Advertisement

Acetylcholinesterase Catalysis - Protein Engineering Studies

  • Avigdor Shafferman
  • Baruch Velan
  • Arie Ordentlich
  • Chanoch Kronman
  • Haim Grosfeld
  • Moshe Leitner
  • Yehuda Flashner
  • Sara Cohen
  • Dov Barak
  • Naomi Ariel

Abstract

Sequence conservation analysis relates the cholinesterases to a superfamily of polypeptides (Myers et al., 1988; Krejci et al., 1991), including enzymes such as microsomal carboxyesterase, cholesterol esterase, lysophospholipase, Geotrichum lipase and Drosophila esterase-6, as well as several noncatalytic polypeptides. AChE is the best characterized enzyme in this superfamily. Kinetic studies have indicated that the active site of AChE consists of two subsites: an anionic subsite to which the trimethylammonium group of acetylcholine binds and an esteratic subsite which interacts with the ester-bond region and mediates catalysis. Evidence also exists for an allosteric regulation of AChE activity by ligand binding to an anionic site(s) physically remote from the active site (Changeux, 1966).

Keywords

Active Center AChE Activity Catalytic Triad Aromatic Side Chain Cholesterol Esterase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel, M.F., Brent, R., Kingston, R.E., Moore, D.D., Smith, J.A., Seidman, J.G., and Struhl, K. (eds)., 1987, Current Protocols in Molecular Biology (Wiley Interscience) New York.Google Scholar
  2. Barak, D., Ariel, N., Velan, B., and Shafferman, A., This volume.Google Scholar
  3. Berman, H.A. and Decker, M.M., 1986, Biochim. Biophys. Acta. 872,125–133.PubMedCrossRefGoogle Scholar
  4. Brimijoin, S., Mintz K. P. and Alley, M., 1983, Mol. Pharmacol. 24, 513–520.PubMedGoogle Scholar
  5. Changeux J.P., 1966, Mol. Pharmacol. 2, 369–392.PubMedGoogle Scholar
  6. Ellman, G.L., Courtney, K.D., Andres, V., and Featherstone, R.M., 1961, Biochem. Pharmacol. 7, 88–95.PubMedCrossRefGoogle Scholar
  7. Fambrough, D.M., Engel, A.G. and Rosenberry, T.L., 1982, Proc. Natl. Acad. Sci. USA. 79, 1078–1083.PubMedCrossRefGoogle Scholar
  8. Froede, H.C., Wilson, I.B., and Kaufman, H., 1986, Arch. Biochem. Biophys. 247, 420–423.PubMedCrossRefGoogle Scholar
  9. Gentry, M.K. and Doctor, B.P., 1991, in Cholinesterases: Structure, Function, Mechanism,Genetics, and Cell Biology. eds Massoulie, J., Bacou, F., Barnard, E.A. Doctor, B.P. and Quinn, D.M. (Am. Chem. Soc. Washington) pp. 394–398.Google Scholar
  10. Gibney, G., Camp, S., Dionne, M., MacPhee-Quigley, K. and Taylor, P., 1990, Proc. Natl. Acad. Sci. USA 87,7546–7550.PubMedCrossRefGoogle Scholar
  11. Gorman, C.M., Moffat, L.E. and Howard, B.H., 1982, Mol. Cell. Biol. 2,1044–1051.PubMedGoogle Scholar
  12. Harel, M., Silman, I., and Sussman, J., 1992, Submitted.Google Scholar
  13. Kieffer, B., Goeldner, M., Hirth C., Aebersold, R., and Chang, J.-Y., 1986, FEBS Lett. 202, 91–96.CrossRefGoogle Scholar
  14. Kreienkamp, H.J., Weise, C., Raba, R., Aaviksaar, A., Hucho, F., 1991, Proc. Natl. Acad. Sci. USA. 88, 6117–6121.PubMedCrossRefGoogle Scholar
  15. Krejci, E., Duval, N., Chatonnet, A., Vincens, P. and Massoulie J., 1991, Proc. Natl. Acad. Sci. USA,88, 6647–6651.PubMedCrossRefGoogle Scholar
  16. Kronman, C., Velan, B., Gozes, Y., Leitner, M., Flashner, Y., Lazar, A., Marcus, D., Sery, T., Papier, A., Grosfeld, H., Cohen, S. and Shafferman, A., 1992, Gene, in press.Google Scholar
  17. Krupka, R.M., 1966, Biochemistry 5,1988–1998.PubMedCrossRefGoogle Scholar
  18. La Du, B.N, Bartels, C.F., Nogueira, C.P., Hajara, A., Lightstone, H.,Van Der Spek, A. and Lockridge, O., 1990, Clin Biochem. 23, 423–431.PubMedCrossRefGoogle Scholar
  19. MacPhee-Quigley, K.. Taylor, P. and Taylor, S., 1985, J.Biol. Chem.260,12185–12189.PubMedGoogle Scholar
  20. McGuire, M.C., Nogueira, C.P., Bartels, C.F., Leightstone, H., Hajara, A., Van der Spek, A.F.L., Lockridge, O., and La Du, B.N., 1989, Proc. Natl. Acad. Sci. USA. 86,953–957.PubMedCrossRefGoogle Scholar
  21. McTiernan, C., Adkins, S., Chatonnet, A., Vaughan, T.A., Bartels, C.F., Knott, M., Rosenberry, T.L., La Du, B.N. and Lockridge, O., 1987, Proc. Natl. Acad. Sci. USA 84, 6682–6686.PubMedCrossRefGoogle Scholar
  22. Myers, M., Richmond, R., and Oakeshott, J., 1988, Mol. Biol. Evol.5,113–119.PubMedGoogle Scholar
  23. Neville, L.F., Gnatt, A., Padan, R., Seidman, S. and Soreq, H., 1990, J. Biol. Chem. 265,20735–20738.PubMedGoogle Scholar
  24. Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, M.S., Harel, M., Remington, S.J., Silman, I., Schrag, J., Sussman, J.L. Verschueren, K.H.G. and Goldman A., 1992, Protein Engineering, in press.Google Scholar
  25. Prody, C.A., Zevin-Sonkin, D., Gnatt, A., Goldberg, O. and Soreq, H., 1987, Proc. Natl. Acad. Sci. USA. 84,3555–3559.PubMedCrossRefGoogle Scholar
  26. Quinn, D., 1987, Chem. Rev. 87,955–979.CrossRefGoogle Scholar
  27. Radic, Z., Reiner, E., and Taylor, P., 1991, Molec. Pharmacol. 39, 98–104.Google Scholar
  28. Rosenberry, T.L., 1975, Adv. Enzymol. Relat. Areas Mol. Biol. 43,103–218.PubMedGoogle Scholar
  29. Roskoski, R., 1974, Biochemistry 13, 5141–5144.PubMedCrossRefGoogle Scholar
  30. Shafferman, A., Velan, B., Cohen, S., Leitner, S. and Grosfeld, H., 1987, J. Biol. Chem. 262, 6227–6237.PubMedGoogle Scholar
  31. Shafferman, A. Kronman, C., Flashner, Y., Leitner, M., Grosfeld, H., Ordentlich, A., Gozes, Y., Cohen, S., Ariel, N., Barak, D., Harel, M., Silman, I., Sussman J.L., and Velan, B. 1992a, J.Biol.Chem. in press.Google Scholar
  32. Shafferman, A., Velan, B., Ordentlich, A., Kronman, C., Grosfeld, H., Leitner, M., Flashner, Y., Cohen, S., Barak, D. and Ariel N., 1992b, Submitted.Google Scholar
  33. Soreq, H., Ben-Aziz, R., Prody, C.A., Seidman, S., Gnatt, A., Neville, A., Lieman-Hurwitz, J., Lev-Lehman, E., Ginzberg, D., Lapidot- Lifson, Y., and Zakut, H., 1990, Proc. Natl. Acad. Sci. USA. 87, 9688–9692.PubMedCrossRefGoogle Scholar
  34. Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. and Silman, I., 1991, Science 253, 872–879.PubMedCrossRefGoogle Scholar
  35. Taylor, P. and Lappi, S., 1975, Biochemistry,14, 1989–1992.PubMedCrossRefGoogle Scholar
  36. Velan, B., Kronman, C., Grosfeld, H., Leitner, M., Gozes, Y., Flashner, Y., Sery, T., Cohen, S., Ben-Aziz, R., Seidman, S., Shafferman, A. and Soreq, H., 199la, Cell Mol. Neurobiol. 11, 143–156.CrossRefGoogle Scholar
  37. Velan, B., Grosfeld, H., Kronman, C., Leitner, M., Gozes, Y., Lazar, A., Flashner, Y., Marcus, D., Cohen, S. and Shafferman, A., 1991b, J. Biol. Chem. 266:23977–23984.Google Scholar
  38. Weise C., Kreienkamp, H.J., Raba, R., Pedak, A., Aaviksaar, A. and Hucho, F., 1990, EMBO J. 9, 3385–3388.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Avigdor Shafferman
    • 1
  • Baruch Velan
    • 1
  • Arie Ordentlich
    • 1
  • Chanoch Kronman
    • 1
  • Haim Grosfeld
    • 1
  • Moshe Leitner
    • 1
  • Yehuda Flashner
    • 1
  • Sara Cohen
    • 1
  • Dov Barak
    • 2
  • Naomi Ariel
    • 1
  1. 1.Departments of BiochemistryInstitute for Biological ResearchNess-ZionaIsrael
  2. 2.Organic ChemistryIsrael Institute for Biological ResearchNess-ZionaIsrael

Personalised recommendations