Cytokines and myeloid-specific genes: Patterns of expression and possible role in proliferation and differentiation of acute myelogenous leukemia cells

  • Michael Lübbert
  • Roland Mertelsmann
Part of the Cancer Treatment and Research book series (CTAR, volume 64)


Cells from acute myelogenous leukemias (AMLs) are characterized by a block in normal differentiation resulting in dramatically expanded pools of neoplastic precursor cells, both intramedullary and often extramedullary. Other features that also reflect the neoplastic behavior of these cells in vivo include their clonality, the presence of recurrent karyotypic abnormalities, their transplantability, and their often abnormal patterns of expression of and response to cytokines [1]. We are only now beginning to understand some of the mechanisms underlying the observed block in maturation and perpetuation of proliferation of immature myeloid cells in AML. In recent years, molecular biology has provided tools for dissecting the different maturational stages and differentiation pathways of normal myelopoiesis [2]. Also, the study of oncogene activation in primary AMLs and AML cell lines has yielded models of tumorigenesis in this cell system [3]. Similarly, work by a number of laboratories has focused on the possible role of cytokine expression in the pathogenesis of myeloid leukemias. Often, myeloid cell lines established from patients with acute leukemias have served as sources for nucleic acids when isolating myeloid-specific complementary DNAs, and as well-characterized cell populations for in vitro studies. These cultured cell lines in many but not all aspects resemble their primary, uncultured counterparts.


Acute Promyelocytic Leukemia Acute Myeloblastic Leukemia Acute Myeloid Leukemia Cell Line Human Lysozyme Acute Myelogenous Leukemia Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Metcalf D (1989). The roles of stem cell self-renewal and autocrine growth factor production in the biology of myeloid leukemia. Cancer Res 49: 2305.PubMedGoogle Scholar
  2. 2.
    Lübbert M, Herrmann F, Koeffler HP (1991). Expression and regulation of myeloid-specific genes in normal and leukemic myeloid cells. Blood 77: 909–924.PubMedGoogle Scholar
  3. 3.
    Bos JL (1989). Ras oncogenes in human cancer: a review. Cancer Res 49: 4682.PubMedGoogle Scholar
  4. 4.
    Schultz J (1980). Myeloperoxidase. In The Reticuloendothelial System, vol. 2, Sbarra AJ, Strauss RR (eds). New York: Plenum, p. 231.Google Scholar
  5. 5.
    Klebanoff SJ (1980). Myeloperoxidase-mediated cytotoxic systems. In The Reticuloendothelial System, vol. 2, Sbarra AJ, Strauss RR (eds). New York: Plenum, p. 279.Google Scholar
  6. 6.
    Chang SU, Trujillo JM, Cook R, Stass SA (1986). Human myeloperoxidase gene: Molecular cloning and expression in leukemia cells. Blood 68: 1411.PubMedGoogle Scholar
  7. 7.
    Morishita K, Kubota N, Asano S, Kaziro Y, Nagata S (1987). Molecular cloning and characterization of cDNA for human myeloperoxidase. J Biol Chem 262: 3844.PubMedGoogle Scholar
  8. 8.
    Weil SC, Rosner GL, Reid MS, Chisholm RL, Farber NM, Spitznagel JK, Swanson MS (1987). cDNA cloning of human myeloperoxidase: Decrease in myeloperoxidase mRNA upon induction of HL-60 cells. Proc Natl Acad Sci USA 84: 2057.PubMedCrossRefGoogle Scholar
  9. 9.
    Morishita K, Tsuchiya M, Asano S, Kaziro Y, Nagata S (1987). Chromosomal gene structure of human myeloperoxidase and regulation of its expression by granulocyte colony-stimulating factor. J Biol Chem 262: 15208.PubMedGoogle Scholar
  10. 10.
    Johnson K, Gemperlein I, Hudson S, Shane S, Rovera G (1989). Complete nucleotide sequence of the human myeloperoxidase gene. Nucleic Acids Res 17: 7985.PubMedCrossRefGoogle Scholar
  11. 11.
    Van Tuinen P, Johnson KR, Ledbetter SA, Nussbaum RL, Rovera G, Ledbetter DH (1987). Localization of myeloperoxidase to the long arm of human chromosome 17: relationship to the 15;17 translocation of acute promyelocytic leukemia. Oncogene 1: 319.PubMedGoogle Scholar
  12. 12.
    Miller CW, Rovera G, Venturelli D, Huebner KF, Van Tuinen P, Ledbetter DH, Kitchingman G, Mirro J, Koeffler HP (1989). The myeloperoxidase gene in acute promyelocytic leukemia. Science 243: 823.CrossRefGoogle Scholar
  13. 13.
    Donti E, Montanucci M, Longo L, Mencarelli A, Pandolfi P, Tabilio A, Nanni M, Alimena G, Avanzi G, Pegoraro L, Grignani F, Pelicci PG (1989). The myeloperoxidase gene in acute promyelocytic leukemia. Science 243: 824.CrossRefGoogle Scholar
  14. 14.
    Tobler A, Miller CW, Johnson KR, Selsted ME, Rovera G, Koeffler HP (1988). Regulation of gene expression of myeloperoxidase during myeloid differentiation. J Cell Physiol 136: 215.PubMedCrossRefGoogle Scholar
  15. 15.
    Fouret P, Du Bois RM, Bernaudin J-F, Takahashi H, Ferrans VJ, Crystal RG (1989). Expression of the neutrophil elastase gene during human bone marrow cell differentiation. J Exp Med 169: 833.PubMedCrossRefGoogle Scholar
  16. 16.
    Sagoh T, Yamada M (1988). Transcriptional regulation of myeloperoxidase gene expression in myeloid leukemia HL-60 cells during differentiation into granulocytes and macrophages. Arch Biochem Biophys 262: 599.PubMedCrossRefGoogle Scholar
  17. 17.
    Zaki SR, Austin GE, Swan D, Srinivasan A, Ragab AH, Chan WC (1989). Human myeloperoxidase gene expression in acute leukemia. Blood 74: 2096.PubMedGoogle Scholar
  18. 18.
    Ferrari S, Tagliafico E, Ceccherelli G, Selleri L, Calabretta B, Donelli A, Temperani P, Sarti M, Sacchi S, Emilia G, Torelli G, Torelli U (1989). Expression of the myeloperoxidase gene in acute and chronic myeloid leukemias: Relationship to the expression of cell cycle-related genes. Leukemia 3: 423.PubMedGoogle Scholar
  19. 19.
    Lübbert M, Oster W, Ludwig W-D, Ganser A, Mertelsmann R, Herrmann F (1992). A switch toward demethylation is associated with the expression of myeloperoxidase in acute myeloblastic and promyelocytic leukemias. Blood 80: 2066.PubMedGoogle Scholar
  20. 20.
    Reeves R (1984). Transcriptionally active chromatin. Biochim Biophys Acta 782: 343.PubMedCrossRefGoogle Scholar
  21. 21.
    Lübbert M, Miller CW, Koeffler HP (1991). Changes of DNA methylation and chromatin structure in the human myeloperoxidase gene during myeloid differentiation. Blood 78: 345.PubMedGoogle Scholar
  22. 22.
    Jorgenson KF, Antoun GR, Zipf IF (1991). Chromatin structural analysis of the 5′ end and contiguous flanking region of the myeloperoxidase gene. Blood 77: 159.PubMedGoogle Scholar
  23. 23.
    Bird A (1986). CpG-rich islands and the function of DNA methylation. Nature 321: 209.PubMedCrossRefGoogle Scholar
  24. 24.
    Doerfler W (1983). DNA methylation and gene activity. Annu Rev Biochem 52: 93.PubMedCrossRefGoogle Scholar
  25. 25.
    Cedar H (1988). DNA methylation and gene activity. Cell 53: 3.PubMedCrossRefGoogle Scholar
  26. 26.
    Takahashi H, Nukiwa T, Basset P, Crystal RG (1988). Myelomonocytic cell lineage expression of the neutrophil elastase gene. J Biol Chem 263: 2543.PubMedGoogle Scholar
  27. 27.
    Salvesen G, Farley D, Shuman J, Przybyla A, Reilly C, Travis J (1987). Molecular cloning of human Cathepsin G: Structural similarity to mast cell and cytotoxic T lymphocyte proteinases. Biochemistry 26: 2289.PubMedCrossRefGoogle Scholar
  28. 28.
    Bories D, Raynal MC, Solomon DH, Darzynkiewicz Z, Cayre YE (1989). Down-regulation of a serine protease, myeloblastin, causes growth arrest and differentiation of promyelocytic leukemia cells. Cell 59: 959.PubMedCrossRefGoogle Scholar
  29. 29.
    Jenne DE, Tschopp J, Lüdemann J, Utecht B, Gross WL (1990). Wegener’s autoantigen decoded. Nature 346: 520.PubMedCrossRefGoogle Scholar
  30. 30.
    Musette P, Labbaye C, Dorner MH, Cayre Y (1990). Wegener’s autoantigen and leukemia. Blood 76: 138–139.Google Scholar
  31. 31.
    Niles JL, McCluskey RT, Ahmad MF, Arnaout MA (1989). Wegener’s granulomatosis autoantigen is a novel neutrophil serine proteinase. Blood 74: 1888.PubMedGoogle Scholar
  32. 32.
    Osserman EF, Canfleld RE, Beychok S (1974). Lysozyme. Academic Press: New York and London.Google Scholar
  33. 33.
    Jolies P, Jolies J (1984). What’s new in lysozyme research. A review. Mol Cell Biochem 63: 165.Google Scholar
  34. 34.
    Ralph P, Moore MAS, Nilsson K (1976). Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med 143: 1528.PubMedCrossRefGoogle Scholar
  35. 35.
    Gordon S, Todd T, Cohn ZA (1974). In vitro synthesis and secretion of lysozyme by mononuclear phagocytes. J Exp Med 139: 1228.PubMedCrossRefGoogle Scholar
  36. 36.
    Chung LP, Keshav S, Gordon S (1988). Cloning the human lysozyme cDNA: Inverted Alu repeat in the mRNA and in situ hybridization for macrophages and Paneth cells. Proc Natl Acad Sci USA 85: 6227.PubMedCrossRefGoogle Scholar
  37. 37.
    Castanon MJ, Spevak W, Adolf GR, Chlebowicz-Sledziewska E, Sledziewski A (1988). Cloning of human lysozyme gene and expression in the yeast Saccharomyces cerevisiae. Gene 66: 223.PubMedCrossRefGoogle Scholar
  38. 38.
    Peters CWB, Kruse U, Pollwein R, Grzeschik KH, Sippel AE (1989). The human lysozyme gene: sequence organization and chromosomal localization. J Biochem 182: 507.Google Scholar
  39. 39.
    Ganter U, Bauer J, Majello B, Gerok W, Ciliberto G (1989). Characterization of mononuclear-phagocyte terminal maturation by mRNA phenotyping using a set of cloned cDNA probes. Eur J Biochem 185: 291.PubMedCrossRefGoogle Scholar
  40. 40.
    Lübbert M, Ludwig W-D, Ruszczynski R, Chung LP, Mertelsmann R, Herrmann F (1990). Patterns of DNA methylation and mRNA expression of the genes for myeloperoxidase and lysozyme in acute myeloid leukemias. Blood 16: 291%.Google Scholar
  41. 41.
    Redecker B, Horst M, Hasilik A (1989). Calcitriol enhances transcriptional activity of lysozyme and cathepsin D genes in U937 promonocytes. Biochem J 262: 843.PubMedGoogle Scholar
  42. 42.
    Rado TA, Bollekens J, St Laurent G, Parker L, Benz EJ Jr (1984). Lactoferrin biosynthesis during granulocytopoiesis. Blood 64: 1103.PubMedGoogle Scholar
  43. 43.
    Delforge A, Stryckmans P, Prieels JP, Bieva C, Ronge-Collard E, Schlusselberg J, Efira A (1985). Lactoferrin: Its role as a regulator of human granulopoiesis? Ann NY Acad Sci 459: 85.PubMedCrossRefGoogle Scholar
  44. 44.
    Zucali JR, Broxmeyer HE, Levy D, Morse C (1989). Lactoferrin decreases monocyte-induced fibroblast production of myeloid colony-stimulating activity by suppressing monocyte release of Interleukin-1. Blood 74: 1531.PubMedGoogle Scholar
  45. 45.
    Teng CT, Pentecost BT, Chen YH, Newbold RR, Eddy EM, McLachlan JA (1989). Lactotransferrin gene expression in the mouse uterus and mammary gland. Endocrinology 124: 992.PubMedCrossRefGoogle Scholar
  46. 46.
    Caselitz J, Jaup T, Seifert G (1981). Lactoferrin and lysozyme in carcinomas of the parotid gland. A comparative immunocytochemical study with the occurrence in normal and inflamed tissue. Pathol Anat 394: 61.Google Scholar
  47. 47.
    Sato M, Hayashi Y, Yoshida H, Yanagawa T, Yura Y, Nitta T (1984). Search for specific markers of neoplastic epithelial duct and myoepithelial cell lines established from human salivary gland and characterization of their growth in vitro. Cancer 54: 2959.PubMedCrossRefGoogle Scholar
  48. 48.
    Rado TA, Wei X, Benz EJ Jr (1987). Isolation of lactoferrin cDNA from a human myeloid library and expression of mRNA during normal and leukemic myelopoiesis. Blood 70: 989.PubMedGoogle Scholar
  49. 49.
    Campbell T, Skilton R, Luqmani YA, Coombes RC (1990). Expression of lactoferrin in normal and malignant human breast. Proc Am Assoc Cancer Res 31: 209.Google Scholar
  50. 50.
    Panella TJ, Liu YH, Huang AT, Teng CT (1991). Polymorphism and altered methylation of the lactoferrin gene in normal leukocytes, leukemic cells, and breast cancer. Cancer Res 51: 3037.PubMedGoogle Scholar
  51. 51.
    Metcalf D (1989). The molecular control of cell division, differentiation commitment and maturation in hematopoietic cells. Nature 339: 27.PubMedCrossRefGoogle Scholar
  52. 52.
    Clark SC, Kamen R (1987). The human hematopoietic colony stimulating factors. Science 236: 1229.PubMedCrossRefGoogle Scholar
  53. 53.
    Broxmeyer HE (1986). Biomolecule-cell interactions and regulation of myelopoiesis. Int J Cell Cloning 4: 378.PubMedGoogle Scholar
  54. 54.
    Herrmann F, Mertelsmann R (1989). Polypeptides controlling hematopoietic cell development and activation. Blut 58: 117.PubMedCrossRefGoogle Scholar
  55. 55.
    Herrmann F, Lindemann A, Mertelsmann R (1989). Polypeptides controlling hematopoietic blood cell development and activation. Blut 58: 173.PubMedCrossRefGoogle Scholar
  56. 56.
    Sporn MB, Roberts AB (1985). Autocrine growth factors and cancer. Nature 313: 745.PubMedCrossRefGoogle Scholar
  57. 57.
    Huebner K, Isobe M, Croce CM, Golde DW, Kaufman SE, Gasson JC (1985). The human gene encoding GM-CSF is at 5q21-32, the chromosome region deleted in the 5q-anomaly. Science 230: 1282.PubMedCrossRefGoogle Scholar
  58. 58.
    Nimer SD, Golde DW (1987). The 5q-abnormality. Blood 70: 1705.PubMedGoogle Scholar
  59. 59.
    Akashi M, Yamato K, Koeffler HP (1990). Hematopoietic growth factors: regulation of production. In: Hematopoietic Growth Factors in Clinical Applications, Mertelsmann R, Herrmann F (eds). Marcel Dekker: New York, Basel, p. 41.Google Scholar
  60. 60.
    Gasson JC (1991). Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77: 1131.PubMedGoogle Scholar
  61. 61.
    Williams GT, Smith CA, Spooncer E, Dexter TM, Taylor DR (1990). Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343: 76.PubMedCrossRefGoogle Scholar
  62. 62.
    Weisbart RH, Golde DW, Clark SC, Wong GG, Gasson JC (1985). Human granulocyte-macrophage colony-stimulating factor is a neutrophil activator. Nature 314: 361.PubMedCrossRefGoogle Scholar
  63. 63.
    Weisbart RH, Golde DW, Gasson JC (1986). Biosynthetic human granulocyte-macrophage colony-stimulating factor modulates the number and affinity of neutrophil f-Met-Leu-Phe receptors. J Immunol 137: 3584.PubMedGoogle Scholar
  64. 64.
    Weisbart RH, Kwan L, Golde DW, Gasson JC (1987). Human granulocyte-macrophage colony-stimulating factor primes neutrophils for enhanced oxidative metabolism in response to the major physiological chemoattractants. Blood 69: 18.PubMedGoogle Scholar
  65. 65.
    Fleischmann J, Golde DW, Weisbart RH, Gasson JC (1986). Granulocyte-macrophage colony-stimulating factor enhances phagocytosis of bacteria by human neutrophils. Blood 68: 708.PubMedGoogle Scholar
  66. 66.
    Vadas MA, Nicola NA, Metcalf D (1983). Activation of antibody-dependent cell-mediated cytotoxicity of human neutrophils and eosinophils by separate colony-stimulating factors. J Immunol 130: 795.PubMedGoogle Scholar
  67. 67.
    Donahue RE, Wang EA, Stone DK, Kamen R, Wong GG, Sehgal PK, Nathan DG, Clark SC (1986). Stimulation of hematopoiesis in primates by continous infusion of recombinant human GM-CSF. Nature 321: 872.PubMedCrossRefGoogle Scholar
  68. 68.
    Nienhuis AW, Donahue RE, Karlsson S, Clark SC, Agricola B, Antinoff N, Pierce JE, Turner P, Anderson WF, Nathan DG (1987). Recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) shortens the period of neutrophenia after autologous bone marrow transplantation in a primate model. J Clin Invest 80: 573.PubMedCrossRefGoogle Scholar
  69. 69.
    Nagata S, Tsuchiya M, Asano S, Yamamoto O, Hirata Y, Kubota N, Oheda M, Nomura H, Yamazaki T (1986). The chromosomal gene structure and mRNAs for human granulocyte colony stimulating factor. EMBO J 5: 575.PubMedGoogle Scholar
  70. 70.
    Simmers RN, Webber LM, Shannon MF, Garson OM, Wong G, Vadas MA, Sutherland GR (1987). Localization of the G-CSF gene and chromosome 17 proximal to break point in the t(15;17) in acute promyelocytic leukemia. Blood 70: 330.PubMedGoogle Scholar
  71. 71.
    Lindemann A, Riedel D, Oster W, Ziegler-Heitbrock HWL, Mertelsmann R, Herrmann F (1989). Granulocyte-macrophage colony-stimulating factor induces cytokine secretion by human polymorphonuclear leukocytes. J Clin Invest 83: 1308.PubMedCrossRefGoogle Scholar
  72. 72.
    Fibbe WE, Van Damme J, Billiau A, Duinkerken N, Lurvink E, Ralph P, Altrock BW, Kaushansky K, Willemze R, Falkenburg JHF (1988). Human fibroblasts produce granulocyte-CSF, macrophage-CSF, and granulocyte-macrophage-CSF following stimulation by interleukin-1 and poly(rl). poly(rC). Blood 72: 860.PubMedGoogle Scholar
  73. 73.
    Brennan JK, Di Persio JF, Abboud CN, et al. (1979). The exceptional responsiveness of certain human myeloid leukemia cells to colony-stimulating activity. Blood 54: 1230.PubMedGoogle Scholar
  74. 74.
    Hoang T, Nara N, Wong G, Clark S, Minden MD, McCulloch EA (1986). Effects of recombinant GM-CSF on the blast cells of acute myeloblastic leukemia. Blood 68: 313.PubMedGoogle Scholar
  75. 75.
    Griffin JD, Young DC, Herrmann F, Wiper D, Wagner K, Sabbath KD (1986). Effects of recombinant human GM-CSF on proliferation of clonogenic cells in acute myeloblastic leukemia. Blood 76: 1448.Google Scholar
  76. 76.
    Kelleher C, Miyauchi J, Wong G, Clark S, Minden MD, McCulloch EA (1987). Synergism between recombinant growth factors, GM-CSF and G-CSF, activity on the blast cells of acute myeloblastic leukemia. Blood 69: 1498.PubMedGoogle Scholar
  77. 77.
    Vellenga E, Young DC, Wagner K, Wiper D, Ostapovicz D, Griffin JD (1987). The effects of GM-CSF and G-CSF in promoting growth of clonogenic cells in acute myeloblastic leukemia. Blood 69: 1771.PubMedGoogle Scholar
  78. 78.
    Prebusque M-J, Lopez M, Torres H, Carroti A, Guilbert L, Mannoni P (1988). Growth response of human myeloid leukemia cells to colony-stimulating factors. Exp Hematol 16: 360.Google Scholar
  79. 79.
    Young DC, Griffin JD (1986). Autocrine secretion of GM-CSF in acute myeloblastic leukemia. Blood 68: 1178.PubMedGoogle Scholar
  80. 80.
    Young DC, Wagner CK, Griffin JD (1987). Constitutive expression of the granulocyte-macrophage colony-stimulating factor gene in acute myeloblastic leukemia. J Clin Invest 79: 100.PubMedCrossRefGoogle Scholar
  81. 81.
    Young DC, Demetri DG, Ernst TJ, Cannistra SA, Griffin JD (1988). In vitro expression of colony-stimulating factor genes by human acute myeloblastic leukemia. Exp Hematol 16: 378.PubMedGoogle Scholar
  82. 82.
    Oster W, Lindemann A, Mertelsmann R, Herrmann F (1988). Regulation of gene expression of M-, G-, GM-, and multi-CSF in normal and malignant hematopoietic cells. Blood Cells 14: 443.PubMedGoogle Scholar
  83. 83.
    Chang JM, Metcalf D, Gonda TJ, Johnson GR (1989). Long-term exposure to retrovirally expressed granulocyte-colony-stimulating factor induces a nonneoplastic granulocytic and progenitor cell hyperplasia without tissue damage in mice. J Clin Invest 84: 1488.PubMedCrossRefGoogle Scholar
  84. 84.
    Tani K, Ozawa K, Ogura H, Takahashi T, Okano A, Watari K, Matsudaira T, Tajika K, Karasuyama H, Nagata S, Asano S, Takaku F (1989). Implantation of fibroblasts transfected with human granulocyte colony-stimulating factor cDNA into mice as a model of cytokine-supplement gene therapy. Blood 74: 1274.PubMedGoogle Scholar
  85. 85.
    Lang RA, Metcalf D, Cuthbertson RA, Lyons I, Stanley E, Kelso A, Kannourakis G, Williamson DJ, Klintworth GK, Gonda TJ, Dunn AR (1987). Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 51: 675.PubMedCrossRefGoogle Scholar
  86. 86.
    Griffin JD, Rambaldi A, Vellenga E, Young DC, Ostapovicz D, Cannistra SA (1987). Secretion of interleukin-1 by acute myeloblastic leukemia cells in vitro induces endothelial cells to secrete colony stimulating factors. Blood 70: 1218.PubMedGoogle Scholar
  87. 87.
    Oster W, Cicco NA, Klein H, Hirano T, Kishimoto T, Lindemann A, Mertelsmann R, Herrmann F (1989). Participation of the monokines IL-6, TNF-alpha, and IL-1-beta secreted by acute myelogenous leukemia blasts in autocrine and paracrine leukemia growth control. J Clin Invest 84: 451.PubMedCrossRefGoogle Scholar
  88. 88.
    Broudy VC, Kaushansky K, Segal GM, Harlan JM, Adamson JW (1986). Tumor necrosis factor type alpha stimulates human endothelial cells to produce granulocyte macrophage colony stimulating factor. Proc Natl Acad Sci USA 83: 7467.PubMedCrossRefGoogle Scholar
  89. 89.
    Munker R, Gasson J, Ogawa M, Koeffler HP (1986). Recombinant human TNF induces production of granulocyte-monocyte colony-stimulating factor. Nature 328: 79.CrossRefGoogle Scholar
  90. 90.
    Sieff CA, Schickwann T, Faller V (1987). Interleukin 1 induces cultured human endothelial cell production of granulocyte-macrophage colony-stimulating factor. J Clin Invest 79: 48.PubMedCrossRefGoogle Scholar
  91. 91.
    Cozzolino F, Torcia M, Bettoni S, Aldinucci D, Burgio VL, Petti MC, Rubartelli A, Barbui T, Rambaldi A (1990). Interleukin-1 and interleukin-2 control granulocyte-and granulocyte-macrophage colony-stimulating factor gene expression and cell proliferation in cultured acute myeloblastic leukemia. Int J Cancer 46: 902.PubMedCrossRefGoogle Scholar
  92. 92.
    Rodriguez-Cimadevilla JC, Beauchemin V, Villeneuve L, Letendre F, Shaw A, Hoang T (1990). Coordinate secretion of interleukin-1 beta and granulocyte-macrophage colony-stimulating factor by the blast cells of acute myeloblastic leukemia: role of interleukin-1 as an endogenous inducer. Blood 76: 1481.PubMedGoogle Scholar
  93. 93.
    Cozzolino F, Rubartelli A, Aldinucci D, Sitia R, Torcia M, Shaw A, Di Guglielmo R (1989). Interleukin-1 as an autocrine growth factor for acute myeloid leukemia cells. Proc Natl Acad Sci USA 86: 2369.PubMedCrossRefGoogle Scholar
  94. 94.
    Cheng GYM, Kelleher CA, Miyauchi J, Wang C, Wong G, Clark SC, McCulloch EA, Minden MD (1988). Structure and expression of genes of GM-CSF and G-CSF in blast cells from patients with acute myeloblastic leukemia. Blood 71: 204.PubMedGoogle Scholar
  95. 95.
    Fiedler W, Suciu E, Wittlief C, Ostertag W, Hossfeld DK (1990). Mechanisms of growth factor expression in acute myeloid leukemia (AML). Leukemia 4: 459.PubMedGoogle Scholar
  96. 96.
    Ymer S, Tucker QJ, Sanderson CJ, Hapel AJ, Campbell HD, Young IG (1985). Constitutive synthesis of interleukin-3 by leukemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature 317: 255.PubMedCrossRefGoogle Scholar
  97. 97.
    Stocking C, Löliger C, Kawai M, Suciu S, Gough N, Ostertag W (1988). Identification of genes involved in growth autonomy of hematopoietic cells by analysis of factor-independent mutants. Cell 53: 869.PubMedCrossRefGoogle Scholar
  98. 98.
    Dührsen U, Stahl J, Gough NM (1990). In vivo transformation of factor-dependent hemopoietic cells: role of intracisteral A-particle transposition for growth factor gene activation. EMBO J 9: 1087.PubMedGoogle Scholar
  99. 99.
    Koeffler HP (1987). Syndromes of acute nonlymphocytic leukemia. Ann Intern Med 107: 748.PubMedGoogle Scholar
  100. 100.
    Mellentin JD, Smith SD, Cleary ML (1989). lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 58: 77.PubMedCrossRefGoogle Scholar
  101. 101.
    Kamps MP, Murre C, Sun X-H, Baltimore D (1990). A new homeobox gene contributes the DNA binding domain of the t(l;19) translocation protein in pre-B ALL. Cell 60: 547.PubMedCrossRefGoogle Scholar
  102. 102.
    Monica K, Galili N, Nourse J, Saltman D, Cleary ML (1991). PBX2 and PBX3, new homeobox genes with extensive homology to the human proto-oncogene PBX1. Mol Cell Biol 11: 6149.PubMedGoogle Scholar
  103. 103.
    Rabbitts TH, Boehm T (1991). Structural and functional chimerism results from chromosomal translocation in lymphoid tumors. Adv Immunol 50: 119.PubMedCrossRefGoogle Scholar
  104. 104.
    Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VVVS, Dmitrovsky E, Evans RM (1991). Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 66: 663.PubMedCrossRefGoogle Scholar
  105. 105.
    von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A, Grosveld G (1992). The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol 12: 1687.Google Scholar
  106. 106.
    Meeker TC, Hardy D, Willman C, Hogan T, Abrams J (1990). Activation of the interleukin-3 gene by chromosome translocation in acute lymphocytic leukemia with eosinophilia. Blood 76: 285.PubMedGoogle Scholar
  107. 107.
    Nagarajan L, Lange B, Cannizzaro L, Finan J, Nowell PC, Huebner K (1990). Molecular anatomy of a 5q interstitial deletion. Blood 75: 82.PubMedGoogle Scholar
  108. 108.
    Ernst TJ, Ritchie AR, O’Rourke R, Griffin JD (1989). Colony-stimulating factor gene expression in human acute myeloblastic leukemia cells is posttranscriptionally regulated. Leukemia 3: 620.PubMedGoogle Scholar
  109. 109.
    Shaw G, Kamen R (1986). A conserved AU sequence from 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659.PubMedCrossRefGoogle Scholar
  110. 110.
    Caput D, Beutler B, Hartog K, Theyer R, Brown-Shimer S, Cerami A (1986). Identification of a common cucleotide sequence in the 3′ untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 83: 1670.PubMedCrossRefGoogle Scholar
  111. 111.
    Bos JL, Toksoz D, Marshall CJ, Verlaan-de Vries M, Veeneman GH, van der Eb AJ, van Boom JH, Janssen JWG, Steenvorden ACM (1985). Amino-acid substitutions at codon 13 of the N-RAS oncogene in human acute myeloid leukemia. Nature 315: 726.PubMedCrossRefGoogle Scholar
  112. 112.
    Janssen JWG, Steenvoorden ACM, Lyons J, Anger B, Böhlke JU, Bos JL, Seliger H, Bartram CR (1987). RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. Proc Natl Acad Sci USA 84: 9228.PubMedCrossRefGoogle Scholar
  113. 113.
    Farr CJ, Saiki RK, Erlich HA, McCormick F, Marshall CJ (1988). Analysis of RAS gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc Natl Acad Sci USA 85: 1629.PubMedCrossRefGoogle Scholar
  114. 114.
    Bartram CR, Ludwig WD, Hiddemann W, Lyons J, Buschle M, Ritter J, Harbott J, Fröhlich A, Janssen JWG (1989). Acute myeloid leukemia: analysis of RAS gene mutations and clonality defined by polymorphic x-linked loci. Leukemia 3: 247.PubMedGoogle Scholar
  115. 115.
    Barbacid M (1987). RAS genes. Annu Rev Biochem 56: 779.PubMedCrossRefGoogle Scholar
  116. 116.
    Andrejauskas E, Moroni C (1989). Reversible abrogation of IL-3 dependence by an inducible H-ras oncogene. EMBO J 8: 2575.PubMedGoogle Scholar
  117. 117.
    Demetri GD, Ernst TJ, Pratt ES, Zenzie BW, Rheinwald JG, Griffin JD (1990). Expression of ras oncogenes in cultured human cells alters the transcriptional and posttranscriptional regulation of cytokine genes. J Clin Invest 86: 1261.PubMedCrossRefGoogle Scholar
  118. 118.
    Lübbert M, Oster W, Knopf H-P, McCormick F, Mertelsmann R, Herrmann F (submitted). Analysis of ras gene activation in myeloid leukemia cells expressing cytokine genes.Google Scholar
  119. 119.
    Thorens B, Mermod JJ, Vassalli P (1987). Phagocytosis inflammatory stimuli induce GM-CSF mRNA in macrophages through posttranscriptional regulation. Cell 48: 671.PubMedCrossRefGoogle Scholar
  120. 120.
    Kaufman DC, Baer MR, Zhi Gao X, Wang Z, Preisler HD (1988). Enhanced expression of the granulocyte-macrophage colony stimulating factor gene in acute myelocytic leukemia cells following in vitro blast cell enrichment. Blood 72: 1329.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Michael Lübbert
  • Roland Mertelsmann

There are no affiliations available

Personalised recommendations