nonlinear Image Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3148-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3148-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6378-1

  • Online ISBN: 978-1-4615-3148-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics