Advertisement

The molecular pathogenesis of the philadelphia-positive leukemias: Implications for diagnosis and therapy

  • Richard A. Van Etten
Part of the Cancer Treatment and Research book series (CTAR, volume 64)

Abstract

The Philadelphia chromosome is the cytogenetic hallmark of the myeloproliferative disease chronic myelogenous leukemia (CML), and is also found in many cases of acute lymphoblastic leukemia (ALL) and some cases of acute myelogenous leukemia (AML). In 1973, Rowley demonstrated that the Philadelphia chromosome, a small form of human chromosome 22 [1], was the product of a reciprocal translocation between the long arms of chromosomes 9 and 22: t(9;22)(q34.1;qll.21) [2]. A decade later, the molecular structure of the Philadelphia chromosome was determined, showing that the Philadelphia translocation results in the juxtaposition of the human proto-oncogene c-ABL on chromosome 9 with a gene denoted BCR on chromosome 22, resulting in the generation of a chimeric BCR/ABL fusion gene [3–8]. In the ensuing years, progress has been rapid, sometimes astonishingly so. The product of the BCR/ABL gene was identified in malignant cells from CML patients as a 210-kd fusion protein, p210BCR/ABL [9]. Like other members of the abl family, the p210BCR/ABL protein was shown to be a nonreceptor protein-tyrosine kinase [10]. The role of BCR/ABL as an oncogene was strengthened with the findings that this gene could transform factor-dependent lymphoid and myeloid cells in culture to growth factor- independence and tumorigenicity [11,12], and by its ability to transform immature primary lymphoid progenitor cells in long-term in vitro culture [13]. The importance of the tyrosine kinase activity for transformation and oncogenicity was confirmed with the study of mutants that were temperature- sensitive or defective for tyrosine kinase activity [14,15]. A distinct and smaller form of Bcr/Abl protein, p190BCR/ABL, was identified in some patients with Philadelphia-positive ALL and AML, resulting from a molecular variant of the Philadelphia chromosome translocation [16-19]. Recently, animal models of the BCR/ABL leukemias have become available, employing either transgenic strains of mice carrying the BCR/ABL gene [20,21], or retroviral transduction of BCR/ABL genes into mouse bone marrow followed by bone marrow transplantation [22-24]. Thus, this group of human leukemias is now one of the best characterized at the clinical and molecular levels, and is the subject of several recent reviews [25,26].

Keywords

Acute Lymphoblastic Leukemia Chronic Myeloid Leukemia Chronic Myelogenous Leukemia Blast Crisis Philadelphia Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nowell PC, Hungerford DA (1960). A minute chromosome in human chronic granulocytic leukemia. Science 132: 1197–1200.Google Scholar
  2. 2.
    Rowley JD (1973). A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290–293.PubMedCrossRefGoogle Scholar
  3. 3.
    de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982). A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia. Nature 300: 765–767.PubMedCrossRefGoogle Scholar
  4. 4.
    Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A, Bartram CR, Grosveld G (1983). Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 306: 239–242.PubMedCrossRefGoogle Scholar
  5. 5.
    Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984). Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36: 93–99.PubMedCrossRefGoogle Scholar
  6. 6.
    Stam K, Heisterkamp N, Grosveld G, De Klein A, Verma RS, Coleman M, Dosik H, Groffen J (1985). Evidence of a new chimeric bcr/c-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N Engl J Med 313: 1429–1433.PubMedCrossRefGoogle Scholar
  7. 7.
    Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985). Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315: 550–554.PubMedCrossRefGoogle Scholar
  8. 8.
    Heisterkamp N, Stam K, Groffen J (1985). Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 315: 758–761.PubMedCrossRefGoogle Scholar
  9. 9.
    Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D (1986). The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233: 212–214.PubMedCrossRefGoogle Scholar
  10. 10.
    Konopka JB, Watanabe SM, Witte ON (1984). An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37: 1035–1042.PubMedCrossRefGoogle Scholar
  11. 11.
    Daley G, Baltimore D (1988). Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210 bcr/abl protein. Proc Natl Acad Sci USA 85: 9312–9316.PubMedCrossRefGoogle Scholar
  12. 12.
    Hariharan IK, Adams JM, Cory S (1988). bcr-abl oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia. Oncogene Res 3: 387–399.PubMedGoogle Scholar
  13. 13.
    McLaughlin J, Chianese E, Witte ON (1987). In vitro transformation of immature hematopoietic cells by the P210 bcr/abl oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci USA 84: 6558–6562.PubMedCrossRefGoogle Scholar
  14. 14.
    Engelman A, Rosenberg N (1987). Isolation of temperature-sensitive Abelson virus mutants by site-directed mutagenesis. Proc Natl Acad Sci USA 84: 8021–8025.PubMedCrossRefGoogle Scholar
  15. 15.
    Kipreos E, Lee GJ, Wang JYJ (1987). Isolation of temperature-sensitive tyrosine kinase mutants of v-abl oncogene by screening with antibodies for phosphotyrosine. Proc Natl Acad Sci USA 84: 1345–1349.PubMedCrossRefGoogle Scholar
  16. 16.
    Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON (1987). Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. Science 235: 85–87.PubMedCrossRefGoogle Scholar
  17. 17.
    Clark SS, Mclaughlin J, Timmons M, Pendergast A-M, Ben-Neriah Y, Dow LW, Crist W, Rovera G, Smith SD, Witte ON (1988). Expression of a distinctive BCR-ABL oncogene in Prepositive acute lymphoblastic leukemia (ALL). Science 239: 775–777.PubMedCrossRefGoogle Scholar
  18. 18.
    Kurzrock R, Shtalrid M, Talpaz M, Kloetzer WS, Gutterman JU (1987). Expression of c-abl in Philadelphia-positive acute myelogenous leukemia. Blood 70: 1584–1588.PubMedGoogle Scholar
  19. 19.
    Fainstein E, Marcelle C, Rosner A, Canaani E, Gale RP, Dreazen O, Smith SD, Croce CM (1987). A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemia. Nature 330: 386–388.PubMedCrossRefGoogle Scholar
  20. 20.
    Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J (1990). Acute leukemia in bcr/abl transgenic mice. Nature 344: 251–253.PubMedCrossRefGoogle Scholar
  21. 21.
    Hariharan IK, Harris AW, Crawford M, Abud H, Webb E, Cory S, Adams JM (1989). A bcr-v-abl oncogene induces lymphomas in transgenic mice. Mol Cell Biol 9: 2798–2805.PubMedGoogle Scholar
  22. 22.
    Daley GQ, Van Etten RA, Baltimore D (1990). Induction of chronic myelogenous leukemia in mice by the P210 bcr/abl gene of the Philadelphia chromosome. Science 247: 824–830.PubMedCrossRefGoogle Scholar
  23. 23.
    Elefanty, AG, Hariharan IK, Cory S (1990). bcr-abl, the hallmark of chronic myeloid leukemia in man, induces multiple hematopoietic neoplasms in mice. EMBO J 9: 1069–1078.PubMedGoogle Scholar
  24. 24.
    Kelliher MA, McLaughlin J, Witte ON, Rosenberg N (1990). Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and bcr/abl. Proc Natl Acad Sci USA 87: 6649–6653.PubMedCrossRefGoogle Scholar
  25. 25.
    Kurzrock R, Gutterman J, Talpaz M (1988). The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med 319: 990–998.PubMedCrossRefGoogle Scholar
  26. 26.
    Clark SS, Crist WM, Witte ON (1989). Molecular pathogenesis of Ph-positive leukemias. Annu Rev Med 40: 113–122.PubMedCrossRefGoogle Scholar
  27. 27.
    Hagemeijer A, Bartram CR, Smit EME, van Agthoven AJ, Bootsma D (1984). Is the chromosomal region 9q34 always involved in variants of the Phi translocation? Cancer Genet Cytogenet 13: 1.PubMedCrossRefGoogle Scholar
  28. 28.
    Ishihara T, Minamihisamatsu M, Tosuji H (1985). Chromosome 9 in variant Ph translocations. Cancer Genet Cytogenet 14: 183.PubMedCrossRefGoogle Scholar
  29. 29.
    Gale RP, Canaani E (1984). An 8-kilobase abl RNA transcript in chronic myelogenous leukemia. Proc Natl Acad Sci USA 81: 5648–5652.PubMedCrossRefGoogle Scholar
  30. 30.
    Eisenstein BI (1990). The polymerase chain reaction. A new method of using molecular genetics for medical diagnosis. N Engl J Med 322: 178–183.Google Scholar
  31. 31.
    Kawasaki ES, Clark SS, Coyne MY, Smith SD, Champlin R, Witte ON, McCormick FP (1988). Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA 85: 5698–5702.PubMedCrossRefGoogle Scholar
  32. 32.
    Gilliland DG, Perrin S, Blanchard KL, Bunn HF (1990). Analysis of cytokine mRNA and DNA: Detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci USA 87: 2725–2729.PubMedCrossRefGoogle Scholar
  33. 33.
    Ponzetto C, Guerrasio A, Rosso C, Avanzi G, Tassinari A, Zaccaria A, LoCoco F, Foa R, Basso G, Abate ML (1990). ABL proteins in Philadelphia-positive acute leukemias and chronic myelogenous leukaemia blast crises. Br J Haematol 76: 39–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Kamps M, Look AT, Baltimore D (1991). The human t(l;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbxl fusion proteins with differing transforming potential. Genes Dev 5: 358–368.PubMedCrossRefGoogle Scholar
  35. 35.
    Ezdinli EZ, Sokal JE, Crosswhite L, Sandberth AA (1970). Philadelphia chromosome-positive and-negative chronic myelogenous leukemia. Ann Intern Med 72: 175–182.PubMedGoogle Scholar
  36. 36.
    Bartram CR, Kleihauer E, De Klein A, Grosveld G, Teyssier JR, Heisterkamp N, Groffen J (1985). c-abl and bcr are rearranged in a Ph1-negative CML patient. EMBO J 4: 683–686.PubMedGoogle Scholar
  37. 37.
    Kurzrock R, Blick MB, Talpaz M, Velasquez WS, Trujillo JM, Kouttab NM, Kloetzer WS, Arlinghaus RA, Gutterman JU (1986). Rearrangement in the breakpoint cluster region and the clinical course in Philadelphia-negative chronic myelogenous leukemia. Ann Intern Med 105: 673–679.PubMedGoogle Scholar
  38. 38.
    ar-Rushdi A, Negrini M, Kurzrock R, Huebner K, Croce CM (1988). Fusion of the bcr and the c-abl genes in Ph’-positive acute lymphocytic leukemia with no rearrangement in the breakpoint cluster region. Oncogene 2: 353–357.PubMedGoogle Scholar
  39. 39.
    Ganesan TS, Rassool F, Guo A-P, Th’ng KH, Dowding C, Hibbin JA, Young BC, White H, Kumaran TO, Galton DAG, Goldman JM (1986). Rearrangement of the bcr gene in Philadelphia chromosome-negative chronic myeloid leukemia. Blood 68: 957–960.PubMedGoogle Scholar
  40. 40.
    Dreazen O, Klisak I, Rassool R, Goldman JM, Sparkes RS, Gale RP (1988). The bcr gene is joined to c-abl in Ph1 chromosome negative chronic myelogenous leukemia. Oncogene Res 2: 167–175.PubMedGoogle Scholar
  41. 41.
    Travis LP, Pierre RV, DeWald GW (1986). Ph1 negative chronic granulocytic leukemia: A nonentity. Am J Clin Pathol 85: 186.PubMedGoogle Scholar
  42. 42.
    Pugh WC, Pearson M, Vardiman JW, Rowley JD (1985). Philadelphia-chromosome-negative chronic myelogenous leukemia: a morphologic reassessment. Br J Haematol 60: 457–467.PubMedCrossRefGoogle Scholar
  43. 43.
    Kurzrock R, Kantarjian HM, Shtalrid M, Gutterman JU, Talpaz M (1990). Philadelphia chromosome-negative chronic myelogenous leukemia without breakpoint cluster region rearrangement: A chronic myeloid leukemic with a distinct clinical course. Blood 75: 445–452.PubMedGoogle Scholar
  44. 44.
    Dameshek W (1951). Some speculations on the myeloproliferative disorders. Blood 6: 372–375.PubMedGoogle Scholar
  45. 45.
    Laszlo J (1975). Myeloproliferative disorders (MPD): myelofibrosis, myelosclerosis, extramedullary hematopoiesis, undifferentiated MPD, and hemorrhagic thrombo-cythemia. Semin Hematol 12: 409–432.PubMedGoogle Scholar
  46. 46.
    Martiat P, Ifrah N, Rassool F, Morgan G, Giles F, Gow J, Goldman JM (1989). Molecular analysis of Philadelphia positive essential thrombocythemia. Leukemia 3: 563–565.PubMedGoogle Scholar
  47. 47.
    Berlin NI (1975). Diagnosis and classification of the polycythemias. Semin Hematol 12: 339–351.PubMedGoogle Scholar
  48. 48.
    Negrin RS, Blume K (1991). The use of the polymerase chain reaction for the detection of minimal residual malignant disease. Blood 78: 255–258.PubMedGoogle Scholar
  49. 49.
    Gabert J, Thuret I, Lafage M, Carcassone Y, Maraninchi D, Mannoni P (1989). Detection of residual bcr/abl translocation by polymerase chain reaction in chronic myeloid leukemia patients after bone-marrow transplantation. Lancet 2: 1125–1128.PubMedCrossRefGoogle Scholar
  50. 50.
    Roth MS, Antin JH, Bingham EL, Ginsburg D (1989). Detection of Philadelphia chromosome-positive cells by the polymerase chain reaction following bone marrow transplant for chronic myelogenous leukemia. Blood 74: 882–885.PubMedGoogle Scholar
  51. 51.
    Kohler S, Galili N, Sklar JL, Donion TA, Blume K (1990). Expression of bcr-abl fusion transcripts following bone marrow transplantation for Philadelphia chromosome-positive leukemia. Leukemia 4: 541.PubMedGoogle Scholar
  52. 52.
    Delfau MH, Kerckaert JP, Collyn d’Hooghe M, Fenaux P, Lai JL, Jouet JP, Grandchamp B (1990). Detection of minimal residual disease in chronic myeloid leukemia patients after bone marrow transplantation by polymerase chain reaction. Leukemia 4: 1–5.PubMedGoogle Scholar
  53. 53.
    Snyder DS, Rossi JJ, Wang JL, Sniecinski IJ, Slovak ML, Wallace RB, Forman SJ (1991). Persistence of bcr-abl gene expression following bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Transplantation 51: 1033–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Lange W, Herkert R, Finke J, Ragoczy U, Siegert W, Mertelsmann R, Dolken G (1991). Apparent decrease and elimination of BCR/ABL mRNA-expressing residual cells in patients with chronic myelogenous leukemia after allogeneic bone marrow transplantation. Ann Hematol 63: 189–194.PubMedCrossRefGoogle Scholar
  55. 55.
    Morgan GJ, Hughes T, Janssen JW, Gow J, Guo AP, Goldman JM, Wiedemann LM, Bartram CR (1989). Polymerase chain reaction for detection of residual leukemia. Lancet 1: 928–929.PubMedCrossRefGoogle Scholar
  56. 56.
    Sawyers CL, Timson L, Kawasaki ES, Clark SS, Witte ON, Champlin R (1990). Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc Natl Acad Sci USA 87: 563–567.PubMedCrossRefGoogle Scholar
  57. 57.
    Hughes TP, Morgan GJ, Martiat P, Goldman JM (1991). Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: Role of the polymerase chain reaction in predicting relapse. Blood 77: 874–878.PubMedGoogle Scholar
  58. 58.
    Hughes TP, Ambrosetti A, Barbu V, Bartram C, Battista R, Biondi A, Chiamenti A, Cimino G, Ernst P, Frassoni F (1991). Clinical value of PCR in diagnosis and follow-up of leukaemia and lymphoma: report of the third Workshop of the Molecular Biology/BMT study group. Leukemia 5: 448–451.PubMedGoogle Scholar
  59. 59.
    Sokal JE, Baccarani M, Russo D, Tura S (1988). Staging and prognosis in chronic myelogenous leukemia. Semin Hematol 25: 49–61.PubMedGoogle Scholar
  60. 60.
    Kantarjian H, Smith TL, McCredie KB, et al. (1985). Chronic myelogenous leukemia: A multivariate analysis of patient characteristics and therapy with survival. Blood 66: 1326–1335.PubMedGoogle Scholar
  61. 61.
    Oguma S, Takatsuki K, Uchino H, et al. (1982). Factors influencing survival in Philadelphia chromosome-positive chronic myelocytic leukemia. Cancer 50: 2928–2934.PubMedCrossRefGoogle Scholar
  62. 62.
    Tura S, Baccarani M, Corbelli G (1981). Staging of chronic myeloid leukemia. Br J Haematol 47: 105–119.PubMedCrossRefGoogle Scholar
  63. 63.
    Sokal JE, Cox EB, Baccarabi M, Tura S, Gomez GA, Robertson JE, Tso CY, Braun TJ, Clarkson BD, Cervantes F, et al. (1984). Prognostic discrimination in ‘good-risk’ chronic granulocytic leukemia. Blood 63: 789–799.PubMedGoogle Scholar
  64. 64.
    Sokal JE, Baccarani M, Tura S, Fiacchini M, Cervantes F, Rozman C, Gomez GA, Galton DA, Canellos GP, Braun TJ (1985). Prognostic discrimination among younger patients with chronic myelogenous leukemia: relevance to bone marrow transplantation. Blood 66: 1352–1357.PubMedGoogle Scholar
  65. 65.
    Birnie GD, Mills KI, Benn P (1989). Does the breakpoint on chromosome 22 influence the duration of the chronic phase in chronic myeloid leukemia? Leukemia 3: 545–547.PubMedGoogle Scholar
  66. 66.
    Leibowitz D (1991). Variation of BCR-ABL breakpoint and its relationship to prognosis. In Chronic Myelogenous Leukemia. Molecular Approaches to Research and Therapy, Deisseroth AB, Arlinghaus RB, (eds) Marcel Dekker: New York, pp. 209–216.Google Scholar
  67. 67.
    Shtivelman E, Gale RP, Dreazen O, Berrebi A, Zaizov R, Kubonishi I, Miyoshi I, Canaani E (1987). bcr-abl RNA in patients with chronic myelogenous leukemia. Blood 69: 971–973.PubMedGoogle Scholar
  68. 68.
    Schaefer-Rego K, Dudek H, Popenoe D, Arlin Z, Mears JG, Bank A, Leibowitz D (1987). CML patients in blast crisis have breakpoints localized to a specific region of the BCR. Blood 70: 448–455.PubMedGoogle Scholar
  69. 69.
    Dreazen O, Berman M, Gale RP (1988). Molecular abnormalities of bcr and c-abl in chronic myelogenous leukemia associated with a long chronic phase. Blood 71: 797–799.PubMedGoogle Scholar
  70. 70.
    Shtalrid M, Talpaz M, Kurzrock R, Kantarjian H, Trujillo J, Gutterman J, Yoffe G, Blick M (1988). Analysis of breakpoints within the bcr gene and their correlation with the clinical course of Philadelphia-positive chronic myelogenous leukemia. Blood 72: 485–490.PubMedGoogle Scholar
  71. 71.
    Eisenberg A, Silver R, Soper L, Arlin Z, Coleman M, Bernhardt B, Benn P (1988). The location of breakpoints within the breakpoint cluster region (bcr) of chromosome 22 in chronic myeloid leukemia. Leukemia 2: 642–647.PubMedGoogle Scholar
  72. 72.
    Mills KI, MacKenzie ED, Birnie GD (1988). The site of the breakpoint within the bcr is a prognostic factor in Philadelphia-positive CML patients. Blood 72: 1237–1241.PubMedGoogle Scholar
  73. 73.
    Spiers ASD, Baikie AG (1968). Cytogenetic evolution and clonal proliferation in acute transformation of chronic granulocytic leukaemia. Br J Cancer 22: 192–204.PubMedCrossRefGoogle Scholar
  74. 74.
    Lawler SD (1977). The cytogenetics of chronic granulocytic leukemia. Clin Haematol 6: 55–75.PubMedGoogle Scholar
  75. 75.
    Bernstein R (1988). Cytogenetics of chronic myelogenous leukemia. Semin Hematol 25: 20–34.PubMedGoogle Scholar
  76. 76.
    Jakobovits EB, Majors JE, Varmus HE (1984). Hormonal regulation of the rous sarcoma virus src gene via a heterologous promoter defines a threshold dose for cellular transformation. Cell 38: 757–765.PubMedCrossRefGoogle Scholar
  77. 77.
    Rowley JD (1980). Phi-positive leukemia including chronic myelogenous leukemia. Clin Haematol 9: 55–86.PubMedGoogle Scholar
  78. 78.
    Collins SJ, Groudine MT (1983). Rearrangement and amplification of c-abl sequences in the human chronic myelogenous leukemia cell line K-562. Proc Natl Acad Sci USA 80: 4813–4817.PubMedCrossRefGoogle Scholar
  79. 79.
    Collins SJ, Groudine MT (1987). Chronic myelogenous leukemia: amplification of a rearranged c-abl oncogene in both chronic phase and blast crisis. Blood 69: 893–898.PubMedGoogle Scholar
  80. 80.
    Andrews DFI, Collins SJ (1987). Heterogeneity in expression of the bcr-abl fusion transcript in CML blast crisis. Leukemia 1: 718–724.PubMedGoogle Scholar
  81. 81.
    Hagemeijer A, Smit EME, Lowenberg B, Abels J (1979). Chronic myeloid leukemia with permanent disappearance of the Ph1 chromosome and development of new clonal subpopulations. Blood 53: 1–14.PubMedGoogle Scholar
  82. 82.
    Bartram CR, Janssen JWG, Becher R, De Klein A, Grosveld G (1986). Persistence of chronic myelocytic leukemia despite deletion of rearranged bcr/c-abl sequences in blast crisis. J Exp Med 164: 1389–1396.PubMedCrossRefGoogle Scholar
  83. 83.
    Morgan GJ, Hernandez A, Chan LC, Hughes T, Martiat P, Wiedemann LM (1990). The role of alternative splicing patterns of BCR/ABL transcripts in the generation of the blast crisis of chronic myeloid leukaemia. Br J Haematol 76: 33–38.PubMedCrossRefGoogle Scholar
  84. 84.
    Fainstein E, Einat M, Gokkel E, Marcelle C, Croce CM, Gale RP, Canaani E (1989). Nucleotide sequence analysis of human abl and bcr-abl cDNAs. Oncogene 4: 1477–1481.PubMedGoogle Scholar
  85. 85.
    Cole M (1986). The myc oncogene: Its role in transformation and differentiation. Annu Rev Genet 20: 361–384.PubMedCrossRefGoogle Scholar
  86. 86.
    Ohno S, Migita S, Wiener F, Babonits M, Klein G, Mushinski JF, Potter M (1984). Chromosomal translocations activating myc sequences and transduction of v-abl are critical events in the rapid induction of plasmacytomas by pristane and Abelson virus. J Exp Med 159: 1762–1777.PubMedCrossRefGoogle Scholar
  87. 87.
    Rosenbaum H, Harris AW, Bath ML, McNeall J, Webb E, Adams JM, Cory S (1990). An E(mu)-v-abl transgene elicits plasmacytomas in concert with an activated myc gene. EMBO J 9: 897–905.PubMedGoogle Scholar
  88. 88.
    Lugo TG, Witte ON (1989). The bcr-abl oncogene transforms rat-1 cells and cooperates with v-myc. Mol Cell Biol 9: 1263–1270.PubMedGoogle Scholar
  89. 89.
    Nowell PC, Finan J, Dalla-Favera R, Gallo RC, ar-Rushdi A, Romanczuk H, Seiden JR, Emanuel BS, Rovera G, Croce CM (1983). Association of amplified oncogene c-myc with an abnormally banded chromosome 8 in a human leukemia cell line. Nature 306: 494–497.PubMedCrossRefGoogle Scholar
  90. 90.
    McCarthy DM, Goldman JM, Rassool FV, Graham SV, Birnie GD (1984). Genomic alternations involving the c-myc proto-oncogene locus during the evolution of a case of a chronic myelogenous leukemia. Lancet 2: 1362–1365.PubMedCrossRefGoogle Scholar
  91. 91.
    Preisler HD, Sato H, Yang P, Wilson M, Kaufman C, Watt R (1988). Assessment of c-myc expression in individual leukemic cells. Leuk Res 12: 507–516.PubMedCrossRefGoogle Scholar
  92. 92.
    Liu E, Hjelle B, Bishop JM (1988). Transforming genes in chronic myelogenous leukemia. Proc Natl Acad Sci USA 85: 1952–1956.PubMedCrossRefGoogle Scholar
  93. 93.
    Janssen JWG, Steenvoorden ACM, Collard JG, Nusse R (1987). ras gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. Proc Natl Acad Sci USA 84: 9228–9232.PubMedCrossRefGoogle Scholar
  94. 94.
    O’Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C, Espinosa R III, Le Beau MM, Earp HS, Liu ET (1991). axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol 11: 5016–5031.PubMedGoogle Scholar
  95. 95.
    Janssen JW, Schulz AS, Styeenvoorden AC, Schmidberger M, Strehl S, Ambros PF, Bartram CR (1991). A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene 6: 2113–2120.PubMedGoogle Scholar
  96. 96.
    Ahuja H, Bar-Eli M, Advani SH, Benchimol S, Cline MJ (1989). Alterations in the p53 gene and the clonal evolution of the blast crisis of chronic myelocytic leukemia. Proc Natl Acad Sci USA 86: 6783–6787.PubMedCrossRefGoogle Scholar
  97. 97.
    Knudson AG Jr (1975). The genetics of childhood cancer. Cancer 35: 1022–1026.PubMedCrossRefGoogle Scholar
  98. 98.
    Mashal R, Shtalrid M, Talpaz M, Kantarjian H, Smith L, Beran M, Cork A, Trujillo J, Gutterman J, Deisseroth A (1990). Rearrangement and expression of p53 in the chronic phase and blast crisis of chronic myelogenous leukemia. Blood 75: 180–189.PubMedGoogle Scholar
  99. 99.
    Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, Kishi K, Goldman J, Zaccaria A, Berrebi A, Canaani E (1991). p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci USA 88: 6293–6297.PubMedCrossRefGoogle Scholar
  100. 100.
    Hinds P, Finlay C, Levine AJ (1989). Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 63: 739–746.PubMedGoogle Scholar
  101. 101.
    Fearon ER, Vogelstein B (1990). A genetic model for colorectal tumorigenesis. Cell 61: 759–767.PubMedCrossRefGoogle Scholar
  102. 102.
    Bloomfield CD, Seeker-Walker LM, Goldman AI (1989). Six year follow-up of the clinical significance of karyotype in acute lymphoblastic leukemia. Cancer Genet Cytogenet 40: 171.PubMedCrossRefGoogle Scholar
  103. 103.
    Kurzrock R, Shtalrid M, Romero P, Kloetzer WS, Talpaz M, Trujillo JM, Blick M, Beran M, Gutterman JU (1987). A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukaemia. Nature 325: 631–635.PubMedCrossRefGoogle Scholar
  104. 104.
    Chan LC, Karhi KK, Rayter SI, Heisterkamp N, Eridani S, Powles R, Lawler SD, Groffen J, Foulkes JG, Greaves MF, Wiedemann LM (1987). A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature 325: 635–637.PubMedCrossRefGoogle Scholar
  105. 105.
    Walker LC, Ganesan TS, Dhut S, Gibbons B, Lister TA, Rothbard J, Young, BD (1987). Novel chimaeric protein expressed in Philadelphia positive acute lymphoblastic leukaemia. Nature 329: 851–853.PubMedCrossRefGoogle Scholar
  106. 106.
    Erikson J, Griffin CA, Ar-Rushdi A, Valtieri M, Hoxie J, Finan J, Emanuel BS, Rovera G, Nowell PC, Croce CM (1986). Heterogeneity of chromosome 22 breakpoint in Philadelphia-positive (Ph+) acute lymphocytic leukemia. Proc Natl Acad Sci USA 83: 1807–1811.PubMedCrossRefGoogle Scholar
  107. 107.
    Hermans A, Heisterkamp N, von Lindern M, van Baal S, Meijer D, van der Pias D, Wiedemann LM, Groffen J, Bootsma D, Grosveld G (1987). Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell 51: 33–40.PubMedCrossRefGoogle Scholar
  108. 108.
    Chen SJ, Flandrin G, Daniel MT, Valensi F, Baranger L, Grausz D, Bernheim A, Chen Z, Sigaux F, Berger R (1988). Philadelphia-positive leukemia: Lineage promiscuity and inconsistently rearranged breakpoint cluster region. Leukemia 2: 261–273.PubMedGoogle Scholar
  109. 109.
    Hirsch-Ginsberg C, Childs C, Chang K-S, Beran M, Cork A, Reuben J, Freireich EJ, Chang LCM, Bollum FJ, Trujillo J, Stass SA (1988). Phenotypic and molecular heterogeneity in Philadelphia chromosome-positive acute leukemia. Blood 71: 186–195.PubMedGoogle Scholar
  110. 110.
    Schaefer-Rego K, Arlin Z, Shapiro LG, Mears JG, Leibowitz D (1988). Molecular heterogeneity of adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer Res 48: 866–869.PubMedGoogle Scholar
  111. 111.
    Turhan AG, Eaves CJ, Kalousek DK, Eaves AC, Humphries RK (1988). Molecular analysis of clonality and bcr rearrangements in Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 71: 1495–1498.PubMedGoogle Scholar
  112. 112.
    Tachibana N, Raimondi SC, Lauer SJ, Sartain P, Dow LW (1987). Evidence for a multipotential stem cell disease in some childhood Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 70: 1458–1461.PubMedGoogle Scholar
  113. 113.
    Dow LW, Tachibana N, Raimondi SC, Lauer SJ, Witte ON, Clark SC (1989). Comparative biochemical and cytogenetic studies of childhood acute lymphoblastic leukemia with the Philadelphia chromosome and other 22qll variants. Blood 73: 1291–1297.PubMedGoogle Scholar
  114. 114.
    Selleri L, von Lindern M, Hermans A, Meijer D, Torelli G, Grosveld G (1990). Chronic myeloid leukemia may be associated with several bcr-abl transcripts including the acute lymphoid leukemia-type 7kb transcript. Blood 75: 1146–1153.PubMedGoogle Scholar
  115. 115.
    Daley GQ, McLaughlin J, Witte ON, Baltimore D (1987). The CML-specific P210 bcr/abl protein, unlike v-abl, does not transform NIH/3T3 fibroblasts. Science 237: 532–535.PubMedCrossRefGoogle Scholar
  116. 116.
    Daley GO, Van Etten RA, Jackson PJ, Bernards A, Baltimore D (in press). Non-myristoylated abl proteins transform a factor-dependent hematopoietic cell line. Mol Cell Biol.Google Scholar
  117. 117.
    Lugo TG, Pendergast A, Muller AJ, Witte ON (1990). Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247: 1079–1082.PubMedCrossRefGoogle Scholar
  118. 118.
    McLaughlin J, Chianese E, Witte ON (1989). Alternative forms of the bcr-abl oncogene have quantitatively different potencies for stimulation of immature lymphoid cells. Mol Cell Biol 9: 1866–1874.PubMedGoogle Scholar
  119. 119.
    Scherle PA, Dorshkind K, Witte ON (1990). Clonal lymphoid progenitor cell lines expressing the BCR/ABL oncogene retain full differentiative function. Proc Natl Acad Sci USA 87: 1908–1912.PubMedCrossRefGoogle Scholar
  120. 120.
    Jackson P, Baltimore D (1989). N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl. EMBO J 8: 449–456.PubMedGoogle Scholar
  121. 121.
    Franz WM, Berger P, Wang JYJ (1989). Deletion of an N-terminal regulatory domain of the c-abl tyrosine kinase activates its oncogenic potential. EMBO J 8: 137–147.PubMedGoogle Scholar
  122. 122.
    Jackson PK, Paskind M, Baltimore D (submitted). Activation of transforming ability of c-abl by point mutation in the tyrosine kinase domain.Google Scholar
  123. 123.
    Shore SK, Bogart SL, Reddy EP (1990). Activation of murine c-abl protooncogene: Effect of a point mutation on oncogenic activation. Proc Natl Acad Sci USA 87: 6502–6506.PubMedCrossRefGoogle Scholar
  124. 124.
    Jackson P, Van Etten RA, Daley GQ, Baltimore D (1992). Extreme N-terminal mutations activate c-abl independent of SH3 alteration, submitted.Google Scholar
  125. 125.
    Konopka JB, Witte ON (1985). Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. Mol Cell Biol 5: 3116–3123.PubMedGoogle Scholar
  126. 126.
    Pendergast AM, Müller AJ, Havlik MH, Clark R, McCormick F, Witte ON (1991). Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor. Proc Natl Acad Sci USA 88: 5927–5931.PubMedCrossRefGoogle Scholar
  127. 127.
    Daley GO, Van Etten RA, Baltimore D (1991). Blast crisis in a murine model of chronic myelogenous leukemia. Proc Natl Acad Sci USA 88: 11335–11338.PubMedCrossRefGoogle Scholar
  128. 128.
    Kelliher M, Knott A, McLaughlin J, Witte ON, Rosenberg N (1991). Differences in oncogenic potency but not target cell specificity distinguish the two forms of the BCR/ ABL oncogene. Mol Cell Biol 11: 4710–4716.PubMedGoogle Scholar
  129. 129.
    Van Etten RA, Daley GQ (in preparation).Google Scholar
  130. 130.
    Whang J, Frei E III, Tjio JH, Carbone PP, Brecher G (1963). The distribution of the Philadelphia chromosome in patients with chronic myelogenous leukemia. Blood 22: 664–673.PubMedGoogle Scholar
  131. 131.
    Maniatis AK, Amsel S, Mitus WJ, Coleman N (1969). Chromosome pattern of bone marrow fibroblasts in patients with chronic granulocytic leukemia. Nature 222: 1278–1279.PubMedCrossRefGoogle Scholar
  132. 132.
    O’Brien S, Kantarjian H, Shtalrid M, Blick M, Beran M, Talpaz M (1988). Lack of breakpoint cluster region rearrangement in marrow fibroblasts of patients with Philadelphia chromosome-positive chronic myelogenous leukemia. Hematol Pathol 2: 25–29.PubMedGoogle Scholar
  133. 133.
    Allouche M, Bourinbaiar A, Georgoulias V (1985). T-cell lineage involvement in lymphoid blast crisis of chronic myeloid leukemia. Blood 66: 1155–1161.PubMedGoogle Scholar
  134. 134.
    Falini B, Tabilio A, Pelicci PG (1986). T-cell receptor beta-chain rearrangement in a case of Ph1-positive chronic myeloid leukaemia blast crisis. Br J Haematol 62: 776–780.PubMedCrossRefGoogle Scholar
  135. 135.
    Fialkow PJ, Jacobson RJ, Papayannopoulou T (1977). Chronic myelocytic leukemia: Clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 63: 125–130.PubMedCrossRefGoogle Scholar
  136. 136.
    Fialkow PJ, Denman AM, Jacobson RJ, Lowenthal MN (1978). Chronic myelocytic leukemia: Origin of some lymphocytes from leukemic stem cells. J Clin Invest 62: 815–823.PubMedCrossRefGoogle Scholar
  137. 137.
    Vogelstein B, Fearon ER, Hamilton SR, Feinberg AP (1985). Science 227: 642–645.PubMedCrossRefGoogle Scholar
  138. 138.
    Gilliland DG, Blanchard KL, Bunn HF (1991). Clonality in myeloproliferative disorders: Analysis by means of the polymerase chain reaction. Proc Natl Acad Sci USA 88: 6848–6852.PubMedCrossRefGoogle Scholar
  139. 139.
    Lucas GS, Padua RA, Masters GS, Oscier DG, Jacobs A (1989). The application of X-chromosome gene probes to the diagnosis of myeloproliferative disorders. Br J Haematol 72: 530–533.PubMedCrossRefGoogle Scholar
  140. 140.
    Taylor KM, Shetta M, Talpaz M, Kantarjian H, Hardikar S, Chinault AC, McCredie KB, Spitzer G (1989). Myeloproliferative disorders: Usefulness of X-linked probes in diagnosis. Leukemia 3: 419.PubMedGoogle Scholar
  141. 141.
    Lisker R, Caras L, Mutchinick O, Perez-Chavez F, Labardini J (1980). Late appearing Philadelphia chromosomes in 2 patients with chronic myelogenous leukemia. Blood 56: 812.PubMedGoogle Scholar
  142. 142.
    Strife A, Lambek C, Wisniewski D, Wachter M, Gulati SC, Clarkson BD (1988). Discordant maturation as the primary biological defect in chronic myelogenous leukemia. Cancer Res 48: 1035–1041.PubMedGoogle Scholar
  143. 143.
    Strife A, Clarkson B (1988). Biology of chronic myelogenous leukemia: Is discordant maturation the primary defect? Semin Hematol 25: 1–19.PubMedGoogle Scholar
  144. 144.
    Finney R, McDonald GA, Baikie AG (1972). Chronic granulocytic leukaemia with Phinegative cells in bone marrow and a ten-year remission after busulfan hypoplasia. Br J Haematol 23: 283–288.PubMedCrossRefGoogle Scholar
  145. 145.
    Weinberger A, Benjamin D, Douer D (1978). A 13 year remission in chronic myelocytic leukemia after a single course of busulfan. Acta Haematol 59: 354–359.PubMedCrossRefGoogle Scholar
  146. 146.
    Speck B, Gratwohl A, Osterwalder B, Nissen C (1984). Semin Hematol 21: 48–52.PubMedGoogle Scholar
  147. 147.
    Kantarjian H, Talpaz M, Spinolo J, et al. (1989). High doses of cyclophosphamide, BCNU, and etoposide induce cytogenetic responses in most patients with advanced stages of Philadelphia chromosome (Phl)-positive chronic myelogenous leukemia. Blood 74: 273a.Google Scholar
  148. 148.
    Korbling M, Burke P, Braine H, et al. (1981). Successful engraftment of blood-derived normal hemopoietic stem cells in chronic myelogenous leukemia. Exp Hematol 9: 684–690.PubMedGoogle Scholar
  149. 149.
    Phillips GL, Herzig GP (1984). Intensive chemotherapy, total body irradiation, and autologous marrow transplantation for chronic granulocytic leukemia—blast phase: Report of four additional cases. J Clin Oncol 2: 379–384.PubMedGoogle Scholar
  150. 150.
    Brito-Babapulle F, Apperly JF, Rassool F, Guo AP, Dowding C, Goldman JM (1987). Complete remission after autografting for chronic myeloid leukemia. Leuk Res 11: 1115–1117.PubMedCrossRefGoogle Scholar
  151. 151.
    Kantarjian H, Talpaz M, LeMaistre CF, Spinolo S, Spitzer G, Yau J, Dicke K, Jagannath S, Deisseroth A (1991). Intensive combination chemotherapy and autologous bone marrow transplantation leads to reappearance of Philadelphia chromosome-negative cells in chronic myelogenous leukemia. Cancer 67: 2959.PubMedCrossRefGoogle Scholar
  152. 152.
    Coulombel L, Kalousek DK, Eaves CJ, Gupta CM, Eaves AC (1983). Long-term marrow culture reveals chromosomally normal hematopoietic progenitor cells in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. N Engl J Med 308: 1493–1498.PubMedCrossRefGoogle Scholar
  153. 153.
    Barnett MJ, Eaves CJ, Phillips GL, Kalousek DK, Klingemann HG, Lansdorp PM, Reece DE, Shepherd JD, Shaw GJ, Eaves AC (1989). Successful autografting in chronic myeloid leukemia after maintenance of marrow in culture. Bone Marrow Transplant 4: 345–351.PubMedGoogle Scholar
  154. 154.
    Turhan AG, Humphries RK, Eaves CJ, Barnett MJ, Phillips GL, Kalousek DK, Klingemann HG, Lansdorp PL, Reece DE, Sheperd JD, et al. (1990). Detection of breakpoint cluster region-negative and nonclonal hematopoiesis in vitro and in vivo after transplantation of cells selected in cultures of chronic myeloid leukemia marrow. Blood 76: 2404–2410.PubMedGoogle Scholar
  155. 155.
    Szczylik C, Skorski T, Nicolaides NC, Manzella L, Malaguarnera L, Venturelli D, Gerwitz AM, Calabretta B (1991). Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science 253: 562–565.PubMedCrossRefGoogle Scholar
  156. 156.
    Martiat P, Taj A, Vaerman JL, Phillipe M, Michaux JL, Goldman JM (1991). Inhibition of p210BCR/ABL in B1O cells using retrovirally transduced antisense sequences against 5′ sequences of the BCR/ABL gene. Blood 78: 266a.Google Scholar
  157. 157.
    Talpaz M, McCredie KB, Mavligit GM, Gutterman JU (1983). Leukocyte interferon-induced myeloid cytoreduction in chronic myelogenous leukemia. Blood 62: 689–692.PubMedGoogle Scholar
  158. 158.
    Kurzrock R, Talpaz M, Kantarjian H, et al. (1987). Therapy of chronic myelogenous leukemia with recombinant interferon-gamma. Blood 70: 943–947.PubMedGoogle Scholar
  159. 159.
    Talpaz M, Kantarjian H, McCredie KB, Trujillo JM, Keating MJ, Gutterman JU (1986). Hematologic remission and cytogenetic improvement induced by recombinant human interferon alpha A in chronic myelogenous leukemia. N Engl J Med 314: 1065–1069.PubMedCrossRefGoogle Scholar
  160. 160.
    Alimena G, Morra E, Lazzarino M, et al. (1988). Interferon alpha-2b as therapy for Phi-positive chronic myelogenous leukemia: A study of 82 patients treated with intermittent or daily administration. Blood 72: 642–647.PubMedGoogle Scholar
  161. 161.
    Talpaz M, Kantarjian H, Kurzrock R, Gutterman JU (1990). Update on therapeutic options for chronic myelogenous leukemia. Semin Hematol 27: 31–36.PubMedGoogle Scholar
  162. 162.
    Silver RT (1990). Interferon in the treatment of myeloproliferative diseases. Semin Hematol 27: 6–14.PubMedGoogle Scholar
  163. 163.
    Talpaz M, Kantarjian H, Kurzrock R, Gutterman JU (1991). Interferon alpha in the therapy of CML. Br J Haematol 79: 38–41.PubMedCrossRefGoogle Scholar
  164. 164.
    Lee MS, LeMaistre A, Kantarjian HM, Talpaz M, Freireich EJ, Trujillo JM, Stass SA (1989). Detection of two alternative bcr/abl mRNA junctions and minimal residual disease in Philadelphia chromosome positive chronic myelogenous leukemia by polymerase chain reaction. Blood 73: 2165–2170.PubMedGoogle Scholar
  165. 165.
    Opalka B, Wandl UB, Becher R, Kloke O, Nagel-Hiemke M, Moritz T, Beer U, Seeber S, Niederle N (1991). Minimal residual disease in patients with chronic myelogenous leukemia undergoing long-term treatment with recombinant interferon alpha-2b alone or in combination with interferon gamma. Blood 78: 2188–2193.PubMedGoogle Scholar
  166. 166.
    Talpaz M, Kantarjian H, Kurzrock R, Trujillo JM, Gutterman JU (1991). Interferonalpha produces sustained cytogenetic responses in chronic myelogenous leukemia Philadelphia chromosome-positive patients. Ann Intern Med 114: 532–538.PubMedGoogle Scholar
  167. 167.
    Rosenblum M, Maxwell B, Talpaz M, Kelleher P, McCredie K, Gutterman JU (1986). In vitro sensitivity and resistance of chronic myelogenous leukemia cells to alpha interferon: correlation with receptor binding and induction of 2′5′ oligoadenylate synthetase. Cancer Res 46: 4848.PubMedGoogle Scholar
  168. 168.
    Clauss IM, Wathelet MG, Dorval C, Delforge A, Content J, Stryckmans P, Huez GA (1990). Analysis of interferon-inducible genes in cells of chronic myeloid leukemia patients responsive or resistant to an interferon-alpha treatment. Blood 76: 2337–2342.PubMedGoogle Scholar
  169. 169.
    de Mel WC, Hoffbrand AV, Giles FJ, Goldstone AH, Mehta AB, Ganeshaguru K (1990). Alpha interferon therapy for haematological malignancies: correlation between in vivo induction of the 2′,5′ oligoadenylate system and clinical response. Br J Haematol 74: 452–456.PubMedCrossRefGoogle Scholar
  170. 170.
    Wetzler M, Kurzrock R, Estrov Z, Shtalrid M, Troutman K, Kantarjian H, Gutterman JU, Talpaz M (1991). Constitutive expression of interleukin-1 beta correlates with interferon-alpha resistance in chronic myelogenous leukemia. Blood 78: 335a.Google Scholar
  171. 171.
    Balkwill F, Oliver R (1977). Inhibitory effects of interferon on normal and malignant human haematopoietic cells. Int J Cancer 20: 500–507.PubMedCrossRefGoogle Scholar
  172. 172.
    Olidapu-Williams C, Svet-Moldavaskaya I, Vilcek J, Ohnuma T, Holland J (1981). Inhibitory effects of human leukocyte and fibroblast interferons on normal and chronic myelogenous leukemia granulocytic precursor cells. Oncology 38: 356–360.CrossRefGoogle Scholar
  173. 173.
    Galvani D, Cawley C (1989). Mechanism of action of alpha interferon in chronic granulocytic leukaemia: evidence for preferential inhibition of late progenitors. Br J Haematol 73: 475–479.PubMedCrossRefGoogle Scholar
  174. 174.
    Dowding C, Guo AP, Maisin D, Gordon MY, Goldman JM (1991). The effects of interferon-alpha on the proliferation of CML progenitor cells in vitro are not related to the precise position of the M-BCR breakpoint. Br J Haematol 77: 165–171.PubMedCrossRefGoogle Scholar
  175. 175.
    Emerson SG, Antin JH (1989). Bone marrow progenitor cells induce a regulatory autologous proliferative T lymphocyte response. J Immunol 142: 766–772.PubMedGoogle Scholar
  176. 176.
    Guba SC, Emerson SG (1991). Hematopoietic regulation of stem cell dynamics in chronic myelogenous leukemia. In Chronic Myelogenous Leukemia. Molecular Approaches to Research and Therapy, Deisseroth AB, Arlinghaus RH (eds) Marcel Dekker: New York, pp. 337–347.Google Scholar
  177. 177.
    Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF (1987). Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 328: 342–344.PubMedCrossRefGoogle Scholar
  178. 178.
    Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF (1989). Adhesive defects in chronic myeloid leukemia. In Current Topics in Microbiology and Immunology, vol. 149. Springer-Verlag: Berlin/Heidelberg, pp. 151–155.Google Scholar
  179. 179.
    Dowding C, Gou AP, Osterholz J, Siczkowski M, Goldman J, Gordon M (1991). Interferon-alpha overrides the deficient adhesion of chronic myeloid leukemia primitive progenitor cells to bone marrow stromal cells. Blood 78: 499–505.PubMedGoogle Scholar
  180. 180.
    Gordon MY, Atkinson J, Clarke D, Dowding CR, Goldman JM, Grimsley PG, Siczkowski M, Greaves MF (1991). Deficiency of a phosphatidylinositol-anchored cell adhesion molecule influences haemopoietic progenitor binding to marrow stroma in chronic myeloid leukaemia. Leukemia 5: 693–698.PubMedGoogle Scholar
  181. 181.
    Osterholz J, Dowding C, Guo AP, Siczkowski M, Goldman JM (1991). Interferon-alpha alters the distribution of CFU-GM between the adherent and nonadherent compartments in long-term cultures of chronic myeloid leukemia marrow. Exp Hematol 19: 326–331.PubMedGoogle Scholar
  182. 182.
    Rosenberg NE, Clark DR, Witte ON (1980). Abelson murine leukemia virus mutants deficient in kinase activity and lymphoid cell transformation. J Virol 36: 563–568.Google Scholar
  183. 183.
    Witte ON, Goff S, Rosenberg N, Baltimore D (1980). A transformation-defective mutant of abelson murine leukemia virus lacks protein kinase activity. Proc Natl Acad Sci USA 77: 4993–4997.PubMedCrossRefGoogle Scholar
  184. 184.
    Prywes R, Foulkes JG, Baltimore D (1985). The minimum transforming region of v-abl is the segment encoding protein-tyrosine kinase. J Virol 54: 114–122.PubMedGoogle Scholar
  185. 185.
    Hanks SK, Quinn AM, Hunter T (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.PubMedCrossRefGoogle Scholar
  186. 186.
    Wang JYJ, Baltimore D (1985). Localization of tyrosine kinase-coding region in v-abl oncogene by the expression of v-abl-encoded proteins in bacteria. J Biol Chem 260: 64–71.PubMedGoogle Scholar
  187. 187.
    Gazit A, Yaish P, Gilon C, Levitzki A (1989). Tyrphostins. I. Synthesis and biological activity of protein tyrosine kinase inhibitors. J Med Chem 32: 2344–2352.Google Scholar
  188. 188.
    Gazit A, Osherov N, Posner I, Yaish P, Poradosu E, Gilon C, Levitzki A (1991). Tyrphostins. II. Heterocyclic and alpha-substituted benzylidenemalononitrile tyrphostins as potent inhibitors of EGF receptor and Erb B2/neu tyrosine kinases. J Med Chem 34: 1896–1907.PubMedCrossRefGoogle Scholar
  189. 189.
    Yaish P, Gazit A, Gilon C, Levitzki A (1988). Blocking of EGF-dependent cell proliferation by EGF-receptor kinase inhibitors. Science 242: 933–935.PubMedCrossRefGoogle Scholar
  190. 190.
    Lyall RM, Zilberstein A, Gazit A, Gilon C, Levitzki A, Schlessinger J (1989). Tyrphostins inhibit epidennal growth factor (EGF)-receptor tyrosine kinase activity in living cells and EGF-stimulated cell proliferation. J Biol Chem 25: 14503–14509.Google Scholar
  191. 191.
    Dvir A, Milner Y, Chomsky O, Gilon C, Gazit A, Levitzki A (1991). The inhibition of EGF-dependent proliferation of keratinocytes by tyrphostin tyrosine kinase blockers. J Cell Biol 113: 857–865.PubMedCrossRefGoogle Scholar
  192. 192.
    Bilder GE, Krawiec JA, McVety K, Gazit A, Gilon C, Lyall R, Zilberstein A, Levitzki A, Perrone MH, Schreiber AB (1991). Tyrphostins inhibit PDGF-induced DNA synthesis and associated early events in smooth muscle cells. Am J Physiol 260:C721–730.PubMedGoogle Scholar
  193. 193.
    Levitzki A, Gazit A, Osherov N, Posner I, Gilon C (1991). Inhibition of protein-tyrosine kinases by tyrphostins. In Methods in Enzymology, Colowick SP, Kaplan NO (eds), vol. 201. Academic Press: New York, pp. 347–361.Google Scholar
  194. 194.
    Akiyama T, Ogawara H (1991). Use and specificity of genistein as inhibitor of protein-tyrosine kinases. In Methods in Enzymology, Colowick SP, Kaplan NO (eds), vol. 201. Academic Press: New York, pp. 362–370.Google Scholar
  195. 195.
    Markovits J, Linassier C, Fosse P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, LePecq JB, Larsen AK (1989). Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian topoisomerase II. Cancer Res 49: 5111–5117.PubMedGoogle Scholar
  196. 196.
    Uehara Y, Hori M, Takeuchi T, Umezawa H (1985). Jpn J Cancer Res 76: 672.PubMedGoogle Scholar
  197. 197.
    Uehara Y, Murakami Y, Mizuno S, Kawai S (1988). Virology 164: 294.PubMedCrossRefGoogle Scholar
  198. 198.
    Honma Y, Okabe-Kado J, Hozumi M, Uehara Y, Mizuno S (1989). Cancer Res 49: 331.PubMedGoogle Scholar
  199. 199.
    Umezawa K, Imoto M (1991). Use of erbstatin as protein-tyrosine kinase inhibitor. In Methods in Enzymology, Colowick SP, Kaplan NO (eds), vol. 201. Academic Press: New York, pp. 379–385.Google Scholar
  200. 200.
    Ogawara H, Akiyama T, Ishida J, Watanabe S, Suzuki K (1986). J Antibiot 39: 606.PubMedCrossRefGoogle Scholar
  201. 201.
    Geissler JF, Traxler P, Regenass U, Murray BJ, Roesel JL, Meyer T, McGlynn E, Storni A, Lydon NB (1990). Thiazolidine-diones. Biochemical and biological activity of a novel class of tyrosine kinase inhibitors. J Biol Chem 265: 22255–22261.PubMedGoogle Scholar
  202. 202.
    Traxler PM, Wacker O, Bach HL, Geissler JF, Kump W, Meyer T, Regenass U, Roesel JL, Lydon N (1991). Sulfonylbenzoyl-nitrostyrenes: potential bisubstrate type inhibitors of the EGF-receptor tyrosine protein kinase. J Med Chem 34: 2328–2337.PubMedCrossRefGoogle Scholar
  203. 203.
    Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM (1991). Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253: 407–414.PubMedCrossRefGoogle Scholar
  204. 204.
    Sadowski I, Stone JC, Pawson T (1986). A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of fujinami sarcoma virus P130gagfps. Mol Cell Biol 6: 4396–4408.PubMedGoogle Scholar
  205. 205.
    Pawson T (1988). Non-catalytic domains of cytoplasmic protein-tyrosine kinases: regulatory elements in signal transduction. Oncogene 3: 491–495.PubMedGoogle Scholar
  206. 206.
    Koch CA, Moran MF, Sadowski I, Pawson T (1989). The common src homology region 2 domain of cytoplasmic signalling proteins is a positive effector of v-fps tyrosine kinase function. Mol Cell Biol 9: 4131–4140.PubMedGoogle Scholar
  207. 207.
    DeClue JE, Martin GS (1989). Linker insertion-deletion mutagensis of the v-src gene: isolation of host-and temperature-dependent mutants. J Virol 63: 542–554.Google Scholar
  208. 208.
    Mayer BJ, Jackson PK, Baltimore D (1990). High-affinity binding of the noncatalytic SH2 segment of the abl tyrosine kinase to tyrosine-phosphorylated cellular proteins. Proc Natl Acad Sci USA 88: 627–631.CrossRefGoogle Scholar
  209. 209.
    Moran MF, Koch DA, Ellis C, England L, Martin GS, Pawson T (1990). Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci USA 87: 8622–8626.PubMedCrossRefGoogle Scholar
  210. 210.
    Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S (1991). Oncogenes and signal transduction. Cell 64: 281–302.PubMedCrossRefGoogle Scholar
  211. 211.
    Mayer BJ, Jackson PK, Van Etten RA, Baltimore D (1992). Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo. Mol Cell Biol 12: 609–618.PubMedGoogle Scholar
  212. 212.
    McWhirter JR, Wang JYJ (1991). Activation of tyrosine kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins. Mol Cell Biol 11: 1785–1792.Google Scholar
  213. 213.
    Muller AJ, Young JC, Pendergast A, Pondel M, Landau NR, Littman DR, Witte ON (1991). BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive leukemias. Mol Cell Biol 11: 1785–1792.PubMedGoogle Scholar
  214. 214.
    Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON (1991). BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 66: 161–171.PubMedCrossRefGoogle Scholar
  215. 215.
    Maru Y, Witte ON (1991). The BCR gene encodes a novel serine/threonine kinase activity within a single exon. Cell 67: 459–468.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Richard A. Van Etten

There are no affiliations available

Personalised recommendations