Skip to main content

Water balance for landfills

  • Chapter

Abstract

A key step in the design of a solid waste disposal facility is the execution of a ‘water balance’ or ‘water budget’ analysis. A water balance is an accounting of the final disposition of precipitation falling on a site. Water balance analysis can be used to estimate the potential leachate production and liner/drain system performance and to compare the relative effectiveness of alternative cover and liner/drain designs. Knowledge of the possible range of leachate production is important for sizing the leachate collection system (e.g., pipes) and in making decisions about how to manage treatment of the leachate. Similarly, prediction of liner leakage and the depth of leachate buildup in a drain layer is important in the selection of liner and drain materials and in the design of collection pipe spacing and liner slope.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brooks, R.H. and Corey, A.T. (1964) Hydraulic properties of porous media, Hydrology Paper No. 3, Colorado State University.

    Google Scholar 

  • Brown, K.W., Thomas, J.C., Lytton, R.L., Jayawikrama, P. and Bahrt, S.C. (1987) Quantification of leak rates through holes in landfill liners, EPA/600/S2-87-062, USEPA, Cincinnati, OH.

    Google Scholar 

  • Campbell, G.S. (1974) A simple method for determining unsaturated hydraulic conductivity from moisture retention data, Soil Sc., 117(6), 311–4.

    Article  Google Scholar 

  • EMCON Associates (1975) Sonoma County Solid Waste Stabilization Study. EPA 530-SW-65d.l, US Environmental Protection Agency, Washington DC, 283pp.

    Google Scholar 

  • EMCON Associates (1983) Field Assessment of Site Closure, Boone County, Kentucky. EPA 600/S2-83-058, US Environmental Protection Agency, Cincinatti, Ohio, 6pp.

    Google Scholar 

  • Fenn, D.G., Hanley, K.J. and DeGeare, T.V. (1975) Use of the water balance method for predicting leachate generation from solid waste disposal sites, EPA/530/SW-168, USEPA, Cincinnati, OH.

    Google Scholar 

  • Giroud, J.P. and Bonaparte, R. (1989a) Leakage through liners constructed with geomembranes — Part I. Geomembrane liners, Geotextiles and Geomembranes, 8(1), 27–67.

    Article  Google Scholar 

  • Giroud, J.P. and Bonaparte, R. (1989b) Leakage through liners constructed with geomembranes — Part II. Composite liners, Geotextiles and Geomembranes, 8(2), 71–111.

    Article  Google Scholar 

  • Giroud, J.P., Khatami, A. and Badu-Tweneboah, K. (1989) Evaluation of the rate of leakage through composite liners, Geotextiles and Geomembranes, 8(4), 337–40.

    Article  Google Scholar 

  • Gordon, M.E., Huebner, P.M. and Kmet, P. (1984) An evaluation of the performance of four clay-lined landfills in Wisconsin. Seventh Annual Madison Waste Conference, University of Wisconsin, Madison Extension, Madison, Wisconsin, 62pp.

    Google Scholar 

  • Ham, R.K. (1980) Decomposition of residential and light commercial solid waste in test lysimeters. SW-190c, US Environmental Protection Agency, Washington DC, 103pp.

    Google Scholar 

  • Horton, R.E. (1919) Rainfall interception, Monthly Weather Rev., US Weather Bureau, 47(9), 603–23.

    Article  Google Scholar 

  • Kmet, P. (1982) EPA’s water balance method — its use and limitations. Wisconsin DNR, Bureau of Solid Waste Management, Madison, WI.

    Google Scholar 

  • Knisel, W.G. (ed.) (1980) CREAMS: a field scale model for chemical runoff and erosion from agricultural management systems, Vols. I, II, and III, US DA-SEA, AR, Cons. Res. Report 24.

    Google Scholar 

  • McEnroe, B.M. and Schroeder, P.R. (1988) Leachate collection in landfills: steady case, J. Envir. Eng., ASCE, 114(5), 1052–62.

    Article  Google Scholar 

  • Perrier, E.R. and Gibson, A.C. (1980) Hydrologic simulation on solid waste disposal sites, EPA-SW-868, USEPA, Cincinnati, OH.

    Google Scholar 

  • Ritchie, J.T. (1972) A model for predicting evaporation from a row crop with incomplete cover, Water Resources Res., 8(5), 1204–13.

    Article  Google Scholar 

  • Schroeder, P.R. and Gibson, A.C. (1982) Supporting documentation for the hydrologic simulation model for estimating percolation at solid waste disposal sites (HSSWDS), draft report, USEPA, Cincinnati, OH.

    Google Scholar 

  • Schroeder, P.R. and Peyton, R.L. (1990) Evaluation of landfill-liner designs. J. Environ. Engin. Div., ASCE, 116(3), 421–37.

    Article  Google Scholar 

  • Schroeder, P.R., Morgan, J.M., Walski, T.M. and Gibson, A.C. (1984a) The hydrologic evaluation of landfill performance (HELP) model: Vol. I. User’s Guide for Version 1. Technical Resource Document, EPA/530-SW-84-009, USEPA, Cincinnati, Ohio.

    Google Scholar 

  • Schroeder, P.R., Gibson, A.C. and Smolen, M.D. (1984b) The hydrologic evaluation of landfill performance (HELP) model: Vol. II. Documentation for Version 1. Tech. Res. Document, EPA/530-SW-84-010, USEPA, Cincinnati, Ohio.

    Google Scholar 

  • Schroeder, P.R., Peyton, R.L., McEnroe, B.M. and Sjostrom, J.W. (1988a) The hydrologic evaluation of landfill performance (HELP) model: Volume III. User’s Guide for Version 2, Internal Working Document, USAE Waterways Experiment Station, Vicksburg, MS.

    Google Scholar 

  • Schroeder, P.R., McEnroe, B.M., Peyton, R.L. and Sjostrom, J.W. (1988b) The hydrologic evaluation of landfill performance (HELP) model: Volume IV. Documentation for Version 2, Internal Working Document, USAE Waterways Experiment Station, Vicksburg, MS.

    Google Scholar 

  • Thornthwaite, C.W. and Mather, J.R. (1957) Instruction and tables for computing potential evapotranspiration and the water balance, Publication in Climatology, 10(3), 185–311, Drexel Institute of Technology, Centerton, NJ.

    Google Scholar 

  • USDA, Soil Conservation Service (1972) National Engineering Handbook, section 4, Hydrology. US Government Printing Office, Washington, DC, 631pp.

    Google Scholar 

  • Wigh, R.J. (1984) Landfill research at the Boone County field site. EPA 600/2-84-050, US Environmental Protection Agency, Cincinatti, Ohio, 116pp.

    Google Scholar 

  • Williams, J.R., Nicks, A.D. and Arnold, J.G. (1985) Simulator for Water Resources in Rural Basins, J. Hydraulic Eng., ASCE, 111(6), 970–86.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Peyton, R.L., Schroeder, P.R. (1993). Water balance for landfills. In: Daniel, D.E. (eds) Geotechnical Practice for Waste Disposal. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3070-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3070-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6340-8

  • Online ISBN: 978-1-4615-3070-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics