Uses of polymerase chain reaction in leukemia: Detection of minimal residual disease and identification of novel genetic mutations

  • Ming-Sheng Lee
  • Sanford A. Stass
Part of the Cancer Treatment and Research book series (CTAR, volume 64)


Polymerase chain reaction (PCR) is a new molecular technique that allows in vitro amplification up to millions of copies of the target DNA [1]. It was initially used to facilitate the specific identification of hereditary genetic disorders with a point mutation. Its clinical usefulness is overtly evident, because it requires only very small amounts of samples and also because the whole assay can be completed within a very short period of time (ranging from a few hours to a couple of days).


Polymerase Chain Reaction Chronic Myeloid Leukemia Polymerase Chain Reaction Assay Chronic Myelogenous Leukemia Minimal Residual Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saiki RK, Gelfand DH, Stoffel S, Sharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich MA, Arnheim N (1985). Enzymatic amplification of alpha-globulin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354.PubMedCrossRefGoogle Scholar
  2. 2.
    Lee MS, Chang KS, Cabanillas F, Freireich EJ, Trujillo JM, Stass SA (1987). Detection of minimal residual cells carrying the t(14;18) by DNA sequence amplification. Science 237: 175–178.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee MS, Chang KS, Freireich EJ, Kantarjian HM, Talpaz M, Trujillo JM, Stass SA (1988). Detection of minimal residual bcr/abl transcripts by a modified polymerase chain reaction. Blood 72: 893–897.PubMedGoogle Scholar
  4. 4.
    Kawasaki ES, Clark SS, Coyne MY, Smith SD, Champlin R, Witte ON, McCormick FP (1988). Diagnosis of chronic myelogenous leukemia and acute leukemia by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA 85: 5689–5692.CrossRefGoogle Scholar
  5. 5.
    Lee MS, Lemaistre A, Kantarjian HM, Talpaz M, Freireich EJ, Trujillo JM, Stass SA (1989). Detection of two alternative bcr/abl mRNA and minimal residual disease in Philadelphia chromosome positive chronic myelogenous leukemia by polymerase chain reaction. Blood 73: 2165–2170.PubMedGoogle Scholar
  6. 6.
    Yamada M, Hudson S, Tournay O, Bittenbender S, Shane SS, Lange B, Trujimoto Y, Canton AJ, Rovera G (1989). Detection of minimal disease in hematopoietic malignancies of the B-cell lineage by using third-complementarity-determining region (CDR-III)-specific probes. Proc Natl Acad Sci USA 86: 5122–5127.Google Scholar
  7. 7.
    Tycko B, Palmer JD, Link MP, Smith SD, Sklar J (1989). Polymerase chain reaction amplification of rearranged antigen receptor genes using junction-specific oligonucleotides: possible application for detection of minimal residual disease in acute lymphoblastic leukemia. Cancer Cells 7: 47–52.Google Scholar
  8. 8.
    Canellos GP (1976). Chronic granulocytic leukemia. Med Clin North Am 60: 1001–1018.PubMedGoogle Scholar
  9. 9.
    Goldman JM, Lu DP (1982). New approaches in chronic granulocytic leukemia—origin, prognosis and treatment. Semin Hematol 19: 241–256.PubMedGoogle Scholar
  10. 10.
    Sokal JE (1979). Evaluation of survival data from chronic myelogenous leukemia. Am J Hematol 1: 493–500.CrossRefGoogle Scholar
  11. 11.
    Kantarjian HM, Smith TL, McCredie KB (1985). Chronic myelogenous leukemia: A multivariate analysis of the associations of patient characteristics and therapy with survival. Blood 66: 1326–1335.PubMedGoogle Scholar
  12. 12.
    Thomas ED, Clift RA, Fefer A, Applebaum FR, Beatty P, Bensinger WI, Buckner CD, Cheever MA, Deeg HJ, Doney K, Flournoy N, Greenberg P, Hansen JA, Martin P, McGuffin R, Ramberg R, Sanders JE, Singer J, Stewart P, Storb R, Sullivan K, Weiden PL, Witherspoon R (1986). Marrow transplantation for the treatment of chronic myelogenous leukemia. Ann Intern Med 104: 155–163.PubMedGoogle Scholar
  13. 13.
    Talpaz M, Kantarjian HM, McCredie KB, Keating MJ, Trujillo JM, Gutterman J (1987). Clinical investigation of human alpha interferon in chronic myelogenous leukemia. Blood 69: 1280–1288.PubMedGoogle Scholar
  14. 14.
    Rowley JD (1973). A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290–293.PubMedCrossRefGoogle Scholar
  15. 15.
    Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984). Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36: 93–99.PubMedCrossRefGoogle Scholar
  16. 16.
    Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G (1985). Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 315: 758–761.PubMedCrossRefGoogle Scholar
  17. 17.
    Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A, Bartram CR, Grosveld G (1983). Localization of the c-abl oncogene adjacent to a translocation breakpoint in chronic myelogenous leukemia. Nature 306: 239–242.PubMedCrossRefGoogle Scholar
  18. 18.
    Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E (1986). Alternative splicing of RNAs transcribed from the human abl gene and from the bcr/abl fused gene. Cell 47: 277–284.PubMedCrossRefGoogle Scholar
  19. 19.
    Talpaz M, Kantarjian HM, Kurzrock R, Gutterman J (1990). Update on therapeutic options for chronic myelogenous leukemia. Semin Hematol 27(Suppl 4): 31–36.PubMedGoogle Scholar
  20. 20.
    Lee MS, Kantarjian HM, Freireich EJ, Deisseroth A, Trujillo JM, Stass SA (in press). Detection of minimal residual disease by Polymerase Chain Reaction in Philadelphia Chromosome positive chronic myelogous leukemia. Blood.Google Scholar
  21. 21.
    Gabert, J, Lafage M, Maranichi D, Thuret I, Carcassonne Y, Mannoni P (1989). Detection of residual bcr/abl translocation by polymerase chain reaction in chronic myeloid leukemia patients after bone-marrow transplantation. Lancet 11: 1125–1127.CrossRefGoogle Scholar
  22. 22.
    Sawyers CL, Timson L, Kawasaki ES, Clark SS, Witte ON, Champlin R (1990). Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc Natl Acad Sci USA 87: 563–567.PubMedCrossRefGoogle Scholar
  23. 23.
    Roth MS, Antin JH, Bingham EL, Ginsburg D (1989). Detection of Philadelphia chromosome-positive cells by the polymerase chain reaction following bone marrow transplant for chronic myelogenous leukemia. Blood 74: 882–885.PubMedGoogle Scholar
  24. 24.
    Hughes T, Martiat P, Morgan G, Sawyers C, Witte O, Goldman JM (1990). Significance of residual leukemia transcripts after bone marrow transplant for CML. Lancet 1: 50.CrossRefGoogle Scholar
  25. 25.
    Hughes TP, Morgan GJ, Martiat P, Goldman JM (1991). Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: role of polymerase chain reaction in predicting relapse. Blood 77: 874–878.PubMedGoogle Scholar
  26. 26.
    Pignon JM, Henni T, Amselem S, Vidaud M, Duquesnoy P, Vernant JP, Kuentz M, Cordonnier C, Rochant H, Goossens M (1990). Frequent detection of minimal residual disease by use of the polymerase chain reaction in long term survivors after bone marrow transplantation for chronic myeloid leukemia. Leukemia 4: 83–86.PubMedGoogle Scholar
  27. 27.
    Snyder DS, Rossi JJ, Wang JL, Sniecinski IJ, Slovak ML, Wallace RB, Forman SJ (1991). Persistence of bcr-abl gene expression following bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Transplantation 51: 1033–1040.PubMedCrossRefGoogle Scholar
  28. 28.
    Kwok S, Higuchi R, (1989). Avoid false positives with PCR. Nature 339: 237–238.PubMedCrossRefGoogle Scholar
  29. 29.
    Yamada M, Wasserman R, Lange B, Reichard B, Womer RB, Rovera G (1990). Minimal residual disease in childhood B-lineage lymphobalstic leukemia: persistence of leukemic cell during the first 18 months of treatment. N Engl J Med 323: 448–455.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee MS, Estov Z, Zipf T (manuscript in preparation).Google Scholar
  31. 31.
    Chen GL, Yang L, Rowe TC (1984). Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. Biol Chem 259: 13560–13566.Google Scholar
  32. 32.
    Liu LF (1989). DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem 58: 351–375.PubMedCrossRefGoogle Scholar
  33. 33.
    Ross W (1985). DNA topoisomerases as targets for cancer therapy. Biochem Pharmacol 34: 4191–4195.PubMedCrossRefGoogle Scholar
  34. 34.
    Beran M, Anderson BS (1987). Development and charaterization of a human myelogenous leukemia cell line resistant to 4’-(9-acridinylamino)-3-methane-sulfon-m-anisidide. Cancer Res 47: 1897–1904.PubMedGoogle Scholar
  35. 35.
    Lee MS, Vang J, Beran M (1992). Two independent amsacrine-resistant human myeloid leukemia cell lines share an identical point mutation in the 170 kD form of human topoisomerase II. J Mol Biol 223: 837–843.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ming-Sheng Lee
  • Sanford A. Stass

There are no affiliations available

Personalised recommendations