The cell surface receptor encoded by the proto-oncogene KIT and its ligand

  • E. A. McCulloch
  • M. D. Minden
Part of the Cancer Treatment and Research book series (CTAR, volume 64)


There is now compelling evidence that the blast cells of acute myeloblastic leukemia (AML) often respond to regulatory mechanisms both in culture and in patients. Growth factors are either required for blast cell proliferation in culture or substantially influence its rate [1–11]; clinical trials have shown that growth factors are also active in patients [12–27]. Retinoic acid, a ligand for three intracellular receptors of the steroid superfamily [28–34], inhibits the growth of some AML blast populations in cell culture, an effect often accompanied by morphological evidence of differentiation [35–38]. The most striking effects are seen when all trans retinoic acid is added to cells from patients with acute promyelocytic leukemia (APL) with translocation of the α-retinoic acid receptor (tl5: 17) [39]. In vivo, remissions are obtained with all trans retinoic acid alone [42,43,44]. Taken together, these observations support the view that AML may be considered a dependent neoplasm and that its responsiveness to regulation may be exploited in treatment.


Retinoic Acid Acute Promyelocytic Leukemia Stem Cell Factor Blast Cell Acute Myeloblastic Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark SC, Kamen R (1987) The human hematopoietic colony-stimulating factors. Science 236: 1229–1237.PubMedCrossRefGoogle Scholar
  2. 2.
    Kelleher C, Miyauchi J, Wong G, Clark S, Minden MD, McCulloch EA (1987) Synergism between recombinant growth factors, GM-CSF and G-CSF, acting on the blast cells of acute myeloblastic leukemia. Blood 69: 1498–1503.PubMedGoogle Scholar
  3. 3.
    Young DC, Griffin JD (1986). Autocrine secretion of GM-CSF in acute myeloblastic leukemia. Blood 68: 1178–1181.PubMedGoogle Scholar
  4. 4.
    Miyauchi J, Kelleher C, Yang Y-C, Wong GC, Clark SC, Minden MD, Minkin S, McCulloch EA (1987). The effects of three recombinant growth factors, IL-3, GM-CSF and G-CSF, on the blast cells of acute myeloblastic leukemia maintained in short term suspension culture. Blood 70: 657–663.PubMedGoogle Scholar
  5. 5.
    Miyauchi J, Kelleher CA, Wong GG, Yang Y-C, Clark SC, Minkin S, Minden MD, McCulloch EA (1988). The effects of combinations of the recombinant growth factors GM-CSF, G-CSF, IL-3 and CSF-1 on leukemic blast cells in suspension culture. Leukemia 2: 382–387.PubMedGoogle Scholar
  6. 6.
    Young DC, Wagner K, Griffin JD (1987). Constitutive expression of the granulocyte-macrophage colony-stimulating factor gene in acute myeloblastic leukemia. J Clin Invest 79: 100–106.PubMedCrossRefGoogle Scholar
  7. 7.
    Vellenga E, Young DC, Wagner K, Wiper D, Otapovicz D, Griffin JD (1987). The effects of GM-CSF and G-CSF in promoting growth of clonogenic cells in acute myeloblastic leukemia. Blood 69: 1771–1776.PubMedGoogle Scholar
  8. 8.
    Delwel R, Dorssers L, Touw I, Wagemaker ER, Lowenberg B (1987). Human recombinant multilineage colony stimulating factor (Interleukin-3): stimulator of acute myelocytic leukemia progenitor cells in vitro. Blood 70: 333–336.PubMedGoogle Scholar
  9. 9.
    Nara N, Murohashi I, Suzuki T, Yamashita Y, Maruyama Y, Aoki N, Tanikawa S (1987). Effects of recombinant human granulocyte colony-stimulating factor (G-CSF) on blast progenitors from acute myeloblastic leukaemia patients. Br J Cancer 56: 49–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Motoji T, Takanashi M, Fuchinoue M, Masuda M, Oshimi K, Mizoguchi H (1989). Effect of recombinant GM-CSF and recombinant G-CSF on colony formation of blast progenitors in acute myeloblastic leukemia. Exp Hematol 17: 56–60.PubMedGoogle Scholar
  11. 11.
    Ferrero D, Tarella C, Badoni R, Caracciola D, Bellone G, Pileri A, Gallo E (1989). Granulocyte-macrophage colony-stimulating factor requires interaction with accessory cells or granulocyte-colony stimulating factor for full stimulation of human myeloid progenitors. Blood 73: 402–405.PubMedGoogle Scholar
  12. 12.
    Groopman JE, Mitysyasu RT, Deleo MJ, Oette DH, Golde DW (1987). Effect of recombinant human granulocyte-macrophage colony-stimulating factor on myelopoiesis in the acquire immunodeficiency syndrome. N Engl J Med 317: 593–598.PubMedCrossRefGoogle Scholar
  13. 13.
    Vadhan-Raj S, Keating M, LeMaistre A, Hittleman WN, McCredie K, Trujillo JM, Broxmeyer HE, Jenney C, Gutterman JU (1987) Effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes. N Engl J Med 25: 1545–1552.CrossRefGoogle Scholar
  14. 14.
    Monroy RL, Skelly RR, Taylor P, Dubois A, Donnahue RE, Macvittie TJ (1988). Recovery of severe hematopoietic suppression using recombinant human granulocyte-macrophage colony-stimulating factor. Exp Hamatol 16: 344–348.Google Scholar
  15. 15.
    Gabrilove J, Jakubowsk A, Sher H, Sternberg C, Wong G, Grous J, Yagoda A, Fain K, Moore MAS, Clarkson B, Oettegen HF, Alton K, Weite K, Sousa L (1988). Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transition cell carcinoma of the urothelium. N Engl J Med 318: 1414–1422.PubMedCrossRefGoogle Scholar
  16. 16.
    Ganser A, Volkers B, Greher J, Ottmann OG, Walther F, Becker R, Bergmann L, Schutz G, Hoelzer D (1989). Recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes—a phase I/II trial. Blood 73: 31–37.PubMedGoogle Scholar
  17. 17.
    Wing EJ, Magee DM, Whiteside TL, Kaplan SS, Shadduck RK (1989). Recombinant human granulocyte/macrophage colony-stimulating factor enhances monocyte cytotoxicity and secretion of tumor necrosis factor alpha and interferon in cancer patients. Blood 73: 643–646.PubMedGoogle Scholar
  18. 18.
    Teshima H, Ishikawa J, Kitayam H, Yamagami T, Hiroaka A, Nakamura H, Shibata H, Masoka T, Takaku F (1989). Clinical effects of recombinant human granulocyte colony-stimulating factor in leukemia patients. Exp Hematol 17: 853–858.PubMedGoogle Scholar
  19. 19.
    Vadham-Raj S, Broxmeyer HE, Spitzer G, LeMaistre A, Hultman S, Ventura G, Tigaud J-D, Cork MA, Trujillo JM, Gutterman JU, Hittleman WN (1989). Stimulation on nonclonal hematopoiesis and suppression of the neoplastic clone after treatment with recombinant human granulocyte-macrophage colony-stimulating factor in a patient with therapy-related myelodysplastic syndrome. Blood 74: 1491–1498.Google Scholar
  20. 20.
    Estey EH, Dixon D, Kantarjian HM, Keating MJ, McCredie K, Bodey GP, Kurzrock R, Talpaz M, Freireich EJ, Deisseroth AB, Gutterman JU (1990). Treatment of poor-prognosis, newly-diagnosed acute myeloid leukemia with ara-C and recombinant granulocyte-macrophage colony-stimulating factor. Blood 75: 1766–1769.PubMedGoogle Scholar
  21. 21.
    Negrin RS, Haeuber DH, Nagler A, Kobayashi Y, Sklar J, Donlon T, Vincent M, Greenberg PL (1990). Maintenance treatment of patients with myelodysplastic syndrome using recombinant human granulocyte colony-stimulating factor. Blood 76: 36–43.PubMedGoogle Scholar
  22. 22.
    Ganser A, Seipelt G, Lindeman A, Ottman OG, Falk S, Eder M, Hermann F, Becher R, Hoffken K, Buchner T, Klausmann M, Frisch J, Schulz G, Mertelsmann R, Hoelzer D (1990). Effects of recombinant human interleukin-3 in patients with myelodysplastic syndrome. Blood 76: 455–462.PubMedGoogle Scholar
  23. 23.
    Estey E, Kurzrock R, Talpaz M, Freireich E, Gutterman J, Deisseroth A (1990). Use of CSFs in AML. pp. 4431-446. In UCLA Symposia on Molecular and Cellular Biology. Acute Myelogenous Leukemia: Progress and Controversies, Gale RP (ed), Vol. 134. Wiley-Liss: New York, pp. 4431–4446.Google Scholar
  24. 24.
    Ottmann OG, Ganser A, Seipelt G, Eder M, Schulz G, Hoelzer D (1990). Effects of recombinant human interleukin-3 on human hematopoietic progenitor and precursor cells in vivo. Blood 76: 1494–1502.PubMedGoogle Scholar
  25. 25.
    Bettelheim P, Valent P, Andreeff M, Tafuri A, Haimi J, Gorischek, C, Muhm M, Sillaber CH, Hass O, Vieder L, Maurer D, Schulz G, Speiser W, Geissler K, Kier P, Hinterberger W (1991). Recombinant human granulocyte-macrophage colony-stimulating factor in combination with standard induction chemotherapy in de vovo acute myeloid leukemia. Blood 77: 700–711.PubMedGoogle Scholar
  26. 26.
    Cannistra SA, DiCarlo J, Groshek P, Kanakura Y, Berg D, Mayer RJ, Griffin JD (1991). Simultaneous administration of granulocyte-macrophage colony-stimulating factor and cytosine arabinoside for the treatment of relapsed acute myeloid leukemia. Leukemia 5: 230–238.PubMedGoogle Scholar
  27. 27.
    Buchner T, Hiddemann W, Koenigsmann M, Zuhlsdorf M, Wormann B, Boeckmann A, Freire EA, Innig G, Maschmeyer G, Ludwig W-D, Sauerland M-C, Heinexke A, Schultz G (1991). Recombinant human macrophage-granulocyte colony-stimulating factor and chemotherapy in patients with acute myeloid leukemia at higher age and after relapse. Blood 78: 1190–1197.PubMedGoogle Scholar
  28. 28.
    Giguere V, Ong ES, Segui P, Evans RM (1987). Identification of a receptor for the morphogen retinoic acid. Nature 330: 624–629.PubMedCrossRefGoogle Scholar
  29. 29.
    Petkovitch M, Brand NJ, Krust A, Chambon P (1987). A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330: 444–450.CrossRefGoogle Scholar
  30. 30.
    Brand N, Petkovich M, Krust A, Chambon P, de The H, Marchinol A, Tiollais P, Dejean A (1988). Identification of a second human retinoic acid receptor. Nature 332: 850–853.PubMedCrossRefGoogle Scholar
  31. 31.
    Benbrook D, Lernhardt E, Pfahl M (1988). A new retinoic acid receptor identified from a hepatocellular carcinoma. Nature 333: 669–672.PubMedCrossRefGoogle Scholar
  32. 32.
    Krust A, Kastner PH, Petkovich M, Zelent A, Chambon P (1989). A third human retinoic acid receptor, hRAR-y. Proc Natl Acad Sci USA 86: 5310–5314.PubMedCrossRefGoogle Scholar
  33. 33.
    Zelent A, Krust A, Petkovich M, Kastner P, Chambon P (1989). Cloning of murine a and β retinoic acid receptors and a novel receptor (y), predominately expressed in skin. Nature 339: 714–717.PubMedCrossRefGoogle Scholar
  34. 34.
    Evans RM (1988). The steroid and thyroid hormone receptor superfamily. Science 240: 889–895.PubMedCrossRefGoogle Scholar
  35. 35.
    Breitman TR, Selonick SE, Collins SJ (1980). Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA 77: 2936–2940.PubMedCrossRefGoogle Scholar
  36. 36.
    Lawrence JH, Conner K, Kelly MA, Haussler MR, Wallace P, Bagby GC Jr (1987). cis-Retinoic acid stimulates the clonal growth of some myeloid leukemia cells in vitro. Blood 69: 302–307.PubMedGoogle Scholar
  37. 37.
    Wang C, Curtis JE, Minden MD, McCulloch EA (1989). Expression of a retinoie acid receptor gene in myeloid leukemia cells. Leukemia 3: 264–269.PubMedGoogle Scholar
  38. 38.
    Gallagher RE, Said F, Papenhausen PR, Paietta E, Wierni PH (1989). Expression of retinoic acid receptor-a mRNA in human leukemia cells with variable responsiveness to retinoic acid. Leukemia 3: 789–795.PubMedGoogle Scholar
  39. 39.
    de The H, Chomienne C, Lanotle M, Degos L, Dejean A (1990). The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoie acid receptor a gene to a novel transcribed locus. Nature 347: 558–561.PubMedCrossRefGoogle Scholar
  40. 40.
    Lanotte M, Martin-Thouvenin V, Najam S, Balerini P, Valensi F, Berger R (1991). NB4, a maturation inducible cell line with t(15;17) marker, isolated from a human acute promyelocytic leukemia (M3). Blood 77: 1080–1086.PubMedGoogle Scholar
  41. 41.
    Chomienne C, Ballerini P, Balitrand N, Daniel MT, Fenaux P, Castaigne S, Degos L (1990). All-trans retinoie acid as a differentiation therapy for acute promyelocytic leukemia. II. In vitro studies: structure-function relationship. Blood 76: 1710–1717.PubMedGoogle Scholar
  42. 42.
    Meng-er H, Yu-chen Y, Shu-rong C, Jin-ren C, Jia-Xiang L, Lin Z, Long-jun G, Zhen-yi W (1988). Use of all-trans retinoie acid in the treatment of acute promyelocytic leukemia. Blood 27: 567–572.Google Scholar
  43. 43.
    Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L (1990). All-trans retinoie acid as a differentiation therapy for acute promyelocytic leukemia I. Clinical results. Blood 76: 1704–1709.PubMedGoogle Scholar
  44. 44.
    Chen Z-X, Xue Y-Q, Zhang R, Tao R-F, Xia X-M, Li C, Wang W, Zu W-Y, Yao X-Z, Ling B-J (1991). A clinical and experimental study on all-trans retinoie acid-treated acute promyelocytic leukemia patients. Blood 78: 1413–1419.PubMedGoogle Scholar
  45. 45.
    Williams DE, Eisenman J, Baird A, Rauch C, Van Ness K, March CJ, Park LS, Martin U, Mochizuki DY, Boswell SH, Burgess, GS, Cosman D, Lyman SD (1990). Identification of a ligand for the c-kit proto-oncogene. Cell 63: 167–174.PubMedCrossRefGoogle Scholar
  46. 46.
    Martin FH, Suggs SV, Langley KE, Lu HS, Ting J, Okino KH, Morris CF, McNiece IK, Jacobson FW, Mendiaz EA, Birkett NC, Smith KA, Johnson MJ, Parker VP, Flors JC, Patel AC, (1990). Primary structure and functional expression of rat and human stem cell factor DNAs. Cell 63: 203–211.PubMedCrossRefGoogle Scholar
  47. 47.
    Witte ON (1990). Steel locus defines new multipotent growth factor. Cell 63: 5–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Till JE, McCulloch EA (1989). Hemopoietic stem cell differentiation. Biochem Biophys Acta 605: 431–459.Google Scholar
  49. 49.
    McCulloch EA (1983). Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture 1982). Blood 62: 1–13.PubMedGoogle Scholar
  50. 50.
    Greaves MF (1982). “Target” cells, cellular phenotypes, and lineage fidelity in human leukaemia. J Cell Physiol (Suppl 1) 111: 113–125.CrossRefGoogle Scholar
  51. 51.
    Sachs L (1987). The molecular control of blood cell development. Science 238: 1374–1379.PubMedCrossRefGoogle Scholar
  52. 52.
    Fialkow PJ (1982). Cell lineages in hematopoietic neoplasia studied with glucose-6-phosphate dehydrogenase cell markers. J Cell Physiol (Suppl 1) 111: 37–43.CrossRefGoogle Scholar
  53. 53.
    Fearon ER, Burke PJ, Schiffer CA, Zehnbauer BA, Vogelstein B (1986). Differentiation of leukemic cells to polymorphonuclear leukocytes in patients with acute nonlymphocytic leukemia. N Engl J Med 315: 15–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Fialkow PJ, Singer JW, Adamson JW, Vaidya K, Dow LW, Ochs J, Moohr JW (1981). Acute nonlymphocytic leukemia: Heterogeneity of stem cell origin. Blood 57: 1068–1073.PubMedGoogle Scholar
  55. 55.
    Fialkow PJ, Singer JW, Raskind WH, Adamson JW, Jacobson RJ, Berstein DI, Dow LD, Najfeld V, Veith R (1987). Clonal development, stem-cell differentiation and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med 317: 468–473.PubMedCrossRefGoogle Scholar
  56. 56.
    Jacobson RJ, Temple MT, Singer JW, Raskind W, Powell J, Fialkow PJ (1984). A clonal complete remission in a patient with acute nonlymphocytic leukemia originating in a multipotent stem cell. N Engl J Med 310: 1513–1517.PubMedCrossRefGoogle Scholar
  57. 57.
    Jacobson RJ, Temple MJ, Singer JW, Powell J, Fialkow PJ (1984). A clonal complete remission in a patient with acute myeloblastic leukemia originating in a multipotent stem cell. N Engl J Med 310: 1513–1517.PubMedCrossRefGoogle Scholar
  58. 58.
    Buick RN, Till JE, McCulloch EA (1977). Colony assay for proliferative blast cells circulating in myeloblastic leukaemia. Lancet 1: 862–863.PubMedCrossRefGoogle Scholar
  59. 59.
    Lowenberg B, Swart K, Hagemeijer A (1980). PHA-induced colony-formation in acute nonlymphocytic and chronic myeloid leukemia. Leuk Res 4: 143–149.PubMedCrossRefGoogle Scholar
  60. 60.
    Dicke KA, Spitzer G, Ahearn MJ (1976). Colony-formation in vitro in acute myelogenous leukemia with phytohaemagglutinin as stimulating factor. Nature 259: 129–130.PubMedCrossRefGoogle Scholar
  61. 61.
    Griffin JD, Lowenberg B (1986). Clonogenic cells in acute myeloblastic leukemia. Blood 68: 1185–1195.PubMedGoogle Scholar
  62. 62.
    Buick RN, Minden MD, McCulloch EA (1979). Self-renewal in culture of proliferative blast progenitor cells in acute myeloblastic leukemia. Blood 54: 95–104.PubMedGoogle Scholar
  63. 63.
    Nara N, McCulloch EA (1985). The proliferation in suspension of the progenitors of the blast cells in acute myeloblastic leukemia. Blood 65: 1484–1493.PubMedGoogle Scholar
  64. 64.
    Siminovitch L, McCulloch EA, Till JE (1963). The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol 62: 327–336.CrossRefGoogle Scholar
  65. 65.
    Nakahata T, Gross AJ, Ogawa M (1982). A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J Cell Physiol 113: 455–458.PubMedCrossRefGoogle Scholar
  66. 66.
    Kobayashi T, Nakahata T (1989). Stochastic model of mast cell proliferation in culture of murine peritoneal cells. J Cell Physiol 138: 24–28.PubMedCrossRefGoogle Scholar
  67. 67.
    Till JE, McCulloch EA, Siminovitch L (1964). A stochastic model of stem cell proliferation, based on the growth of spleen colony forming cells. Proc Natl Acad Sci USA 51: 29–36PubMedCrossRefGoogle Scholar
  68. 68.
    Goldwasser E (1984). Erythropoietin and its mode of action. Blood Cells 10: 147–162.PubMedGoogle Scholar
  69. 69.
    Metcalf D (1984). The Hemopoietic Colony-Stimulating Factors. Elsvier, Amsterdam.Google Scholar
  70. 70.
    Metcalf D (1991). Control of granulocytes and macrophages: Molecular, cellular and clinical aspects. Science 254: 529–533.PubMedCrossRefGoogle Scholar
  71. 71.
    Mizel SB (1989). The interleukins. FASEB J 3: 2379–2388.PubMedGoogle Scholar
  72. 72.
    Ikebuchi K, Wong GG, Clark SC, Ihle JN, Hirai Y, Ogawa M (1987). Interleukin 6 enhancement of interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci USA 84: 9035–9039.PubMedCrossRefGoogle Scholar
  73. 73.
    Ogawa M, Clark SC (1988). Synergistic interaction between interleukin-6 and interleukin-3 in support of stem cell proliferation in culture. Blood Cells 14: 329–337.PubMedGoogle Scholar
  74. 74.
    Musashi M, Yang Y-C, Paul SR, Clark SC, Sudo T, Ogawa M (1991). Direct and synergistic effects of interleukin 11 on murine hemopoiesis in culture. Proc Natl Acad Sci USA 88: 765–769.PubMedCrossRefGoogle Scholar
  75. 75.
    Bot, FJ, van Eijk L, Broeders L, Aarden LA, Lowenberg B (1989). Interleukin-6 synergizes with M-CSF in the formation of macrophage colonies from purified human marrow progenitor cells. Blood 73: 435–437.PubMedGoogle Scholar
  76. 76.
    Caracciolo D, Clark SC, Rovera G (1989). Human interleukin-6 supports granulocytic differentiation of hemopoietic progenitor cells and acts synergistically with GM-CSF. Blood 73: 666–670.PubMedGoogle Scholar
  77. 77.
    Rennick D, Yang G, Muller-Sieburg C, Smith C, Arai N, Takabe Y, Gemmell L (1987). Interleukin 4 (B-cell stimulatory factor 1) can enhance or antagonize the factor dependent growth of hemopoietic progenitor cells. Proc Natl Acad Sci USA 84: 6889–6893.PubMedCrossRefGoogle Scholar
  78. 78.
    Hamaguchi Y, Kanakura Y, Fujita J, Takeda S, Nakano T, Tarui S, Honjo T, Kitamura Y (1987). Interleukin 4 as an essential factor for in vitro clonal growth of murine connective tissue-type mast cells. J Exp Med 165: 268–273.PubMedCrossRefGoogle Scholar
  79. 79.
    Paul WE (1987). Interleukin 4/B cell stimulatory factor: One lymphokine, many functions. FASEB J 1: 456–461.PubMedGoogle Scholar
  80. 80.
    Paul WE (1991). Interleukin-4: a prototypic immunoregulatory lymphokine. Blood 77: 1859–1870.PubMedGoogle Scholar
  81. 81.
    Lopez AF, Begley GC, Williamson DJ, Warren DJ, Vadas MA, Sanderson CJ (1986). Murine eosinophil differentiation factor. J Exp Med 163: 1085–1099.PubMedCrossRefGoogle Scholar
  82. 82.
    Clutterbuck EJ, Hirst EMA, Sanderson CJ (1989). Human interleukine-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6 and GM-CSF. Blood 73: 1504–1512.PubMedGoogle Scholar
  83. 83.
    Donahue RE, Yang Y-C, Clark SC (1990). Human P40 T-cell growth factor (Interleukin-9) supports erythroid colony-formation. Blood 75: 2271–2275.PubMedGoogle Scholar
  84. 84.
    Sawada K, Krantz SB, Sawyer ST, Civin CI (1988). Quantitation of specific binding of erythropoietin to human erythroid colony-forming cells. J Cell Physiol 137: 337–345.PubMedCrossRefGoogle Scholar
  85. 85.
    DiPersio J, Billing P, Kaufman S, Eghtesady P, Williams RE, Gasson JC (1988). Characterization of the human granulocyte-macrophage colony-stimulating factor receptor. J Biol Chem 263: 1834–1841.Google Scholar
  86. 86.
    Mosley B, Beckman P, March CJ, Idzerda RL, Gimpel SD, VandenBos T, Jackson J, Wignall JM, Smith C, Gallis B, Sims JE, Urdal D, Widmar MB, Cosman D, Park LS (1989). The murine interleukin-4 receptor; molecular cloning and characterization of secreted and membrane bound forms. Cell 59: 335–348.PubMedCrossRefGoogle Scholar
  87. 87.
    Gearing DP, King JA, Gough NM, Nicola NA (1989). Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J 8: 3667–3678.PubMedGoogle Scholar
  88. 88.
    Yamasaki K, Taga T, Hirata Y, Kawata H, Kawanishi Y, Seed B, Taniguchi T, Hirano T, Kishimoto T (1988). Cloning and expression of the human interleukin-6 (BSF-2INF 2b 12 receptor. Science 241: 825–828.PubMedCrossRefGoogle Scholar
  89. 89.
    Cannistra SA, Groshek P, Garlick R, Miller J, Griffin JD (1990). Regulation of surface expression of the granulocyte/macrophage colony-stimulating factor receptor in normal human marrow cells. Proc Natl Acad Sci USA 87: 93–97.PubMedCrossRefGoogle Scholar
  90. 90.
    Itoh N, Shin Y, Schreurs J, Gorman DM, Maruyama K, Ishii A, Yahara I, Arai K-I, Miyajima A (1990). Cloning of an interleukin-3 receptor gene: a member of a distinct receptor gene family. Science 247: 324–327.PubMedCrossRefGoogle Scholar
  91. 91.
    Budel LM, Elbaz O, Hoogerbrugge H, Delwel R, Mahmoud LA, Lowenberg B, Touw IP (1990). Common binding structure for granulocyte macrophage colony-stimulating factor and IL-3 on human acute myeloid leukemia cells and monocytes. Blood 75: 1439–1445.PubMedGoogle Scholar
  92. 92.
    Gorman DM, Itoh N, Kitamura T, Schreurs J, Yonehara S, Yahara I, Arai K-I, Miyajima A (1990). Cloning and expression of a gene encoding an interleukin 3 receptor-like protein: Identification of another member of the cytokine receptor gene family. Proc Natl Acad Sci USA 87: 5459–5463.PubMedCrossRefGoogle Scholar
  93. 93.
    Larsen A, Davis T, Curtis BM, Gimpel S, Sims JE, Cosman D, Park L, Sorenson E, March CJ, Smith CA (1990). Expression cloning of a human granulocyte colony-stimulating factor receptor: a structural mosaic of hematopoietic receptor, immunoglobulin and fibronectin domains. J Exp Med 172: 1559–1570.PubMedCrossRefGoogle Scholar
  94. 94.
    Hayashida K, Kitamura T, Gorman DM, Arai K-I, Yokota T, Miyajima A (1990). Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): Reconstitution of a high-affinity GM-CSF receptor. Proc Natl Acad Sci USA 87: 9655–9659.PubMedCrossRefGoogle Scholar
  95. 95.
    Nicola NA, Metcalf D (1991). Subunit promiscuity among hemopoietic growth factor regulators. Cell 67: 1–4.PubMedCrossRefGoogle Scholar
  96. 96.
    Sherr CJ (1990). Colony-Stimulating Factor-1 receptor. Blood 75: 1–12.PubMedGoogle Scholar
  97. 97.
    Chabot B, Stephenson DA, Chapman VM, Besner P, Bernstein A (1988). The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335: 88–89.PubMedCrossRefGoogle Scholar
  98. 98.
    Yarden Y, Kuang W-J, Yang-Feng T, Coussens L, Mumenitsu S, Dull TJ, Chen E, Schlesinger J, Franke U, Ullrich A (1987). Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6: 3341–3351.PubMedGoogle Scholar
  99. 99.
    Hunt T (1989). Cytoplasmic anchoring proteins and the control of nuclear localization. Cell 59: 949–951.PubMedCrossRefGoogle Scholar
  100. 100.
    Beato M (1989). Gene regulation by steroid hormones. Cell 56: 335–344.PubMedCrossRefGoogle Scholar
  101. 101.
    Wahli W, Martinez E (1991). Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression. FASEB J 5: 2243–2249.PubMedGoogle Scholar
  102. 102.
    Umesono K, Murakami KK, Thompson CC, Evans RM (1991). Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D\[3] receptors. Cell 65: 1255–1266.PubMedCrossRefGoogle Scholar
  103. 103.
    Naar AM, Boutin J-M, Lipkin SM, Yu VC, Holloway JM, Glass CK, Rosenfeld MG (1991). The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65: 1267–1279.PubMedCrossRefGoogle Scholar
  104. 104.
    Nicola NA, Metcalf D, Matsumo M, Johnston GR (1983). Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte-colony-stimulating factor. J Biol Chem 258: 9017–9023.PubMedGoogle Scholar
  105. 105.
    Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC, Chazin VR, Bruszewski J, Lu H, Chen KK, Barendt J, Platzer E, Moore MAS, Mertelsmann R, Weite K (1986). Recombinant human granulocyte colony-stimulating factor: Effects on normal and leukemic myeloid cells. Science 232: 61–65.PubMedCrossRefGoogle Scholar
  106. 106.
    Nicola NA, Metcalf D (1984). Binding of the differentiation-inducer, granulocyte-colony-stimulating factor, to responsive but not unresponsive leukemic cell lines. Proc Natl Acad Sci USA 81: 3765–3769.PubMedCrossRefGoogle Scholar
  107. 107.
    Griffin JD, Sullivan R, Beveridge RP, Lacom P, Schlossman SF (1984). Induction of proliferation of purified human myeloid progenitor cells. A rapid assay for granulocyte colony-stimulating factors. Blood 63: 904–911.PubMedGoogle Scholar
  108. 108.
    Sachs L (1978). Control of normal cell differentiation in the phenotypic reversion of malignancy in myeloid leukemia. Nature 274: 535–539.PubMedCrossRefGoogle Scholar
  109. 109.
    Hoang T, Nara N, Wong G, Clark S, Minden MD, McCulloch EA (1986). The effects of recombinant GM-CSF on the blast cells of acute myeloblastic leukemia. Blood 67: 313–316.Google Scholar
  110. 110.
    Griffin JD, Young D, Herrman F, Wiper D, Wagner K, Sabbath DK (1986). Effects of recombinant GM-CSF on the proliferation of clonogenic cells in acute myeloblastic leukemia. Blood 67: 1448–1453.PubMedGoogle Scholar
  111. 111.
    Miyauchi J, Wang C, Kelleher CA, Wong GG, Clark SC, Minden MD, McCulloch EA (1988). The effects of recombinant CSF-1 on the blast cells of acute myeloblastic leukemia in suspension culture. J Cell Physiol 135: 55–62.PubMedCrossRefGoogle Scholar
  112. 112.
    Suzuki T, Nagata K, Murohashi I, Nara N (1988). Effect or recombinant human CSF-1 on the proliferation of leukemic blast progenitors in AML patients. Leukemia 2: 358–362.PubMedGoogle Scholar
  113. 113.
    Hoang T, Haman A, Goncalves Wong GG, Clark SC (1988). Interleukin-6 enhances growth factor-dependent proliferation of the blast cells of acute myeloblastic leukemia. Blood 72: 823–826.PubMedGoogle Scholar
  114. 114.
    Wang C, Kelleher CA, Cheng GYM, Miyauchi J, Wong GG, Clark SC, Minden MD, McCulloch EA (1988). Expression of the CSF-1 gene in the blast cells of acute myeloblastic leukemia: association with reduced growth capacity. J Cell Physiol 135: 133–138.PubMedCrossRefGoogle Scholar
  115. 115.
    Tohda S, Minden MD, McCulloch EA (1991). Interactions between retinoic acid and colony-stimulating factors affecting the blast cells of acute myeloblastic leukemia. Leukemia 5: 951–957.PubMedGoogle Scholar
  116. 116.
    Russell ES, Bernstein SE (1966). Blood and blood formation. In The Biology of the Laboratory Mouse, Green EL (ed). McGraw-Hill: New York, pp. 351–372.Google Scholar
  117. 117.
    Geissler EN, Ryan MA, Housman DE (1988). The dominant white-spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55: 185–192.PubMedCrossRefGoogle Scholar
  118. 118.
    Zsebo KM, Wypych J, McNiece IK, Lu HS, Smith KA, Karkare SB, Sachdev RJ, Yuschenkoff VN, Birkett NC, Williams LR, Satyagal VN, Tung W, Bosselman RA, Mendiaz EA, Langley KE (1990). Identification, purification and biochemical characterization of hematopoietic stem cell factor from Buffalo rat liver-conditioned medium. Cell 63: 195–201.PubMedCrossRefGoogle Scholar
  119. 119.
    Anderson DM, Lyman SD, Baird A, Wignall JM, Eisenman J, Rauch C, March CJ, Boswell HS, Gimpel SD, Cosman D, Williams DE (1990). Molecular cloning of mast cell growth factor, a hematopoietic that is active in both membrane bound and soluble forms. Cell 63: 235–243.PubMedCrossRefGoogle Scholar
  120. 120.
    Copeland MG, Gilbert DJ, Cho BC, Donovan PJ, Jenkins NA, Cosman D, Anderson D, Lyman SD, Williams DE (1990). Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell 63: 175–183.PubMedCrossRefGoogle Scholar
  121. 121.
    Flanagan JG, Leder P (1990). The Kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell 63: 185–194.PubMedCrossRefGoogle Scholar
  122. 122.
    Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL, Hsu R-Y, Birkett NC, Okino KH, Murdock DC, Jacobson FW, Langley KE, Smith KA, Takeishi T, Cattanach BM, Gallia SJ (1990). Stem cell factor is encoded by the SL locus of the mouse and is the ligand of the c-kit tyrosine kinase receptor. Cell 63: 213–224.PubMedCrossRefGoogle Scholar
  123. 123.
    Huang E, Nocka K, Beier DR, Chu T-Y, Buck J, Lahm H-W, Wellner D, Leder P, Besmer P (1990). The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63: 525–533.CrossRefGoogle Scholar
  124. 124.
    Flanagan JG, Chan DC, Leder P (1991). Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell 64: 1025–1035.PubMedCrossRefGoogle Scholar
  125. 125.
    Till JE, McCulloch EA (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213–222.PubMedCrossRefGoogle Scholar
  126. 126.
    McCulloch EA, Siminovitch L, Till JE (1964). Spleen colony formation in anemic mice of genotype W/Wv. Science 144: 844–846.PubMedCrossRefGoogle Scholar
  127. 127.
    McCulloch EA, Russell ES, Siminovitch L, Till JE, Bernstein SE (1965). The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl/Sld. Blood 26: 399–410.PubMedGoogle Scholar
  128. 128.
    Sutherland DJA, Till JE, McCulloch EA (1970). A kinetic study of the genetic control of hemopoietic progenitor cells assayed in culture and in vivo. J Cell Physiol 75: 267–274.PubMedCrossRefGoogle Scholar
  129. 129.
    Stenman G, Eriksson A, Claesson-Welsh L (1989). Human PDGFA receptor gene maps to the same region on chromosome 4 as the kit oncogene. Chromosomes Cancer 1: 155–158.CrossRefGoogle Scholar
  130. 130.
    Bernstein A, Forrester L, Reith AD, Dubreuil P, Rottapel R (1991). The murine W/c-kit and Steel loci and the control of hematopoiesis. Semin Hematol 28: 138–142.PubMedGoogle Scholar
  131. 131.
    Reith AD, Ellis C, Lyman SD, Anderson DM, Williams DE, Bernstein A, Pawson T (1991). Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase. EMBO J 10: 2451–2459.PubMedGoogle Scholar
  132. 132.
    Nocka K, Tan JC, Chiu E, Chu TY, Ray P, Traktman P, Besmer P (1990). Molecular bases of dominant negative and loss of function mutations at the murine c-kit/while spotting locus: W37, Wv, W41 and W. EMBO J 9: 1805–1813.PubMedGoogle Scholar
  133. 133.
    Tan JC, Nockta K, Ray P, Traktman P, Besmer P (1990). The dominant W42 spotting phenotype results from a missense mutation in the c-kit receptor kinase. Science 247: 209–212.PubMedCrossRefGoogle Scholar
  134. 134.
    Nocka K, Majumder S, Chabot B, Ray P, Cervone M, Bernstein A, Besmer P (1989). Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice—evidence for an impaired c-kit kinase in mutant mice. Genes Dev 3: 816–826.PubMedCrossRefGoogle Scholar
  135. 135.
    Reith AD, Rottapel R, Giddens E, Brady C, Forrester L, Bernstein A, et al. (1990). W mutant mice with mild or severe developmental defects contain distinct point mutations in the kinase domain of the c-kit receptor. Genes Dev 4: 390–3400.PubMedCrossRefGoogle Scholar
  136. 136.
    Bernstein A, Chabot B, Dubreuil P, Reith A, Nocka K, Majumder S, Ray P, Besmer P (1990). The mouse W/c-kit locus. Ciba Foundation Symp 149: 158–166.Google Scholar
  137. 137.
    Roberts WM, Shapiro LH, Ashmun RA, Look AT (1992). Transcription of the human colony-stimulating factor-1 receptor gene is regulated by separate tissue specific promoters. Blood 79: 586–593.PubMedGoogle Scholar
  138. 138.
    Shaw G, Kamen R (1986). A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667.PubMedCrossRefGoogle Scholar
  139. 139.
    Rottapel R, Reedij K, Williams DE, Lyman SD, Anderson DM, Pawson T, Berstein A (1991). The Steel/W transduction pathway: Kit autophosphorylation and its association with a unique subset of cytoplasmic signaling proteins is induced by the Steel factor. Mol Cell Biol 10: 3043–3051.Google Scholar
  140. 140.
    Roussel MF, Rettenmier CW, Sherr CJ (1988). Introduction of a human colony-stimulating factor-1 gene into a mouse macrophage cell line induces CSF-1 independence but not tumorigenicity. Blood 71: 1218–1225.PubMedGoogle Scholar
  141. 141.
    Hayashi S, Ogawa M, Yamaguchi K, Nishikawa S (1991). Exon skipping by mutation of an authentic splice site of c-kit gene in W/W mouse. Nuclear Acids Res 19: 1267–1271.CrossRefGoogle Scholar
  142. 142.
    Caldwell CW, Patterson WP, Toalson BD, Yesus YW (1991). Surface and cytoplasmic expression of CD45 antigen isoforms in normal and malignant myeloid cell differentiation. Am J Clin Pathol 95: 180–187.PubMedGoogle Scholar
  143. 143.
    Luqman M, Johnson P, Trowbridge I, Bottomly K (1991). Differential expression of the alternatively spliced exons of murine CD45 in Thl and Th2 cell clones. Eur J Immunol 21: 17–22.PubMedCrossRefGoogle Scholar
  144. 144.
    Shen WF, Detmer K, Simonitcheason TA, Lawrence HJ, Largman C (1991). Alternative splicing of the HOX-2.2 Homeobox gene in human hematopoietic cells and murine embryonic and adult tissues. Nucleic Acids Res 19: 539–545.PubMedCrossRefGoogle Scholar
  145. 145.
    Mosthaf L, Grako K, Dull TJ, Coussens L, Ullrich A, McClain DA (1990). Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J 9: 2409–2413.PubMedGoogle Scholar
  146. 146.
    Breitbart RE, Andrealis A, Nadal-Ginard B (1987). Alternative splicing: A ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu Rev Biochem 56: 467–595.PubMedCrossRefGoogle Scholar
  147. 147.
    Rodrigues GA, Naujokas MA, Park M (1991). Alternative splicing generates isoforms of the met receptor tyrosine kinase which undergo differential processing. Mol Cell Biol 11: 2962–2970.PubMedGoogle Scholar
  148. 148.
    Mumberg D, Lucibello FC, Schuermann M, Muller R (1991). Alternative splicing of Fos B transcripts results in differentially expressed messenger RNAs encoding functionally antagonistic proteins. Gene Dev 5: 1212–1223.PubMedCrossRefGoogle Scholar
  149. 149.
    Miki T, Bottaro DP, Fleming TP, Smith CL, Burgess WH, Chan AML, Aaronson SA (1992). Determination of ligand-binding specificity by alternative splicing: Two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci USA 89: 246–250.PubMedCrossRefGoogle Scholar
  150. 150.
    Magnusson VL, Young M, Schattenberg DG, Mancini MA, Chen D, Steffensen B, Klebe RG (1991). The alternative splicing of fibronectin pre-mRNA is altered during aging and response to growth factors. J Biol Chem 266: 14654–14662.Google Scholar
  151. 151.
    Nagata S, Tsuchiya T, Asano S, Yamamoto O, Hirata Y, Kubota N, Yasmazaki T (1986). The chromosome gene structure and two mRNAs for human granulocyte colony-stimulating factor. EMBO J 5: 575–581.PubMedGoogle Scholar
  152. 152.
    Ashman LK, Cambareri AC, To LB, Levinsky RJ, Juttner CA (1991). Expression of the YB5.B8 antigen (c-kit proto-oncogene product) in normal human bone marrow. Blood 78: 30–37.PubMedGoogle Scholar
  153. 153.
    Bernstein ID, Andrews RG, Zsebo KM (1991). Recombinant human stem cell factor enhances the formation of coloni by CD34+ and CD34+Lin-and the generation of colony-forming cell pr from CD34+Lin-cells cultured with inter-leukin 3, granulocyte colon stimulating factor or granulocyte macrophage colony-stimulating factor. Blood 77: 2316–2322.PubMedGoogle Scholar
  154. 154.
    Migliaccio G, Migliaccio AR, Valinsky J, Langley K, Zsebo K, Visser JWM, Adamson JW (1991). Stem cell factor induces proliferation and differentiation of highly enriched murine hematopoietic cells. Proc Natl Acad Sci USA 88: 7420–7424.PubMedCrossRefGoogle Scholar
  155. 155.
    Ogawa M, Matsuzaki Y, Nishikawa S, Hayashi S-I, Kunisada T, Sudo T, Kina T, Nakauchi H, Nishikawa S-I (1991). Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med 174: 63–71.PubMedCrossRefGoogle Scholar
  156. 156.
    Papayannopoulou T, Brice M, Broudy VC, Zsebo KM (1991). Isolation of c-kit receptor-expressing cells from bone marrow, peripheral blood, and fetal liver: Functional properties and composite antigenic profile. Blood 78: 1403–1412.PubMedGoogle Scholar
  157. 157.
    Welham MJ, Schrader JW (1991). Modulation of c-kit mRNA and protein by hemopoietic growth factors. Mol Cell Biol 11: 2901–2904.PubMedGoogle Scholar
  158. 158.
    Sillaber C, Strobl H, Bevec D, Ashman LK, Butterfield JH, Lechner K, Maurer D, Bettelheim P, Valent P (1991). IL-4 regulates c-kit proto-oncogene product expression in human mast and myeloid progenitors. J Immunol 147: 4224–4228.PubMedGoogle Scholar
  159. 159.
    Besmer P, Murphy JE, George PC, Qiu F, Bergold PJ, Lederman L, Snyder HW, Brodeur D, Zuckerman EE, Hardy WD (1986). A new acute transforming feline retrovirus and relationship of its oncogene v-kit with protein kinase gene family. Nature 320: 415–420.PubMedCrossRefGoogle Scholar
  160. 160.
    Majumder S, Ray P, Besmer P (1990). Tyrosine protein kinase activity of the HZ4-feline sarcoma virus P80gag-kit-transforming protein. Oncogene Res 5: 329–335.PubMedGoogle Scholar
  161. 161.
    Qiu F-H, Ray P, Brown K, Parker P, Jhanwar S, Ruddle FH, Besmer P (1988). Primary structure of c-kit: Relationship with the CSF-1/PDGF receptor kinase family-oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J 7: 1003–1011.PubMedGoogle Scholar
  162. 162.
    Huang E, Nocka K, Beier DR, Chu T-Y, Buck J, Lanhm H-W, Wellner D, Leder P, Besmer P (1990). The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63: 235–243.CrossRefGoogle Scholar
  163. 163.
    Jozaki K, Kuriu A, Hirota S, Onoue H, Ebi Y, Adachi S, Ma JY, Tarui S, Kitamura Y (1991). Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts. Exp Hematol 19: 185–190.PubMedGoogle Scholar
  164. 164.
    Matsui Y, Zsebo K, Hogan BLM (1990). Embryonic expression of a hemopoietic growth factor encoded by the SI locus and the ligand for c-kit. Nature 347: 667–669.PubMedCrossRefGoogle Scholar
  165. 165.
    Anderson DM, Williams DE, Tushinski R, Gimpel S, Eisenman J, Cannizzaro LA, Aronson M, Croce CM, Huebner K, Cosman D, Lyman SD (1992). Alternate splicing of mRNAs encoding human mast cell growth factor and localization of the gene to chromosome 12q22-q24. Cell Growth Differ 2: 373–378.Google Scholar
  166. 166.
    Geissler EN, Liao M, Brook JD, Martin FH, Zsebo KM, Housman DE, Galli SJ (1991). Stem cell factor (SCF), a novel hematopoietic growth factor and ligand for c-kit tyrosine kinase receptor, maps on human chromosome 12 between 12ql4.3 and 12qter. Somat Cell Mol Genet 17: 207–214.PubMedCrossRefGoogle Scholar
  167. 167.
    Matsui Y, Toksoz D, Nishikawa S, Nishikawa SI, Williams D, Zsebo K, Hogan BLM (1991). Effect of steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture chromosome 12 between 12ql4.3 and 12qter. Nature 353: 750–752.PubMedCrossRefGoogle Scholar
  168. 168.
    Godin L, Deed R, Cooke J, Zsebo K, Dexter M, Wylie CC (1991). Effects of the steel gene product on mouse primordial germ cells in culture. Nature 352: 807–809.PubMedCrossRefGoogle Scholar
  169. 169.
    Dolci S, Williams DE, Ernst MK, Resnick JL, Brannan CI, Lock LF, Lyman SD, Boswell HS, Donovan PJ (1991). Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 352: 809–811.PubMedCrossRefGoogle Scholar
  170. 170.
    Brannan CI, Lyman SD, Williams DE, Eisenman J, Anderson DM, Cosman D, Bedell MA, Jenkins NA, Copeland NG (1991). Steel-Dickie mutation encodes a c-Kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA 88: 4671–4674.PubMedCrossRefGoogle Scholar
  171. 171.
    Keshet E, Lyman SD, Williams DE, Anderson DM, Jenkins NA, Copeland NG, Parada LF (1991). Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J 10: 2425–2435.PubMedGoogle Scholar
  172. 172.
    Motro B, Vanderkooy D, Rossant J, Reith A, Bernstein A (1991). Contiguous patterns of c-kit and Steel expression-analysis of mutations at the W-loci and Sl-loci. Development 113: 1207.PubMedGoogle Scholar
  173. 173.
    Cambareri AC, Ashman LK, Cole SR, Lyons AB (1988). A monoclonal antibody to a human mast cell/myeloid leukemia-specific antigen binds to normal hematopoietic progenitor cells and inhibits colony formation in vitro. Leuk Res 12: 929–939.PubMedCrossRefGoogle Scholar
  174. 174.
    Ashman LK, Gadd SJ, Mayrhofer G, Spargo LDJ, Cole SR (1987). A murine monoclonal antibody to an acute myeloid leukemia-associated cell surface antigen identifies tissue mast cells. Myeloid Workshops: 726–728.Google Scholar
  175. 175.
    Lerner NB, Nocka KH, Cole SR, Qiu F, Strife A, Ashman LK, Besmer P (1991). Monoclonal antibody YB5.B8 identifies the human c-kit protein product. Blood 77: 1876–1883.PubMedGoogle Scholar
  176. 176.
    Buhring HJ, Ullrich A, Mulle CA, Busch FW (1991). The product of the proto-oncogene C-kit (pl45 c-kit) is a human bone marrow surface antigen of hemopoietic precursor cells that is expressed on a subset of acute non-lymphoblastic leukemic cells. Leukemia 10: 854–860.Google Scholar
  177. 177.
    Catlett JP, Leftwich JA, Westin EH, Grant S, Huff TF (1991). c-kit expression by CD34+ bone marrow progenitors and inhibition of response to recombinant human interleukin-3 following exposure to c-kit antisense oligonucleotides. Blood 78: 3185–3191.Google Scholar
  178. 178.
    Broxmeyer HE, Hangoc G, Cooper S, Anderson D, Cosman D, Lyman SD, Williams DE (1991). Influence of murine mast cell growth factor (c-kit ligand) on colony formation by mouse marrow hematopoietic progenitor cells. Exp Hematol 19: 143–146.PubMedGoogle Scholar
  179. 179.
    Muench MO, Schneider JG, Moore MAS (1992). Interactions among colony-stimulating factors, IL-1 beta, 11-6 and Kit-ligand in the regulation of primitive hematopoietic cells. Exp Hematol 20: 339–349.PubMedGoogle Scholar
  180. 180.
    Metcalf D (1991). Lineage commitment of hematopoietic progenitor cells in developing blast colonies: influence of colony-stimulating factors. Proc Natl Acad Sci USA 88: 11310–11314.PubMedCrossRefGoogle Scholar
  181. 181.
    Metcalf D, Nicola NA (1991). Direct proliferative actions of stem cell factor on murine bone marrow cells in vitro: Effects of combination with colony stimulating factors. Proc Natl Acad Sci USA 88: 6239–6243.PubMedCrossRefGoogle Scholar
  182. 182.
    Avraham H, Vannier E, Cowley S, Jiang S, Chi S, Dinarello CA, Zsebo KM, Groopman JE (1992). Effects of the stem cell factor, c-kit ligand, on human megakaryocytic cells. Blood 79: 365–371.PubMedGoogle Scholar
  183. 183.
    McNiece IK, Langley KE, Zsebo KM (1991). The role of recombinant stem cell factor in early B-cell development—Synergistic interaction with IL-7. J Immunol 146: 3785–3790.PubMedGoogle Scholar
  184. 184.
    Tsuji K, Zsebo KM, Ogawa M (1991). Enhancement of murine blast cell colony-formation in culture by recombinant rat stem cell factor, ligand for c-kit. Blood 78: 1223–1229.PubMedGoogle Scholar
  185. 185.
    Ulich TR, del Castillo J, McNiece IK, Yi ES, Alzona CP, Yin S, Zsebo KM (1991). Stem cell factor in combination with granulocyte colony-stimulating (CSF) or granulocyte-macrophage CSF synergistically increases granulopoiesis in vivo. Blood 78: 1954–1962.PubMedGoogle Scholar
  186. 186.
    Andrews RG, Knitter GH, Bartelmez SH, Langley KE, Farrar D, Hendren RW, Appelbaum FR, Bernstein ID, Zsebo KM (1991). Recombinant human stem cell factor, a c-kit ligand, stimulates hematopoiesis in primates. Blood 78: 1975–1980.PubMedGoogle Scholar
  187. 187.
    Gadd SJ, Ashman LK (1985). A murine monoclonal antibody specific for a cell surface antigen expressed by a subgroup of human myeloid leukemias. Leuk Res 9: 1329–1336.PubMedCrossRefGoogle Scholar
  188. 188.
    Ashman LK, Roberts MM, Gadd SJ, Cooper SJ, Juttner CA (1988). Expression of a 150-kD cell surface antigen identified by monoclonal antibody YB5.B8 is associated with poor prognosis in acutenon-lymphoblastic leukemia. Leuk Res 12: 923–928.PubMedCrossRefGoogle Scholar
  189. 189.
    Wang C, Curtis JE, Geissler NE, McCulloch EA, Minden MD (1989). The expression of the proto-oncogene c-kit in the blast cells of acute myeloblastic leukemia. Leukemia 3: 699–702.PubMedGoogle Scholar
  190. 190.
    Andre C, d’Auriol L, Lacombe C, Gisselbrecht S, Galibert F (1989). c-kit mRNA expression in human and murine hematopoietic cell lines. Oncogene 4: 1047–1049.PubMedGoogle Scholar
  191. 191.
    Wang C, Koistinen P, Yang GS, Williams DE, Lyman SD, Minden MD, McCulloch EA (1991). Mast cell growth factor, a ligand for the receptor encoded by c-kit, effects the growth in culture of the blast cells of acute myeloblastic leukemia. Leukemia 5: 493–499.PubMedGoogle Scholar
  192. 192.
    Avansi GC, Lista P, Giovinazzo B, Miniero R, Saglio G, Benetton G, Coda R, Cattoretti G, Pegoraro L (1988). Selective growth response to IL-3 of a human leukaemic cell line with megakaryoblastic features. Br J Haematol 69: 359–366.CrossRefGoogle Scholar
  193. 193.
    Koistinen P, Wang C, Yang GS, Wang Y-F, Willi AMS, Lyman SD, Minden MD, McCulloch EA (1991). OCI/AML-4, an acute myeloblastic leukemia cell line: regulation and response to cytosine arabinoside. Leukemia 5: 704–711.PubMedGoogle Scholar
  194. 194.
    Miyazawa K, Hendrie PC, Mantel C, Wood K, Ashman LK, Broxmeyer HE (1991). Comparative analysis of signaling pathways between Mast Cell Growth Factor (c-kit Ligand) and granulocyte-macrophage colony-stimulating factor in a human factor-dependent myeloid cell line involves phosphorylation of raf-1, GTPase-activating protein and mitogen-activated protein kinase. Exp Hematol 19: 1110–1123.PubMedGoogle Scholar
  195. 195.
    Lev S, Givol D, Yarden Y (1991). A specific combination of substrates is involved in signal transduction by the kit-encoded receptor. EMBO J 10: 647–654.PubMedGoogle Scholar
  196. 196.
    Kuriu A, Ikeda H, Kanakura Y, Griffin JD, Druker B, Yagura H, Kitayama H, Ishikawa J, Nishiura T, Kanayama Y, Yonezawa T, Tarui S (1991). Proliferation of human myeloid leukemia cell line associated with the tyrosine-phosphorylation and activation of the proto-oncogene c-kit product. Blood 78: 2962–2968.PubMedGoogle Scholar
  197. 197.
    Ikeda H, Kanakura Y, Tamaki T, Kuriu A, Kitayama H, Ishikawa J, Kanayama Y, Yonezawa T, Tarui S, Griffin JD (1991). Expression and functional role of the proto-oncogene c-kit in acute myeloblastic leukemia cells. Blood 78: 2962–2968.PubMedGoogle Scholar
  198. 198.
    Broudy VC, Lin N, Zsebo KM, Birkett NC, Smith KA, Bernstein ID, Papayannopoulou T (1992). Isolation and characterization of a monoclonal antibody that recognizes the human c-kit receptor. Blood 79: 338–346.PubMedGoogle Scholar
  199. 199.
    Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW (1987). Correction of the anemia of end stage renal disease with recombinant human erythropoietin. N Engl J Med 316: 73–78.PubMedCrossRefGoogle Scholar
  200. 200.
    Beuchner T, Hiddemann W, Koenigsmann M, Zuehlsdorf M, Woermann B, Boeckmann A, Friere EA, Inning G, Maschmeyer G, Ludwig W-D, Sauerland C-M, Heinecke A, Schultz G (1990). Recombinant GM-CSF following chemotherapy in acute leukemias at higher age or after relapse, pp. 447–465. In UCLA Symposia on Molecular and Cellular Biology. Acute Myelogenous Leukemia: Progress and Controversies, Vol. 134, Gale RP (ed). Wiley-Liss: New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • E. A. McCulloch
  • M. D. Minden

There are no affiliations available

Personalised recommendations