Distributed Dynamic Channel Allocation Algorithms for Microcellular Systems

  • L. J. CiminiJr.
  • G. J. Foschini
  • C.-L. I
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 217)


Microcellular systems offer the potential for substantial increases in capacity. However, existing frequency planning and network control are impractical. A solution to the network management problems created by the use of microcells is dynamic channel allocation (every channel available for use in every cell) with decentralized control (decisions made by the mobiles or portables rather than by a central switch). By addressing elemental situations, we show that microcellular systems can self-organize, with little loss in capacity in comparison to the best globally coordinated channel selection. Moreover, this can be done by using simple channel-allocation algorithms, with the mobile or portable unit making autonomous decisions based only on local measurements.


Linear Array Channel Assignment Probabilistic Algorithm Maximum Packing Elemental Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. H. MacDonald, “The Cellular Concept”, Bell Sys. Tech. J., Vol. 58, No. 1, Part 3, Jan. 1979, pp. 15–41.Google Scholar
  2. 2.
    S. T. S. Chia, R. Steele, E. Green, and A. Baran, “Propagation and BER Measurements for a Microcellular System”, J. of IERE, Vol. 57, No. 6, Nov./Dec. 1987, pp. S255–S266.Google Scholar
  3. 3.
    D. A. McFarlane and S. T. S. Chia, “Microcellular Mobile Radio Systems”, Br. Telecom. Tech. J., Jan. 1990, pp.12: 79–84.Google Scholar
  4. 4.
    F. Lotse and A. Wejke, “Propagation Measurements for Microcells in Central Stockholm”, Proc. of VTC’90, pp. 539–541.Google Scholar
  5. 5.
    N. Amitay, L. J. Greenstein, and G. J. Owens, “Measurement-Based Estimates of BER Performance in Urban LOS Microcells at 900 MHz”, Proc. of VTC’91, pp. 904–909.Google Scholar
  6. 6.
    A. J. Rustako, Jr., N. Amitay, G. J. Owens, and R. S. Roman, “Radio Propagation Measurements at Microwave Frequencies for LOS Microcellular Mobile and Personal Communications”, IEEE Trans. on Veh. Tech., Vol. 40, No. 1, Feb. 1991, pp. 203–210.CrossRefGoogle Scholar
  7. 7.
    R. Beck and H. Panzer, “Strategies for Handover and DCA in Micro-Cellular Mobile Radio Systems”, “Proc. of VTC’89”, pp. 178–185.Google Scholar
  8. 8.
    H. Panzer and R. Beck, “Adaptive Resource Allocation in Metropolitan Area Cellular Mobile Radio Systems”, Proc. of VTC’90,pp. 638–645.Google Scholar
  9. 9.
    I. Horikawa and M. Himno, “A Multi-Carrier Switching TDMATDD Microcell Telecommunications System”, Proc. of VTC’90, pp. 167–171.Google Scholar
  10. 10.
    M. Yokoyama, “Decentralization and Distribution in Network Control of Mobile Radio Systems”, Trans. of IECICE, Vol. E 73, No. 10, Oct. 1990, pp. 1579–1586.Google Scholar
  11. 11.
    D. Akerberg, “Properties of a TDMA Picocellular Office Communication System”, Proc. of VTC’89, pp. 186–191.Google Scholar
  12. 12.
    C. Buckingham, G. K. Wolterink, and D. Akerberg, “A Business Cordless PABX Telephone System on 800 MHZ Based on the DECT Technology”, IEEE Commun. Mag., Jan. 1991, pp. 105–110.Google Scholar
  13. 13.
    J. C.-I. Chuang, “Autonomous Frequency Assignment and Access for TDMA Personal Portable Radio Communications”, Proc. of VTC’91, pp. 699–703.Google Scholar
  14. 14.
    B. Gudmundson and O. Grimlund, “Handoff in Microcellular Based Personal Telephone Systems”, Second Rutgers Workshop on Third Generation Wireless Information Networks, Oct.19, 1990, pp. 160–171.Google Scholar
  15. 15.
    C.-L. 1, L. J. Greenstein, and R. D. Gitlin, “A Microcell/Macrocell Architecture for Low-and High-Mobility Wireless Users”, Proc. GLOBECOM ‘82, submitted to IEEE J. on Sel. Areas in Comm.Google Scholar
  16. 16.
    S. T. S. Chia and R. J. Warburton, “Handover Criteria for City Microcellular Radio Systems”, Proc. of VTC’90, pp. 276–281.Google Scholar
  17. 17.
    D. C. Cox and D. O. Reudink, “Increasing Channel Occupancy in Large-Scale Mobile Radio Systems: Dynamic Channel Reassignment”, IEEE Trans. on Commun., Vol. COM-21, No. 11, Nov. 1973, pp. 1302–1306.CrossRefGoogle Scholar
  18. 18.
    P.-A. Raymond, “Performance Analysis of Cellular Networks”, IEEE Trans. on Commun., Vol. 39, No. 12, Dec. 1991, pp. 1787–1793CrossRefGoogle Scholar
  19. 19.
    L. J. Cimini, Jr. and G. J. Foschini, “Distributed Algorithms For DCA In Microcellular Systems”, Proc. of VTC’92, pa.p 641–644.Google Scholar
  20. 20.
    L. J. Cimini, Jr., G. J. Foschini, and L. A. Shepp, “Single-Channel User-Capacity Calculations For Self-Organizing Cellular Systems”, submitted to IEEE Trans. on Commun. Google Scholar
  21. 21.
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes, Cambridge U. Press, New York, 1986, Chapter 10.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • L. J. CiminiJr.
    • 1
  • G. J. Foschini
    • 1
  • C.-L. I
    • 1
  1. 1.Crawford Hill LaboratoryAT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations