Comparative Metabolism and Genotoxicity Data on Benzene: Their Role in Cancer Risk Assessment

  • Sandro Grilli
  • Silvio Parodi
  • Maurizio Taningher
  • Annamaria Colacci
Part of the NATO ASI Series book series (NSSA, volume 232)


Benzene is one of the chemicals with the largest production and utilization, with widest environmental spread and availability of animal and human toxicology data (IA-RC, 1982a). It is, therefore, a model compound which requires metabolic activation in order to exert toxic effects.


Chromosome Aberration Inhalation Exposure Cancer Risk Assessment Internal Dose Spleen Lymphocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amacher, D.E., and Zallijaadt, I., 1983, The morphological transformation of Syrian hamster embryo cells by chemicals reportedly non mutagenic to Salmonella typhimurium, Carcinogenesis, 4: 291.PubMedCrossRefGoogle Scholar
  2. Angelosanto, F.A., Kroth, M.D., Blackburn, G.R., and Mackerer, C.R., 1990, Ben-zene induces a dose-dependent increase in micronuclei in Zymbal gland cells of rats, Proc. Am. Assoc. Cancer Res., 31:101.Google Scholar
  3. Anwar, W.A., Au, W.W., Legator, M.S., and Sadagopa Ramanujam, V.M., 1989a, Effect of dimethyl sulfoxide on the genotoxicity and metabolism of benzene in vitro, Carcinogenesis, 10:441.CrossRefGoogle Scholar
  4. Anwar, W.A., Au, W.W., Sadagopa Ramanujam, V.M., and Legator, M.S., 1989b, Enhancement of benzene clastogenicity by prazinquantel in mice, Mutat. Res., 222:283.CrossRefGoogle Scholar
  5. Arfellini, G., Grilli, S., Colacci, A., Mazzullo, M., and Prodi, G., 1985, in vivo and in vitro binding of benzene to nucleic acids and proteins of various rat and mouse organs, Cancer Lett., 28:159.PubMedCrossRefGoogle Scholar
  6. Ashby, J., de Serres, F.J., Draper, M., Ishidate, M., Jr, Margolin, B.M., Matter, B., and Shelby, M.D., 1985, Overview and conclusions of the IPCS collaborative study on in vitro assay systems, in: “Progress in Mutation Research”, 5:117, Ashby J., de Serres F.J. et al., eds., Elsevier Science Publishers, Amsterdam (WHO Geneva).Google Scholar
  7. Au, W.W., Bibbins, P., Ward, J.B., Jr., and Legator, M.S., 1988, Development of a rodent lung macrophage chromosome aberration assay, Mutat. Res., 208:1.PubMedCrossRefGoogle Scholar
  8. Au, W.W., Anwar, W.A., Hanania, E., and Sadagopa Ramanujam, V.M., 1990a, Antimutagenic effects of dimethyl sulfoxide on metabolism and genotoxicity of benzene in vivo, in: “Antimutagenesis and Anticarcinogenesis Mechanisms II”. Kuroda Y., Shankel D.M. and Waters M.D. (eds). Basic Life Sciences, 52: 389.CrossRefGoogle Scholar
  9. Au, W.W., Cantelli Forti, G., Hrelia, P., and Legator, M.S., 1990b, Cytogenetic assays in genotoxic studies: somatic cell effects of benzene and germinal cell effects of dibromochloropropane, Teratog. Carcinog. Mutag., 10:125.CrossRefGoogle Scholar
  10. Au, W.W., Anwar, W., Paolini, M., Ramanujam, S., and Cantelli Forti, G., 1991, Mechanism of clastogenic and co-clastogenic activity of cremophore with benzene in mice, Carcinogenesis, 12:53.PubMedCrossRefGoogle Scholar
  11. Austin, H., Delzell, E., and Cole, P., 1988, Benzene and leukemia. A review of the literature and a risk assessment, Am. J. Epidem., 127:419.Google Scholar
  12. Bailer, J., and Hoel, D.G., 1989, Metabolite-based internal doses used in a risk assessment of benzene, Environ. Health Perspect., 82:177.PubMedCrossRefGoogle Scholar
  13. Barale, R., Marrazzini, A., Betti, C., Vangelisti, V., Loprieno, N., and Barrai, I., 1990, Genotoxicity of two metabolites of benzene: phenol and hydroquinone show strong synergistic effects in vivo, Mutat. Res., 244:15.PubMedCrossRefGoogle Scholar
  14. Bauer, H., Dimitriadis, E.A., and Snyder, R., 1989, An in vivo study of benzene metabolite DNA adduct formation in liver of male New Zealand rabbits, Arch. Toxicol., 63:209.PubMedCrossRefGoogle Scholar
  15. Beliles, R.P., and Totman, L.C., 1989, Pharmacokinetically based risk assessment of workplace exposure to benzene, Regul. Toxicol. Pharmacol., 9:186.PubMedCrossRefGoogle Scholar
  16. Bois, F., Crouch, E.A.C., Wilson, R., and Vasseur, P., 1985, Integration of pharmacokinetics with multistage carcinogenesis modeling in cancer risk assessment. Presented at Conference of Current Perspectives on Animal Selection and Extrapolation in Toxicity Testing and Human Risk Assessment. Environmental Health Laboratory, Monsanto Company, St. Louis, MO, USA, October 1985.Google Scholar
  17. Brett, S.M., Rodricks, J.V., and Chinchilli, V.M., 1989, Review and update of leukemia risk potentially associated with occupational exposure to benzene, Environ. Health Perspect., 82:267.PubMedCrossRefGoogle Scholar
  18. Brodfuehrer, J.I., Chapman, D.E., Wilke, T.J., and Powois, G., 1990, Comparative studies of the in vitro metabolism and covalent binding of 14C-benzene by liver slices and microsomal fraction of mouse, rat and human, Drug Metab. Disp., 18:20.Google Scholar
  19. Busby,W.F. Jr., Wang, J.S., Stevens, E.K., Padykula, R.E., Aleksejczyk, R.A., and Berchtold, G.A., 1990, Lung tumorigenicity of benzene oxide, benzene dihydrodiols and benzene diolepoxides in the BLU:Ha newborn mouse assay, Carcinogenesis, 11:1473.PubMedCrossRefGoogle Scholar
  20. Choy, W.N., MacGregor, J.T., Shelby, M.D., and Marnopot, R.R., 1985, Induction of micronuclei by benzene in B6C3F1: retrospective analysis of peripheral blood smears from the NTP carcinogenesis bioassay, Mutat. Res., 143:55.PubMedCrossRefGoogle Scholar
  21. Ciranni, R., Barale, R., Ghelardini, G., and Loprieno, N., 1988a, Benzene and the genotoxicity of its metabolites. II. The effect of the route of administration on the micronuclei and bone marrow depression in mouse bone marrow cells, Mutat. Res., 209:23.CrossRefGoogle Scholar
  22. Ciranni, R., Barale, R., Marrazzini, A., and Loprieno, N., 1988b, Benzene and the genotoxicity of its metabolites. I. Transplacental activity in mouse fetuses and their dams, Mutat. Res., 208:61.CrossRefGoogle Scholar
  23. Crump, K.S., and Allen, B.C., 1984, Quantitative estimates of risk of leukemia from occupational exposure to benzene. Occupational Safety and Health Administration, docket H-059, exhibit 152, May 1984.Google Scholar
  24. Dean, B.J., 1985, Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols, Mutat. Res., 154:153.PubMedCrossRefGoogle Scholar
  25. ECETOC, 1984, A review of recent literature on the toxicology of benzene, European Chemical Industry Ecology and Toxicology Center, Bruxelles, Technical Report No. 16.Google Scholar
  26. Erexson, G.L., Wilmer, J.L., Steinhagen, W.H., and Kligerman, A.D., 1986, Induction of cytogenetic damage in rodents after short-term inhalation of benzene, Environ. Mutag., 8:29.CrossRefGoogle Scholar
  27. Fishbein, L., 1988, Genetic Effects of Benzene, Toluene and Xylene, IARC Sci. Publ. 85:19. International Agency for Research on Cancer, Lyon.Google Scholar
  28. Fitzgerald, D.J., Piccoli, C., and Yamasaki, H., 1989, Detection of non-genotoxic carcinogens in the BALB/c 3T3 cell transformation/mutation assay system, Mutagenesis, 4:286.PubMedCrossRefGoogle Scholar
  29. Gad-el-Karim, M.M., Harper, B.L., and Legator, M.S., 1984, Modifications in the myeloclastogenic effect of benzene in mice with toluene, phenobarbital, 3-methylcholanthrene, Aroclor 1254 and SKF 525-A, Mutat. Res.135:225.CrossRefGoogle Scholar
  30. Gehring, P.J., Watanabe, P.G., and Park, C.N., 1978, Resolution of dose-response toxicity data for chemicals requiring metabolic activation: example-vinyl chloride, Toxicol. Appl. Pharmacol., 44:581.PubMedCrossRefGoogle Scholar
  31. Gehring P.J., Watanabe P.G., and Park C.N., 1979, Risk of angiosarcoma in workers exposed to vinyl chloride as predicted from studies in rats, Toxicol. Appl. Pharmacol., 49:15.PubMedCrossRefGoogle Scholar
  32. Glatt, H., Padykula, R., Berchtold, G.A., Ludewig, G., Platt, K.L., Klein, J., and Oesch, F., 1989, Multiple activation pathways of benzene leading to products with varying genotoxic characteristics, Environ. Health Perspect., 82:81.PubMedCrossRefGoogle Scholar
  33. Glatt, H., and Witz, G., 1990, Studies on the induction of gene mutations in bacterial and mammalian cells by the ring-opened benzene metabolites trans,trans-muconaldehyde and trans,trans-muconic acid, Mutagenesis, 5:263.PubMedCrossRefGoogle Scholar
  34. Gold, L.S., Sawyer, C.B., Magaw, R., Backman, G.M., de Viciana, M., Levinson, R., Hooper, N.K., Havender, W.R., Bernstein, L., Peto, R., Pike, M.C., and Ames, B.N., 1984, A carcinogenic potency database of the standardized results of animal bioassays, Environ. Health Perspect., 58:9.PubMedCrossRefGoogle Scholar
  35. Goldstein, B.D., Snyder, C.A., Laskin, S., Bromberg, I., Albert, R.E., and Nelson, N., 1982, Myelogenous leukemia in rodents inhaling benzene, Toxicol. Lett., 13:169.PubMedCrossRefGoogle Scholar
  36. Grilli, S., Lutz, W.K., and Parodi, S., 1987, Possible implications fron results of animal studies in human risk estimations for benzene: nonlinear dose-response relationship due to saturation of metabolism, J. Cancer Res. Clin. Oncol., 113:349.PubMedCrossRefGoogle Scholar
  37. Gut, I., and Frantik, E., 1980, Kinetics of benzene metabolism in rats in inhalation exposure, Arch. Toxicol. (suppl.), 4:315.CrossRefGoogle Scholar
  38. Guy, R.L., Dimitriadis, E.A., Hu, P., Cooper, K.R., and Snyder, R., 1990, Interactive inhibition of erythroid 59Fe utilization by benzene metabolites in female mice, Chem.-Biol. Interactions, 74:55.CrossRefGoogle Scholar
  39. Harper, B.L., Sadagopa Ramanujam, V.M., Gad-el-Karim, M.M., and Legator, M.S., 1984, The influence of simple aromatics on benzene clastogenicity, Mutat. Res., 128:105.PubMedCrossRefGoogle Scholar
  40. Harper, B.L., and Legator, M.S., 1987, Pyridine prevents the clastogenicity of benzene but not of benzo[a]pyrene or cyclophosphamide, Mutat. Res., 179:23.PubMedCrossRefGoogle Scholar
  41. Harper, B.L., Ramanujam, V.M.S., Kurosky, L., and Legator, M.S., 1989a, Genetic effects of benzene and radiation in ICR and X/Gf mice, Cancer Res., 48:59.Google Scholar
  42. Harper, B.L., Sadagopa Ramanujam, V.M., and Legator, M.S., 1989b, Micronucleus formation by benzene, cyclophosphamide, benzo(a)pyrene, and benzidine in male, female, pregnant female, and fetal mice, Teratog. Carcinog. Mutag., 9:239.CrossRefGoogle Scholar
  43. Henderson, R.F., Sabourin, P.J., Bechtold, W.E., Griffith, W.C., Medinsky, M.A., Birnbaum, L.S., and Lucier G.W., 1989, The effect of dose, dose rate, route of administration and species on tissue and blood levels of benzene metabolites, Environ. Health Perspect., 82:9.CrossRefGoogle Scholar
  44. Huff, J.E., 1986, Toxicology and carcinogenesis studies of benzene (CAS No. 71–43–2) in F344/N rats and B6C3F1 mice (Gavage studies), DHHS, National Toxicology Program/National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA, Technical report No. 289.Google Scholar
  45. Huff, J.E., Haseman, J.K., DeMarini, D.M., Eustis, S., Maronpot, R.R., Peters, A.C., Persing, R.L., Chrisp, C.E., and Jacobs, A.C., 1g89, Multiple-site carcinogenicity of benzene in Fischer 344 rats and B6C3F1 mice, Environ. Health Perspect., 82:125.Google Scholar
  46. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 1982a, “Benzene”, International Agency for Research on Cancer, Lyon, 29:93.Google Scholar
  47. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 1982b, International Agency for Research on Cancer, Lyon, Suppl., 4:56.Google Scholar
  48. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 1987, International Agency for Research on Cancer, Lyon, Suppl., 6:91Google Scholar
  49. Infante, P.F., 1987, Benzene toxicity: studying a subject to a death, Am. J. Ind. Med., 11:599.PubMedCrossRefGoogle Scholar
  50. Inoe, O., Seiji, K., Nakatsuka, H., Watanabe, T., Yin, S.N., Li, G.-L., Cai, S.-X., Jin, C., and Ikeda, M., 1989, Excretion of 1,2,4-benzenetriol in the urine of workers exposed to benzene, Br. J. Ind. Med., 46:559.Google Scholar
  51. Jablonicka, A., Vargova, M., and Karelova, J., 1987, Cytogenetic analysis of peripheral blood lymphocytes in workers exposed to benzene, J. Hyg. Epidem. Microbiol. Immunol., 31:127.Google Scholar
  52. Jongeneelen, F.J., Dirven, H.A.A.M., Leijdekkers, C.M., Henderson, P.T., Brouns, R.M.E., and Halm, K., 1987, S-Phenyl-N-acetylcysteine in urine of rats and workers after exposure to benzene, J. Anal. Toxicol., 11:100.PubMedGoogle Scholar
  53. Jowa, L., Winkle, S., Kalf, G., Witz, G., and Snyder, R., 1986, Deoxyguanosine adducts formed from benzoquinone and hydroquinone, in: “Biological Reactive Intermediates III: Mechanisms of Action in Animal Models and Human Disease” Kocsis J.J., Jollow D.J., Witmer C.M., Nelson J.O. and Snyder R. (eds), pp. 825–832, Plenum Press, New York.Google Scholar
  54. Jowa, L., Witz, G., Snyder, R., Winkle, S., and Kalf, G.F., 1990, Synthesis and characterization of deoxyguanosine-benzoquinone adducts, J. Appl. Toxicol., 10:47.PubMedCrossRefGoogle Scholar
  55. Kalf, G.F., Snyder, R., and Rushmore, T.H., 1985, Inhibition of RNA synthesis by benzene metabolites and their covalent binding to DNA in rabbit bone marrow mito-chondria in vitro, Am. J. Ind. Med., 7:485.PubMedCrossRefGoogle Scholar
  56. Kalf, G.F., 1987, Recent advances in the metabolism and toxicity of benzene, CRC Critical Rev. Toxicol., 18:141.CrossRefGoogle Scholar
  57. Kalf, G.F., Schlosser, M.J., Renz, J.F., and Pirrozzi, S.J., 1989, Prevention of benzene-induced myelotoxicity by nonsteroidal anti-inflammatory drugs, Environ. Health Perspect., 82:57.PubMedCrossRefGoogle Scholar
  58. Krewet, E., Verkoyen, C., Muller, C., and Norpoth, K., 1990, Studies on the formation of different phenylguanines during benzene metabolism, Proc. Am. Assoc. Cancer Res., 31:96.Google Scholar
  59. Latriano, L., Witz, G., Goldstein, B.D., and Jeffrey, A.M., 1989, Chromatographic and spectrophotometric characterization of adducts formed during the reaction of trans,trans-muconaldehyde with 14C-deoxyguanosine-5’-phosphate, Environ. Health Perspect., 82:249.PubMedGoogle Scholar
  60. Lee, S.D., Dourson, M., Mukerjee, D., Stara, J.F., and Kawecki, J., 1983, Assessment of benzene health effects in ambient water, in: “Advances in Modern Environmental Toxicology” Mehlman M.A. (ed.), 4:91, Princeton Scientific Publishers, Pricenton.Google Scholar
  61. Lee, E.W., and Garner, C.D., 1991, Effects of benzene on DNA strand breaks in vivo versus benzene metabolite-induced DNA strand breaks in vitro in mouse bone marrow cells, Toxicol. Appl. Pharmacol., 108:497.PubMedCrossRefGoogle Scholar
  62. Legator, M.S. (personal communication, Bologna, October 19, 1990).Google Scholar
  63. Longacre, S.L., Kocsis, J., and Snyder, R., 1980, Benzene metabolism and toxicity in CD-1, C57/B6 and DBA/2N mice, in: “Microsomes, Drug Oxidation and Chemical Carcinogenesis”. M.J. Coon, A.H. Conney, R.W. Estabrook, H.V. Gelboin, J.R. Gillette and P.J. O’Brien (eds), pp. 897–902, Academic Press, New York.Google Scholar
  64. Low, L.K., Meeks, J.R., Norris, K.J., Mehlman, M.A., and Mackerer, C.R., 1989, Pharmacokinetics and metabolism of benzene in Zymbal gland and other key target tissues after oral administration in rats, Environ. Health Perspect., 82:215.PubMedCrossRefGoogle Scholar
  65. Ludewig, G., Dogra, S., and Glatt, H., 1989, Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cell, Environ. Health Perspect., 82:223.PubMedCrossRefGoogle Scholar
  66. Ludewig, G., Platt, K.L., Oesch, F., and Glatt, H.R., 1990, Quinones derived from benzene and polycyclic aromatic hydrocarbons: genotoxicity profile and cytotoxicity, Mutagenesis, 5:626.Google Scholar
  67. Lutz, W.K., and Schlatter, C., 1977, Mechanism of the carcinogenic action of benzene: irreversible binding to rat liver DNA, Chem.-Biol. Interact., 9:253.CrossRefGoogle Scholar
  68. MacGregor, J.T., Wehr, C.M., Henika, P.R., and Shelby, M.D., 1990, The in vivo erythrocyte micronucleus test: measurement at steady state increases assay efficiency and permits integration with toxicity studies, Fund. Appl. Toxicol., 14:513.CrossRefGoogle Scholar
  69. Mahtashamipur, E., Strater, H., Triebel, R. and Norpoth, K., 1987, Effect of pretreatment of male NMRI mice with enzyme inducers or inhibitors on clastogenicity of toluene, Arch. Toxicol., 60:460.CrossRefGoogle Scholar
  70. Maltoni, C., Conti, B., Cotti, G., and Belpoggi, F., 1983, Benzene: a multipotential carcinogen. Results of long term bioassays performed at the Bologna Institute of Oncology: current results and ongoing research, Am. J. Ind. Med., 4:589.PubMedCrossRefGoogle Scholar
  71. Maltoni, C., Cotti, G., Valgimigli, L., and Mandrioli, A., 1982, Zymbal gland carci-nomas in rats following exposure to benzene inhalation, Am. J. Ind. Med., 3:11.PubMedCrossRefGoogle Scholar
  72. Marcus, W.L., 1987, Chemical of current interest-benzene, Toxicol. Ind. Health, 3:205.PubMedGoogle Scholar
  73. Mazzullo, M., Bartoli, S., Bonora, B., Colacci, A., Grilli, S., Lattanzi, G., Niero, A., Turina, M.P., and Parodi, S., 1989, Benzene adducts with rat nucleic acids and proteins: dose-response relationship after treatment in vivo, Environ. Health Perspect., 82:259.PubMedCrossRefGoogle Scholar
  74. McMichael, A.J., 1988, Carcinogenicity of benzene, toluene and xylene: epidemiological and experimental evidence, IARC Sci. Publ., 85:3, International Agency for Research on Cancer, Lyon.Google Scholar
  75. Medinsky, M.A., Sabourin, P.J., Lucier, G., Birnbaum, L.S., and Henderson, R.F., 1989a, A physiological model for simulation of benzene metabolism by rats and mice, Toxicol. Appl. Pharmacol., 99:193.CrossRefGoogle Scholar
  76. Medinsky, M.A., Sabourin, P.J., Henderson, R.F., Lucier, G., and Birnbaum, L.S., 1989b, Differences in the pathways for metabolism of benzene in rats and mice simulated by a physiological model. Environ. Health Perspect., 82:43CrossRefGoogle Scholar
  77. Morita, T., Iwamoto, Y., Shimizu, T., Masuzawa, T., and Yanagihara, Y., 1989, Mutagenicity tests with a permeable mutant of yeast on carcinogens showing false negative Salmonella assay, Chem. Pharm. Bull., 37:407PubMedCrossRefGoogle Scholar
  78. Nerland, D.E., and Pierce, W.M., 1990, Identification of N-acetyl-S-(2,5-dihydroxyphenyl)-L-cysteine as a urinary metabolite of benzene, phenol and hydroxyquinone, Drug Metab. Dispos., 18:958.PubMedGoogle Scholar
  79. Oberly, T.J., Rexroat, M.A., Bewsey, B.J., Richardson, K.K., and Michaelis, K.C., 1990, An evaluation of the CHO/HGPRT mutation assay involving suspension cultures and soft agar cloning: results for 33 chemicals, Environ. Mol. Mutag., 16:260.CrossRefGoogle Scholar
  80. Parodi, S., Taningher, M., and Santi, L., 1983a, Alkaline elution in vivo: fluorometric analysis in rats. Quantitative predictivity of carcinogenicity, as compared with other short-term tests, in: “Indicators of Genotoxic Exposure”, Bridges B.A., Butterworth B.E. and Weinstein I.B. (eds), Cold Spring Harbor Laboratory, Banbury Rep., 13:137.Google Scholar
  81. Parodi, S., Balbi, C., Abelmoschi, M.L., Pala, M., Russo, P., and Santi, L., 1983b, Studies on DNA damage: discordant responses of rate of DNA disentanglement (viscosimetrically evaluated) and alkaline elution rate, obtained for several compounds, Cell Biophys., 5:285.Google Scholar
  82. Parodi, S., Lutz, W.K., Colacci, A., Mazzullo, M., Taningher, M., and Grilli, S., 1989, Results of animal studies suggest a nonlinear dose-response relationship for benzene effects, Environ. Health Perspect., 82:171.PubMedCrossRefGoogle Scholar
  83. Parodi, S., Colacci, A., Grilli, S., and Taningher, M., 1992, chapter in this volume.Google Scholar
  84. Paustenbach, D.J., Andersen, M.E., Clewell, H.J., III, and Gargas, M.L., 1988, A physiologically based pharmacokinetic model for inhaled carbon tetrachloride, Toxicol. Appl. Pharmacol., 96:191.PubMedCrossRefGoogle Scholar
  85. Picciano, D., 1980, Monitoring industrial populations by cytogenetic procedures, in: “Proceedings of a workshop on methodology for assessing reproductive hazards in the workplace”, Infante P. and Legator M.S. (eds), U.S. Dept. of Health and Human Services, PHS, CDC, NIOSH, Div. Surveillance, Hazard Evaluation and Field Studies, pp. 293–306.Google Scholar
  86. Pirozzi, S.J., Renz, J.F., and Kalf, G.F., 1989, The prevention of benzene-induced genotoxicity in mice by indomethacin, Mutat. Res., 222:291.PubMedCrossRefGoogle Scholar
  87. Reddy, M.V., Blackburn, G.R., Irwin, S.E, Kommineni, C.R., Mackerer, C.R., and Mehlman, M.A., 1989a, A method for in vitro culture of rat Zymbal gland: use in mechanistic studies of benzene carcinogenesis in combination with 32P-postlabeling, Environ. Health Perspect., 82:239.Google Scholar
  88. Reddy, M.V., Blackburn, G.R., Schreiner, C.A., Mehlman, M.A., and Mackerer, C.R., 1989b, 32P analysis od DNA adducts in tissues of benzene-treated rats, Environ. Health Perspect., 82:253.Google Scholar
  89. Reddy, M.V., Bleicher, W.T., Blackburn, G.R., and Mackerer, C.R., 1990a, Nucleic acid and protein adducts in tissues of benzene-treated rats, Proc. Am. Assoc. Cancer Res., 31:91.Google Scholar
  90. Reddy M.V., Bleicher W.T., Blackburn G.R. and Mackerer C.R., 1990b, DNA adduction by phenol, hydroquinone or benzoquinone in vitro but not in vivo: nuclease P1-enhanced 32P-postlabeling of adducts as labeled nucleoside bisphosphates, dinucleotides and nucleoside monophosphates, Carcinogenesis, 11:1349.CrossRefGoogle Scholar
  91. Reitz, R.H., Nolan, R.J., and Schumann, A.M., 1987, Organohalides, in: “Proceedings of the National Academy of Science Workshop on Pharmacokinetics”, Safe Drinking Water Committee, Subcommittee on Pharmacokinetics, Board on Environmental Studies and Toxicology, National Research Council.Google Scholar
  92. Reitz, R.H., Mendrala, A.L., Park, C.N., Andersen, M.E., and Guengerich, F.P., 1988, Incorporation of in vitro enzyme data into the physiologically-based pharmacokinetic (PB-PK) model for methylene chloride: implications for risk assessment, Toxicol. Lett., 43:97.PubMedCrossRefGoogle Scholar
  93. Rinsky, R.A., Smith, A.B., Hormung, R., Fillon, T.G., Young, R.J., Okun, A.H., and Landrigan, P.J., 1987, Benzene and leukemia: an epidemiological risk assessment, New Engl. J. Med., 316:1044.PubMedCrossRefGoogle Scholar
  94. Rithidech, K., Au, W.W., Sadagopa Ramanujam, V.M., Whorton, E.G., Jr, and Legator, M.S., 1987, Induction of chromosome aberrations in lymphocytes of mice after subchronic exposure to benzene, Mutat. Res., 188:135.PubMedCrossRefGoogle Scholar
  95. Rithidech, K., Au, W.W., Sadagopa Ramanujam, V.M., Whorton, E.B., and Legator, M.S., 1988, Persistence of micronuclei in peripheral blood normochromatic erythrocytes of subchronically benzene-treated male mice, Environ. Mol. Mutag., 12:319.Google Scholar
  96. Robertson, M.L., Eastmond, D.A., and Smith, M.T., 1990, A mixture of benzene metabolites produces a synergistic genotoxic response in cultured human lymphocytes, Environ. Mol. Mutag., Suppl 15:58.Google Scholar
  97. Rossman, T.G., Klein, C.B., and Snyder, C.A., 1989, Mutagenic metabolites of benzene detected in the microscreen assay, Environ. Health Perspect., 81:77.PubMedGoogle Scholar
  98. Rushmore, T.R., Snyder, R., and Kalf, G.F., 1984, Covalent binding of benzene and its metabolites to DNA in rabbit bone marrow mitochondria in vitro, Chem.-Biol. Interact., 49:133.PubMedCrossRefGoogle Scholar
  99. Sabourin, P.J., Chen, B.T., Lucier, G., Birnbaum, L.S., Fisher, E., and Henderson, R.F., 1987, Effect of dose on the absorption and excretion of 14C-benzene administered orally or by inhalation in rats and mice, Toxicol. Appl. Pharmacol., 87:325.PubMedCrossRefGoogle Scholar
  100. Sabourin, P.J., Bechtold, W.E., Birnbaum, L.S., Lucier, G., and Henderson, R.F., 1988, Difference in the metabolism of inhaled 3H-benzene by F344/N rats and B6C3F mice, Toxicol. Appl. Pharmacol., 94:128.PubMedCrossRefGoogle Scholar
  101. Sabourin, P.J., Bechtold, W.E., Griffith, W.C., Birnbaum, L.S., Lucier, G., and Henderson, R.F, 1989, Effect of exposure concentration, exposure rate and route of administration on metabolism of benzene by F344 rats and B6C3F1 mice, Toxicol. Appl. Pharmacol., 99:421.PubMedCrossRefGoogle Scholar
  102. Sabourin, P.J., Sun, J.D., MacGregor, J.T., Wehr, C.M., Birnbaum, L.S., Lucier, G., and Henderson, R.F., 1990, Effect of repeated benzene inhalation exposures on benzene metabolism, binding to hemoglobin, and induction of micronuclei, Toxicol. Appl. Pharmacol., 103:452.PubMedCrossRefGoogle Scholar
  103. Sasiadek, M., Jagielski, J., and Smolik, R., 1989, Localization of breakpoints in the karyotype of workers professionally exposed to benzene, Mutat. Res., 224:235.PubMedCrossRefGoogle Scholar
  104. Schnier, G.G., Laethem, C.L., and Koop, D.R., 1989, Identification and induction of cytochromes P450, P450 IIE1 and P450 IA1 in rabbit bone marrow, J. Pharm. Exp. Ther., 251:790.Google Scholar
  105. Seiji, K., Jin, C., Watanabe, T., Nakatsuka, H., and Ikeda, M., 1990, Sister chromatid exchanges in peripheral lymphocytes of workers exposed to benzene, trichloroethylene, or tetrachloroethylene, with reference to smoking habits, Intern. Arch. Occup. Environ. Health, 62:171.CrossRefGoogle Scholar
  106. Smith, M.T., Yager, J.W., Steinmetz, K.L., and Eastmond, D.A., 1989, Peroxidase-dependent metabolism of benzene’s phenolic metabolites and its potential role in benzene toxicity and carcinogenicity, Environ. Health Perspect., 82:23.PubMedCrossRefGoogle Scholar
  107. Snyder, R., Lee, E.W., and Kocsis, J.J., 1978, Binding of labeled benzene metabolites to mouse liver and bone marrow, Res. Comm. Chem. Path. Pharmacol., 20:191.Google Scholar
  108. Snyder, C., Goldstein, B., Sellakumar, A., Bromberg, I., Laskin, S., and Albert, R., 1980, The inhalation toxicology of benzene: incidence of hematopoietic neoplasms and hematotoxicity in AKR/J and C57BL/6J mice, Toxicol. Appl. Pharmacol., 54:323.PubMedCrossRefGoogle Scholar
  109. Snyder, R., Dimitriadis, E., Guy, R., Hu, P., Cooper, K., Bauer, H., Witz, G., and Goldstein, B.D., 1989, Studies on the mechanism of benzene toxicity, Environ. Health Perspect., 82:31.PubMedCrossRefGoogle Scholar
  110. Steimetz, K.L., Garin, K.E., Hamilton, C.M., Bakke, J.P., MacGregor J.T., and Mirsalis, J.C., 1990, Multiple endpoint in vivo genetic toxicology assay: evaluation of hepatic unscheduled DNA synthesis, S-phase synthesis and peripheral blood micronuclei following repeated dosing of male B6C3F1 mice, Environ. Mol. Mutag. Suppl. 15:58.Google Scholar
  111. Stommel, P., Muller, G., Stucker, W., Verkoyen, C., Schobel, S., and Norpoth, K., 1989, Determination of S-phenylmercapturic acid in the urine - an improvement in the biological monitoring of benzene exposure, Carcinogenesis, 10:279.PubMedCrossRefGoogle Scholar
  112. Styles, J.A., and Richardson, C.R., 1984, Cytogenetic effect of benzene: dosimetric studies on rats exposed to benzene vapour, Mutat. Res., 135:203.PubMedCrossRefGoogle Scholar
  113. Subrahmanyam, V.V., Kolachana, P., and Smith, M.T., 1991, Metabolism of hydroquinone by human peroxidase: mechanisms of stimulation by other phenolic compounds, Arch. Biochem. Biophys., 286:76.PubMedCrossRefGoogle Scholar
  114. Sun, J.D., Medinsky, M.A., Birnbaum, L.S., Lucier, G., and Henderson, R.F., 1990, Benzene hemoglobin adducts in mice and rats: characterization of formation and physiological modeling, Fund. Appl. Toxicol., 15:468.CrossRefGoogle Scholar
  115. Sutou, S., 1990, Single versus multiple dosing in the micronucleus test: the summary of the fourth collaborative study by CSGMT/JEMS.MMS, Mutat. Res., 234: 205.CrossRefGoogle Scholar
  116. Suzuki, S., Atai, H., Hatakeyama, Y., Hara, M., and Nakagawa S., 1989, Administration-route-related differences in the micronucleus test with benzene, Mutat. Res., 223: 407.PubMedCrossRefGoogle Scholar
  117. Tice, R.R., 1988, The cytogenetic evaluation of in vivo genotoxic and cytotoxic activity using rodent somatic cells, Cell Biol. Toxicol., 4:475.PubMedCrossRefGoogle Scholar
  118. Tice, R.R., Luke, A., and Drew, R.T., 1989, Effect of exposure route, regimen, and duration on benzene-induced genotoxic and cytotoxic bone marrow damage in mice, Environ. Health Perspect., 82:65.PubMedCrossRefGoogle Scholar
  119. Travis, C.C., Quillen, J.L., and Arms, A.D., 1990, Pharmacokinetics of benzene, Toxicol. Appl. Pharmacol., 102:400.PubMedCrossRefGoogle Scholar
  120. Twerdok, L.E., and Trush, M.A., 1990, Differences in quinone reductase activity in primary bone marrow stromal cells derived from C57BL/6 and DBA/2 mice, Res. Comm. Chem. Path. Pharmacol., 67:375.Google Scholar
  121. Ulanova, I.P., and Avilova, G.G., 1987, Application of toxicokinetics criteria as basis for toxicometric parameters, J. Hyg. Epidemiol. Microbiol. Immunol., 31:113.PubMedGoogle Scholar
  122. Ward, R.C., Travis, C.C., Hetrick, D.M., Andersen, M.E., and Gargas, M.L., 1988, Pharmacokinetics of tetrachloroethylene, Toxicol. Appl. Pharmacol., 93:108.PubMedCrossRefGoogle Scholar
  123. Wells, M.S., and Nerland, D.E., 1991, Hematotoxicity and concentration-dependent conjugation of phenol in mice following inhalation exposure to benzene, Toxicol. Lett., 56:159.PubMedCrossRefGoogle Scholar
  124. Whittaker, S.G., Zimmermann, F.K., Dicus, B., Piegorsch, W.W., Resnick, M.A., and Fogal, S., 1990, Detection of induced mitotic chromosome loss in Saccharomyces cerevisiae - An interlaboratory assessment of 12 chemicals, Mutat. Res., 241:225.PubMedCrossRefGoogle Scholar
  125. WHO Regional Publications, 1987, European series No. 23 “Air quality guidelines for Europe”, Copenhagen, pp. 45–58.Google Scholar
  126. Witz, G., Rao, G.S., and Goldstein, B.D., 1985, Short-term toxicity of trans,transmuconaldehyde, Toxicol. Appl. Pharmacol., 80:511.PubMedCrossRefGoogle Scholar
  127. Witz, G., Latriano, L., and Goldstein, B.D., 1989, Metabolism and toxicity of trans, trans-muconaldehyde, an open-ring microsomal metabolite of benzene, Environ. Health Perspect., 82:19.PubMedGoogle Scholar
  128. Witz, G., Gad, S.C., Tice, R.R., Oshiro, Y., Piper, C.E., and Goldstein, B.D., 1990a, Genetic toxicity of the benzene trans,trans-muconaldehyde in mammalian and bacterial cells, Mutat. Res., 240:295.CrossRefGoogle Scholar
  129. Witz, G., Maniara, W., Mylavarapu, V., and Goldstein, B.D., 1990b, Comparative metabolism of benzene and trans,trans-muconaldehyde to trans,trans-muconic acid in DBA/2N and C57BL/6 mice, Biochem. Pharmacol., 40:1275.CrossRefGoogle Scholar
  130. Yager, J.W., Eastmond, D.A., Robertson, M.L., Paradisin, W.M., and Smith, M.T., 1990, Characterization of micronuclei induced in human lymphocytes by benzene metabolites, Cancer Res., 50:393.PubMedGoogle Scholar
  131. Yardley-Jones, A., Anderson, D., Jenkinson, P.C., Lovell, D.P., Blowers, S.D., and Davies, M.J., 1988, Genotoxic effects in peripheral blood and urine of workers exposed to low level benzene, Br. J. Ind. Med., 45:694.PubMedGoogle Scholar
  132. Yardley-Jones, A., Anderson, D., Lovell, D.P., and Jenkinson, P.C., 1990, Analysis of chrom. aber. in workers exposed to low level benzene, Br. J. Ind. Med., 47:48.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Sandro Grilli
    • 2
  • Silvio Parodi
    • 1
    • 3
  • Maurizio Taningher
    • 1
    • 3
  • Annamaria Colacci
    • 1
    • 4
  1. 1.Centro Interuniversitario per la Ricerca sul CancroItaly
  2. 2.Istituto di CancerologiaBolognaItaly
  3. 3.Istituto Nazionale per la Ricerca sul Cancro (IST)GenovaItaly
  4. 4.IST-Biotechnology Satellite Unit-BolognaBolognaItaly

Personalised recommendations