A New Method for Incorporating Point Sources Into Eulerian Dispersion Models

  • Klaus Bigalke
Part of the NATO Challenges of Modern Society book series (NATS, volume 17)


The dispersion of pollutants released from point sources is influenced by different processes depending on the scale under consideration. Due to the high temperature and momentum of the plume when leaving the stack, plume rise and dispersion are mainly influenced by the turbulence within the plume up to a distance of typical some hundred metres. Within this scale atmospheric turbulence is of minor importance. In the subsequent scale the plume rise is no longer significant, and advection with the mean wind as well as diffusion due to the atmospheric turbulence become the important processes. Physical processes such as dry and wet deposition or chemical reactions can no longer be neglected, if scales of some kilometres up to some hundred kilometres are taken into consideration.


Dispersion Model Mesoscale Model Source Distance Geostrophic Wind Subgrid Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bigalke, K. (1991): Interaktive Modellkopplung zur Berücksichtigung heisser Punktquellen in Gitterpunktsmodellen und Einfluss der Kopplungsstufe auf die Immission. Berichte aus dem Zentrum für Meeres-und Klimaforschung, Universität Hamburg, Nr. 12.Google Scholar
  2. Dunst, M. (1982): On the vertical structure of the eddy diffusion coefficient in the PBL. Atmos. Environ. 16, 2071–2074.CrossRefGoogle Scholar
  3. Dunst, M. (1988): On the turbulent diffusivity tensor in dispersion problems. Atmos. Environ. 22, 1085–1095.CrossRefGoogle Scholar
  4. Karamchandani, P. and L. K. Peters (1983): Analysis of the error associated with the grid representation of point sources. Atmos. Environ. 17, 927–933.CrossRefGoogle Scholar
  5. Pielke, R. A. (1984): Mesoscale meteorological modeling. Academic Press, London.Google Scholar
  6. Schatzmann, M. (1978): The integral equations for round buoyant jets in stratified flows. J. Appl. Math. Phys. 29, 608–630.CrossRefGoogle Scholar
  7. Schatzmann, M. (1979): An integral model of plume rise. Atmos. Environ. 13, 721–731.CrossRefGoogle Scholar
  8. Schatzmann, M. and A. J. Policastro (1984): An advanced integral model for cooling tower plume dispersion. Atmos. Environ. 18, 663–674.CrossRefGoogle Scholar
  9. Schlünzen, H. (1988): Das mesoskalige Transport-und Strömungsmodell’ METRAS’-Grundlagen, Validierung, Anwendung-. Hamburger Geophys. Einzelschr., Reihe A, 88.Google Scholar
  10. Schlünzen, H. (1990): Numerical studies on the inland penetration of sea breeze fronts at a coastline with tidally flooded mudflats. Beitr. Phys. Atmosph., 63, 243–256.Google Scholar
  11. Schlünzen, H. and S. Pahl (1991): Modification of dry deposition in a developing sea-breeze circulation-A numerical study-. Atmos. Environ., in press.Google Scholar
  12. Zhang, D.-L., H.-R. Chang, N. L. Seaman, T. T. Warner and J. M. Fritsch (1986): A two-way interactive nesting procedure with variable terrain solution. Mon. Weather Rev. 114, 1330–1339.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Klaus Bigalke
    • 1
  1. 1.Meteorologisches InstitutUniversität HamburgHamburg 13Germany

Personalised recommendations