Low-calorie bulk sweeteners: nutrition and metabolism

  • F. R. J. Bornet


Today’s consumers expect more and more pleasure from food. They want it to be lower in fat, sugar and calories and to be able to maintain or improve their health condition and well being. Additionally, they are still requiring the sensory qualities they have come to expect from it, such as flavour, mouthfeel, taste and colour. These must be taken into account in order to develop new healthy ingredients with any success. In the field of sucrose replacement, the use of high-intensity sweeteners to develop low-calorie beverages has been a success. However, sweeteners must be employed in conjunction with low-calorie bulk ingredients in order to produce new low-calorie food products.


Short Chain Fatty Acid Food Ingredient Sugar Alcohol Brush Border Enzyme Glucose Syrup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, R.R., Davis, M., Yudkin, J. and Williams, R. (1981) Controlled clinical trial of a new non-calorigenic sweetening agent. J. Human Nutr., 35, 165–172.Google Scholar
  2. Akanji, A.O. and Hockaday, T.D.R. (1990) Acetate tolerance and the kinetics of acetate utilisation in diabetic and non-diabetic subjects. Am. J. Clin. Nutr., 51, 112–118.Google Scholar
  3. Anderson, J.W. and Bridges, S.R. (1984) Short-chain fatty acid fermentation products of plant fiber affect glucose metabolism of isolated rat hepatocytes (41958). Proc. Soc. Exp. Biol. Med., 177, 372–376.CrossRefGoogle Scholar
  4. Bär, A. (1990) Factorial calculation model for the estimation of the physiological caloric value of polyols. In: Proceedings of the International Symposium on Caloric Evaluation of Carbohydrates (ed. N. Hosoya) pp. 209–257.Google Scholar
  5. Baugerie, L., Flourié, B., Franchisseur, C, Pellier, P., Dupas, H. and Rambaud, J.C. (1989) Absorption intestinale et tolérance clinique au sorbitol, maltitol, lactitol et isomalt. Gastroenterol. Clin. Biol., 13, 102 (A).Google Scholar
  6. Baugerie, L., Flourié, B., Marteau, P., Pellier, P., Franchisseur C. and Rambaud, J-C. (1991) Digestion and absorption in the human intestine of three sugar alcohols. Gastroenterology, 99, 717–723.CrossRefGoogle Scholar
  7. Bernier, J.J. and Pascal, G. (1990) Valeur énergétique des polyols (sucres alcools). Méd. Nutr., 26, 221–238.Google Scholar
  8. Bornet, F., Dauchy, F., Chevalier, A. and Slama, G. (1992) Etude du devenier métabolique, après ingestion chez l’homme sain, d’un nouvel édulcorant de charge basse calorie: l’érythritol. Gastroenterol. Clin. Biol., 16, 169 (A).Google Scholar
  9. Brunzell, J.D. (1978) Use of fructose, sorbitol, xylitol as a sweetener in diabetes mellitus. Diabetes Care, 1, 223–230.CrossRefGoogle Scholar
  10. Clevenger, M.A., Turnbull, D., Inoue, H., Enomoto, M., Allen, J.A., Henderson, L.M. and Jones, E. (1988) Toxicological evaluation of neosugar: genotoxicity and chronic toxicity. J. Am. College Toxicol., 5, 643–662.CrossRefGoogle Scholar
  11. Council Directive on Nutrition Labelling (90/496/EEC).Google Scholar
  12. Crouse, J.R., Gerson, C.D., Oscarli, L.M. and Liebers, C.S. (1968) Role of acetate in the reduction of plasma free fatty acids produced by ethanol in man. J. Lipid Res., 9, 509–513.Google Scholar
  13. Drevon, T. and Bornet, F. (1992) Les fructo-oligosaccharides: ACTILIGHT®. In: Le Sucre, les Sucres, les Édulcorants et les Glucides de Charges dans les IAA (ed. J.L. Multon) TEC & DOC Lavoisier, Chapter 12, pp. 313–338.Google Scholar
  14. Felber, J.P., Tappy, L., Vouillamoz, D., Randin, J.P. and Jequier, E. (1987) Comparative study of maltitol and sucrose by means of continuous indirect calorimetry. J. Parent. Nutr., 11, 250–254.CrossRefGoogle Scholar
  15. Glinsman, W.H., Irausquin, H. and Park, Y.K. (1986) Evaluation of health aspects of sugars contained in carbohydrate sweeteners. Report of sugars task force, 1986. J. Nutr., 116 (11S); S1–S216.Google Scholar
  16. Hiele, M, Ghoss, Y., Rutgeerts, P. and Vantrappen, G. (1993) Metabolism of erythritol in humans: Comparison with glucose and lactitol. Br. J. Nutr., 69, 169–176.CrossRefGoogle Scholar
  17. Jain, N.K., Rosenberg, D.B., Ulahannan, M.J., Glasser, M.J. and Pitchumoni, C.S. (1985) Sorbitol intolerance in adults. Am. J. Gastroenterol., 80, 678–681.Google Scholar
  18. Kearsley, M.W., Birch, G.G. and Lian-Loh, R.H.P. (1982) The metabolic fate of hydro-genated glucose syrups. Stärke, 34, 279–283.CrossRefGoogle Scholar
  19. Knecht, R.L. (1990) Properties of sugar. In: Sugar—A User’s Guide to Sucrose (eds N.L. Pennington and C.W. Baker) Van Nostrand Reinhold, New York, Chapter IV, pp. 46–65.Google Scholar
  20. Nilsson, U. and Jagerstad, M. (1987) Hydrolysis of lactitol, maltitol and Palatinit by human intestinal biopsies. Br. J. Nutr., 58, 199–206.CrossRefGoogle Scholar
  21. Oku, T., Tokunaga, T. and Hosoya, N. (1984) Non-digestibility of a new sweetener, ‘Neosugar’, in the rat. J. Nutr., 114, 1574–1581.Google Scholar
  22. Patil, D.H., Grimble, G.K. and Silk, D.B.A. (1987) Lactitol, a new hydrogenated lactose derivative: intestinal absorption and laxative threshold in normal human subjects. Br. J. Nutr., 57, 195–199.CrossRefGoogle Scholar
  23. Pellier, P., Flourié, B., Franchisseur, C, Beaugerie, L., Dupas, H. and Rambaud, J.C. (1990) Tolérance clinique au sorbitol en situation de consommation habituelle, occasionelle ou régulière. Gatroentérol. Clin. Biol., 14, 87 (A).Google Scholar
  24. Pellier, P., Flourié, B., Beaugerie, L., Franchisseur, C, Bornet, F. and Rambaud, J-C. (1992) Tolérance digestive à l’ingestion de bonbons contenant des fructo-oligosaccharides. Gastroenterol. Clin. Biol., 16, 181 (A).Google Scholar
  25. Rumessen, J.J. and Gudman-Hoyer, E. (1987) Malabsorption of fructose-sorbitol mixtures. Scand. J. Gastroenterol., 22, 431–436.CrossRefGoogle Scholar
  26. Sano, T. (1986) Neosugar applications in diabetic patients. Presented at Third Neosugar Research Conference.Google Scholar
  27. Steinke, J., Wood, F.C., Domenge, L., Marble, A. and Renold, A.E. (1961) Evaluation of sorbitol, in diet of diabetic children at camp. Diabetes, 10, 218–227.CrossRefGoogle Scholar
  28. Thiebaud, D., Jacot, E., Schmitz, H., Spengler, M. and Felber, J.P. (1984) Comparative study of isomalt and sucrose by means of continuous indirect calorimetry. Metabolism, 33, 808–813.CrossRefGoogle Scholar
  29. Van Es, A.J.H., De Groot, L. and Vogt, J.E. (1986) Energy balances of eight volunteers fed on diets supplemented with either lactitol or saccharose. Br. J. Nutr., 56, 545–554.CrossRefGoogle Scholar
  30. Venter, C.S., Vorster, H.H. and Cummings, J.H. (1990). Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am. J. Gastroenterol., 85, 549–553.Google Scholar
  31. Voedingsraad (1987). The energy value of sugar alcohols. Recommendations of the Committee on Poly alcohols. Netherland Nutrition Council, The Hague, June, 1987.Google Scholar
  32. Wolever, T.M.S., Brighenti, F., Royali, D., Jenkins, A.L. and Jenkins, D.J.A. (1989) Effect of rectal infusion of short chain fatty acids in human subjects. Am. J. Gastroenterol., 84, 1027–1032.Google Scholar
  33. Wolever, T.M.S., Spadafora, P. and Eshuis, H. (1991) Interaction between colonic acetate and propionate in humans. Am. J. Clin. Nutr., 53, 681–687.Google Scholar
  34. Yamashita, K., Kawai, K. and Itakura, M. (1984). Effects of fructo-oligosaccharides on blood glucose and serum lipids in diabetic subjects. Nutr. Res., 4, 961–966.CrossRefGoogle Scholar
  35. Ziesenitz, S.C. and Sieber, G. (1987). The metabolism and utilisation of polyols and other sweeteners compared with sugar. In: Development in Sweeteners, (ed. T.H. Grenby). Elsevier Applied Science, London, Vol. 3, pp. 109–154.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • F. R. J. Bornet

There are no affiliations available

Personalised recommendations