Blood Transfusion and Cancer: Modulation or Tolerance?

  • J. G. A. Houbiers
  • L. M. G. van de Watering
  • C. J. H. van de Velde
  • A. Brand
Part of the Developments in Hematology and Immunology book series (DIHI, volume 28)


The concept of immunosurveillance has evoked a wide spread interest in the role of the immune system in the natural history of cancer. Clinical data from immunodeficient [1] and immunosuppressed [2] patients show an increased incidence of malignancy. Blood transfusions (BT) have diverse immunomodulating effects. For instance, pre-transplant random-donor BT diminish the incidence of renal allograft rejection [3,4] and can give rise to leukocyte antibodies [5]. Several essential factors and clues for the mechanisms of this BT induced immunosuppression in allograft transplantation have recently been elucidated, but the precise mechanism(s) remains unclear. Combining these observed phenomena Gantt raised the question whether immunomodulating effects of peri-operative blood transfusion might adversely affect the prognosis of cancer patients [6]. Surgical resection of tumours often requires blood transfusion. In case of a curative operation, the primary tumour is removed, but nevertheless a percentage of the patients will develop distant metastases [7]. Minimal residual disease in the form of undetectable micrometastases and/or tumour cells spilled in the operation region or into the circulation during surgery might be explanations for these observations. However, not all patients having a similar cancer stage show recurrence of the tumour. Probably minimal residual disease not always results in cancer recurrence. It is suggested that besides tumour characteristics and genetics the immune defense might play a role in the outgrowth of micrometastases. Before addressing possible mechanisms the relationship between blood transfusion and cancer prognosis has to be clarified on a clinical level (the horizontal arrow in (Figure 1).


Blood Transfusion Minimal Residual Disease Colorectal Cancer Patient Fresh Freeze Plasma Cancer Prognosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kersey JH, Spector BD, Good RA. Cancer in children with primary immunodeficiency diseases. J Pediat 1974;84:263–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Kinlen LJ, Sheil AGR, Peto J, Doll R. Collaborative United Kingdom-Australasian study of cancer in patients treated with immunosuppressive drugs. N Engl J Med 1979;2:1461–6.Google Scholar
  3. 3.
    Opelz G, Sengar DDS, Mickey MR, Terasaki PI. Effect of blood transfusions on subsequent kidney transplants. Transplant Proc 1973;5:253–9.PubMedGoogle Scholar
  4. 4.
    Persijn GG. HLA-matching and blood transfusion(s) in renal transplantation [dissertation]. Leiden, The Netherlands: Eurotransplant Foundation, Leiden University, 1985.Google Scholar
  5. 5.
    Brand A, Claas FHF, Voogt PJ, Wasser MNFM, Eernisse JG. Alloimmunization after leukocyte-depleted multiple random donor platelet transfusion. Vox Sang 1988;54: 160–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Gantt CL. Red Blood cells for cancer patient [letter]. Lancet 1981;ii:363.CrossRefGoogle Scholar
  7. 7.
    Van de Velde CJH, Bloem R, Zwaveling A. Management of colorectal cancer. Eur J Cancer Clin Oncol 1986;22:339–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Burrows L, Tartter P. Effect of blood transfusions on colonic malignancy recurrence rate [letter]. Lancet 1982;ii:662.Google Scholar
  9. 9.
    Francis DMA. Relationship between blood transfusion and tumour behavior. Gr J Surg 1991;78:1420–8.CrossRefGoogle Scholar
  10. 10.
    Blumberg N, Heal JM. Transfusion and host defenses against cancer recurrence and infection. Transfusion 1989;29:236–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu HS, Little AG. Perioperative blood transfusion and cancer recurrence. J Clin Oncol 1988;6:1348–54.PubMedGoogle Scholar
  12. 12.
    Cox DR. Regression models and life tables. J R Stat Soc [B] 1972;34:187–202.Google Scholar
  13. 13.
    Voogt PJ, van de Velde CJH, Brand A, et al. Peri-operative blood transfusion and cancer prognosis. Different effects of blood transfusion on prognosis of colon and breast cancer patients. Cancer 1987;59:836–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Houbiers JGA, Spielings E, Brand A, et al. Blood transfusion and colorectal cancer prognosis; a meta-analysis [manuscript in preparation].Google Scholar
  15. 15.
    Glass GV. Primary, secondary and meta-analysis of research. Edu Res 1976;5:3–8.Google Scholar
  16. 16.
    Sacks HS, Berner J, Reitman D, Ancona-Berk VA, Chalmers TC. Meta-analyses of randomized controlled trialsN Engl J Med 1987;316:450–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Andersen JW, Harington D. Meta-analyses need new publication standards [editorial]. J Clin Oncol 1992;10:878–80.PubMedGoogle Scholar
  18. 18.
    Marsh J, Donnan PT, Hamer-Hodges DW. Association between transfusion with plasma and the recurrence of colorectal carcinoma. Brit J Surg 1990;77:623–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Blumberg N, Heal JM, Murphy P, et al. Association between transfusion of whole blood and recurrence of cancer. Brit Med J 1986;293:530–3.CrossRefGoogle Scholar
  20. 20.
    Schricker KTh, Hermaned P, Guggenmoos-Holzmann I, Neidhardt B, Resch Th, Freudenberger K. Verschlechterung des kolorektalen Karzinoms. Beiträge zur Infusionstherapie. Basel, Karger 1990;26:307–12.PubMedGoogle Scholar
  21. 21.
    Blumberg N, Heal J, Chuang Ch, Murphy P, Agarwal M. Further evidence supporting a cause and effect relationship between blood transfusion and earlier cancer recurrence. Ann Surg 1988;207:410–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Persijn GG, Cohen B, Lansbergen Q, van Rood JJ. Retrospective and prospective studies on the effect of blood transfusion in renal transplantation in the Netherlands. Transplantation 1979;28:396–401.PubMedCrossRefGoogle Scholar
  23. 23.
    Rapaport FT, Dausset J. The possible role of leukocyte components in the production of the beneficial effects of blood transfusion in human transplantation. Transplant Proc 1983;15:952–5.Google Scholar
  24. 24.
    Maki TM, Okazaki H, Wood ML, Monaco AP. Suppressor cells in mice bearing intact skin allograft after blood transfusion. Transplant Proc 1983; 15:952–5.Google Scholar
  25. 25.
    Wood P, Horsburgh T, Brent L. Specific unresponsiveness to skin allografts in mice. Transplantation 1981;31:8–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Repelaer van Driel OJ, van de Velde CJH. Blood transfusion and prognosis in surgical cancer patients [letter]. Eur J Cancer Clin Oncol 1988;24:1797.PubMedCrossRefGoogle Scholar
  27. 27.
    Jensen LS, Andersen AJ, Christiansen PM, et al. Postoperative infection and natural killer cell function following blood transfusion in patients undergoing elective colorectal surgery. Brit J Surg 1992;79:513–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Busch ORC, Hop WCJ, Hoynck van Papendrecht MAW, Marquet RL, Jeekel J. Relationship between blood transfusion and recurrence of colorectal cancer: Results of a prospective randomized trial. Eur J Surg Oncol 1992;18(suppl 1):29.Google Scholar
  29. 29.
    Hoynck van Papendrecht MAW. Prevention of blood transfusions in oncologic surgery [dissertation]. Rotterdam, The Netherlands: Erasmus University, 1991.Google Scholar
  30. 30.
    Smith M, Marsh SGE, Bodmer JG, Gelsthorp K, Bodmer WF. Loss of HLA-A,B,C, allele products and lymphocyte function-associated antigen 3 in colorectal neoplasia. Proc Natl Acad Sci USA. 1989;86:5557–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Vinuela JE, Rodriguez R, Gil J, et al. Antigen shedding vs development of natural suppressor cells as mechanism of tumor escape in mice bearing Ehrlich tumor. Int J Cancer 1991;47:86–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Perdrizet GA, Ross SR, Stauss HJ, Singh S, Koeppen H, Schreiber H. Animals bearing malignant grafts reject normal grafts that express through gene transfer the same antigen. N Engl J Med 1990;171:1205–19.Google Scholar
  33. 33.
    Fearon ER, Pardoll DM, Itaya T, et al. Interleukin-2 production by tumour cells bypasses T helper function in the generation of anti-tumour response. Cell 1990;60: 397–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Lagaaij EL. Immunization and immune suppression by blood transfusions [dissertation]. Leiden University, The Netherlands 1990.Google Scholar
  35. 35.
    Williams JG, Hughes LE. Effect of perioperative blood transfusion on recurrence of Crohn’s diseases. Lancet 1990;ii:131–2.Google Scholar
  36. 36.
    Steup WH, Brand A, Weterman IT, Zwinderman KH, Lamers CB, Gooszen HG. The effect of perioperative blood transfusion on recurrence after primary operation for Crohn’s disease. Scan J Gastrenterol 1991;188(suppl):81–6.CrossRefGoogle Scholar
  37. 37.
    Tartter PI, Quintero S, Barron DM. Perioperative blood transfusion associated with infectious complications after colorectal cancer operations. Am J Surg 1986;152: 479–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Wobbes Th, Bemelmans BLH, Kuypers JHCJ, Beerthuizen GUM, Theeuwes AGM. Risk of postoperative septic complications after abdominal surgical treatment in relation to perioperative blood transfusion. Surg, Gyn & Obstet 1990;171:59–62.Google Scholar
  39. 39.
    Houbiers JGA, Arts IT, Hermans J, et al. Blood transfusion and postoperative infectious complications: Different blood component — different effects [manuscript in preparation].Google Scholar
  40. 40.
    Peugh WN, Wood KJ, Morris PJ. Genetic aspects of the blood transfusion effect. Transplantation 1988;46:438–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Opelz G. Current relevance of the transfusion effect in renal transplantation. Transplant Proc 1985; 17:1015–22.Google Scholar
  42. 42.
    Hendriks GFJ, D’Amaro J, Persijn GG, et al. Excellent outcome after transplantation of renal allografts from HLA-DRw6 positive donors even in HLA-DR mismatches. Lancet 1983;ii:187-9.Google Scholar
  43. 43.
    Lagaaij EL, Henneman PH, Ruigrok M, et al. Effect of one-HLA-DR-antigen-matched and completely HLA-DR-mismatched blood transfusions on survival of heart and kidney allograft. N Engl J Med 1989;321:701–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Gascon P, Zoumbos NC, Young NS. Immunologic abnormalities in patients receiving multiple blood transfusions. Ann Intern Med 1984;100:173–7.PubMedGoogle Scholar
  45. 45.
    Schot JDL, Schuurman RKB. Blood transfusion suppresses cutaneous cell-mediated immunity. Clin Exp Immunol 1986;65:336–44.PubMedGoogle Scholar
  46. 46.
    Grady RW, Akbar AN, Giardina PJ, Hilgartner MW, de Sousa M. Disproportionate lymphoid cell subsets in thalassaemia major: The relative contributions of transfusion and splenectomy. Brit J Haemat 1985;59:713–24.PubMedCrossRefGoogle Scholar
  47. 47.
    De Martino M, Rossi ME, Muccioli AT, Vullo C, Vierucci A. Altered T cell subsets in polytransfused beta-thalassemia patients: Correlation with sex and age at first transfusion. Vox Sang 1985;48:296–304.PubMedCrossRefGoogle Scholar
  48. 48.
    Neri A, Brugiatelli M, Jaccolino P, Callea V, Rouco F. Natural killer cell activity and T subpopulations in thalassemia major. Acta Haemat 1984;71:263–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Matsumoto T, Sakagami K, Orita K. Role of donor specific blood transfusions in prolongation of kidney graft survival. Transplant Proc 1987;19:2264–7.PubMedGoogle Scholar
  50. 50.
    Quintiliani L, Buzzonetti A, DiGirolamo M, et al. Effects of blood transfusion on the immune responsiveness and survival of cancer patients: A prospective study. Transfusion 1991;31:713–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Sibrowski W, Wegner W, Kühnl P. Immunomodulatory activity of different blood products on the mitogen-induced human lymphocyte transformation. Transfusion Medicine 1992;2:215–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Munn CG, Markenson AL, Kapadia A, de Sousa M. Impaired T-cell mitogen responses in some patients with thalassemia intermedia. Thymus 1981;3:119–28.PubMedGoogle Scholar
  53. 53.
    Van Twuyver E, Mooijaart RJD, den Berge IJM, et al. Pretransplantation blood transfusion revisited. N Engl J Med 1991;325:1210–3.PubMedCrossRefGoogle Scholar
  54. 54.
    Rosenberg SA, Lotze MT, Muul LM, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 1987;316:889–97.PubMedCrossRefGoogle Scholar
  55. 55.
    Kast WM, Offringa R, Peters PJ, et al. Eradication of adenovirus E1-induced tumours by E1A-specific cytotoxic Tlymphocytes. Cell 1989;59:603–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Melief CJM. Tumor eradication by adoptive transfer of cytotoxic Tlymphocytes. Adv Canc Res 1992;58:143–75.CrossRefGoogle Scholar
  57. 57.
    Townsend D, Bodmer H. Antigen recognition by class I restricted Tlymphocytes. Ann Rev Immunol 1989;7:601–24.CrossRefGoogle Scholar
  58. 58.
    Melief CJM, Kast WM. Efficacy of cytotoxic Tlymphocytes against virus-induced tumours. Cancer Cells 1990;2:116–20.PubMedGoogle Scholar
  59. 59.
    Van den Eynde B, Lethe B, van Pel A, de Plaen E, Boon T. The gene coding for a major tumour rejection antigen of tumour p815 is identical to the normal gene of syngeneic DBA/2 mice. JExp Med 1991;173:1373–84.CrossRefGoogle Scholar
  60. 60.
    Prehn RT, Prehn LM. The autoimmune nature of cancer. Cancer Res 1987;47:927–32.PubMedGoogle Scholar
  61. 61.
    Hewitt HB, Blake ER. Walder AS. Acritique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Brit J Cancer 1976;33:241–59.Google Scholar
  62. 62.
    Degiovanni G, Lahaye Th, Herin M, Hainaut Ph, Boon Th. Antigenic heterogeneity of a human melanoma tumor detected by autologous CTL clones. Eur J Immunol 1988;18:671–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Schrier P. personal communication.Google Scholar
  64. 64.
    Jung S, Schluesener J. Human Tlymphocytes recognize a peptide of single point-mutated, oncogenic ras proteins. J Exp Med 1991;173:273–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Houbiers JGA, Nijman HW, van der Burg SH, et al. In-vitro induction of cytotoxic Tlymphocytes responses against peptides of mutant and wild-type p53. [Submitted Eur J Immunol].Google Scholar
  66. 66.
    Feltkamp MCW, Smits HL, Vierboom MPM, et al. Vaccination with cytotoxic T cell epitope-containing peptide protects against a tumor induced by Human Papillomavirus type 16-transformed cells [submitted Eur J Immunol].Google Scholar
  67. 67.
    Hilders CJM, Houbiers JGA, Krul EJT, Fleuren GJ. The expression of human lymphocytic antigen in the pathway to cervical carcinoma. Am J Clin Pathol 1993;in press.Google Scholar
  68. 68.
    Houbiers JGA, Tollenaar RAEM, van der Burg SH, et al. Absence of correlation between loss of expression of HLA-A2 and mutated p53 in human colorectal tumours. [manuscript in preparation].Google Scholar
  69. 69.
    Boon T, van Pel A, de Plaen E, et al. Tum-transplantation antigens, point mutations, and antigenic peptides: A model for tumor — specific transplantation antigens. Cancer Cells 1989;1:25–8.PubMedGoogle Scholar
  70. 70.
    De Koster S. The role of peptides in allorecognition [dissertation]. Leiden, The Netherlands: Leiden University 1992.Google Scholar
  71. 71.
    Lagaaij EL. Personal communication.Google Scholar
  72. 72.
    Graan de-Hentzen YCE, Gratama JW, Hudde GC, et al. Prevention of primary cytomegalovirus infection in patients with hematologic malignancies by intensive white cell depletion of blood products. Transfusion 1989;29:757–60.CrossRefGoogle Scholar
  73. 73.
    Morahan G, Allison J, Miller JFAP. Tolerance of class I histocompatibility antigens expressed extrathymically. Nature 1989;339:622–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Bretscher PA, Cohn M. A theory of self-nonself discrimination. Science 1970;169: 1042–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Jenkins MK. The role of cell division in the induction of clonal anergy. Immunol Today 1992;13:69–73.PubMedCrossRefGoogle Scholar
  76. 76.
    Steinhauer E, Doyle A, Reed J, et al. Defective natural cytotoxicity in patients with cancer: Normal number of effector cells but decreased recycling capacity in patients with advanced disease. J Immunol 1982;129:2255–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • J. G. A. Houbiers
    • 1
    • 2
  • L. M. G. van de Watering
    • 1
  • C. J. H. van de Velde
    • 2
  • A. Brand
    • 1
  1. 1.Department of Immunohaematology & Blood BankUniversity Hospital LeidenThe Netherlands
  2. 2.Department of SurgeryUniversity Hospital LeidenThe Netherlands

Personalised recommendations