Skip to main content

Molecular Dissection of Functional Domains in Human Cholinesterases Expressed in Microinjected Xenopus Oocytes

  • Chapter
Book cover Multidisciplinary Approaches to Cholinesterase Functions

Abstract

The two classes of human cholinesterases (CHEs), acetylcholinesterase(acetylcholine acetyl hydrolase, ACHE, EC 3.1.1.7) and butyrylcholinesterase (acylcholine acyl hydrolase, BCHE, EC 3.1.1.8) are highly homologous proteins capable of rapidly hydrolyzing choline estersl. Despite their similar mechanisms of action, they differ in substrate specificity and sensitivity to various inhibitors1,2. Recent advances including cloning,3–6 expression,5,7–10 and 3 dimensional structural analysis of members of the CHE superfamily,11,12 now enable the dissection of functional domains thereof. Within these domains, key amino acids are found which may be implicated in catalysis or in binding of various ligands. The disclosing of such key residues could lead to designing of novel therapeutic agents as well as to the unravelling of the molecular mechanisms underlying the functioning of ChEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Soreq, and H. Zakut. Cholinesterase genes: Multileveled regulation. In: Sparkes, R.S. (Ed). “Monographs in human genetics” Vol 13, Karger, Basel (1990).

    Google Scholar 

  2. D.M. Quinn. Acetylcholinesterase. Enzyme structure, reaction dynamics and virtual transition states. Chem. Rev. 87:9556(1987).

    Article  Google Scholar 

  3. M. Schumacher, S. Camp, Y. Maulet, M. Newton, K. Macphee-Quigley, S.S. Taylor, T. Friedmann, and P. Taylor. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature 319:407(1986).

    Article  PubMed  CAS  Google Scholar 

  4. C.A. Prody, D. Zevin-Sonkin, A. Gnatt, O. Goldberg, and H. Soreq, H. Isolation and characterization of full -length cDNA clones coding for cholinesterase from fetal human tissues. Proc. Natl. Acad. Sci. USA 84:3555(1987).

    Article  PubMed  CAS  Google Scholar 

  5. H. Soreq, R. Ben-Aziz, S. Seidman, A. Gnatt, L. Neville, J. Lieman-Hurvitz, Y. Lapidot-Lifson, and H. Zakut. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G,C rich attenuating structure. Proc. Natl. Acad. Sci. USA 87:9688(1990).

    Article  PubMed  CAS  Google Scholar 

  6. C. McTiernan, S. Adkins, A. Chatonnet, T.A. Vaughan, C.F. Bartels, M. Kott, T.L. Rosenberry, B.N. La Du, and O. Lockridge. Brain cDNA clone for human cholinesterase. Proc. Natl. Acad. Sci. USA 84:6682(1987).

    Article  PubMed  CAS  Google Scholar 

  7. H. Soreq, S. Seidman, P.A. Dreyfus, D. Zevin-Sonkin, and H. Zakut. Expression and tissue specific assembly of cloned human butyrylcholinesterase in microinjected Xenopus laevis oocytes. J. Biol. Chem. 266:4025(1989).

    Google Scholar 

  8. E. Krejci, F. Coussens, N. Duval, J.M. Chatel, C. Legacy, M. Puype, J. Vandekerchkhove, J. Cartaud, S. Bon, and J. Massoulie. Primary structure of a collagenic tail subunit of Torpedo acetylcholinesterase: co-expression with catalytic subunit induces the production of collagen-tailed forms in transfected cells. EMBO J. 10: 1285(1991)

    PubMed  CAS  Google Scholar 

  9. G. Gibney and P. Taylor. Biosynthesis of Torpedo acetylcholinesterase in mammalian cells: Functional expression and mutagenesis of the glycophospholipid-anchored form. J. Biol. Chem. 266:4025(1991).

    Google Scholar 

  10. B. Velan, C. Kronman, H. Grosfeld, M. Leitner, Y. Gozes, Y. Flashner, T. Sery, S. Cohen, R. Ben- Aziz, S. Seidman, A. Shafferman and H. Soreq. Recombinant human acetylcholinesterase is secreted from transiently transfected 293 cells as a soluble globular enzyme. Cell. Molec. Neurobiol. 11:143(1991).

    Article  PubMed  CAS  Google Scholar 

  11. J.L. Sussman. M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker and I. Silman. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science, 23:872–879(1991).

    Article  Google Scholar 

  12. J.D. Schrag, Y. Li, S. Wu, and M. Cygler. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature, 351:761–764(1991).

    Article  PubMed  CAS  Google Scholar 

  13. L.F. Neville, A. Gnatt, Y. Loewenstein, S. Seidman, G. Ehrlich and H. Soreq. Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE. EMBO J. In press(1992).

    Google Scholar 

  14. L.F. Neville, A. Gnatt, Y. Loewenstein and H. Soreq. Aspartate 70 to glycine substitution confers resistance to naturally occurring and synthetic anionic-site ligands on in vivo produced human butyrylcholinesterase. J. Neurosci. Res. 27:452(1990).

    Article  PubMed  CAS  Google Scholar 

  15. L.F. Neville, A. Gnatt, S. Seidman, R. Padan and H. Soreq. Anionic site interactions in human butyrylcholinesterase disrupted by two single point mutations. J. Biol. Chem. 265:20735(1990).

    PubMed  CAS  Google Scholar 

  16. G.L. Ellman, D.K. Courtney, V. Andres, and R.M. Featherstone. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88(1961).

    Article  PubMed  CAS  Google Scholar 

  17. G. Gibney, S. Camp, M. Dionne, K. MacPhee-Quigley, and P. Taylor. Mutagenesis of essential functional residues in acetylcholinesterase Proc. Natl. Acad. Sci. USA 87:7546(1990).

    Article  PubMed  CAS  Google Scholar 

  18. O. Lockridge and BN. La Du. Comparison of atypical and usual human serum cholinesterase: Purification, number of active sites, substrate affinity, and turnover number. J. Biol. Chem. 253:361(1978).

    PubMed  CAS  Google Scholar 

  19. M. Whittaker. Cholinesterases. In: Beckmann, A.D. (Ed). “Monographs in Human Genetics” Vol. 11. Karger, Basel (1986).

    Google Scholar 

  20. A. Gnatt, C.A. Prody, R. Zamir, J. Lieman-Hurwitz, H. Zakut and H. Soreq. Expression of alternatively terminated unusual CHE mRNA transcripts mapping to chromosome 3q26-ter in nervous system tumors. Cancer Res. 50:1983(1990)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gnatt, A., Loewenstein, Y., Soreq, H. (1992). Molecular Dissection of Functional Domains in Human Cholinesterases Expressed in Microinjected Xenopus Oocytes. In: Shafferman, A., Velan, B. (eds) Multidisciplinary Approaches to Cholinesterase Functions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3046-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3046-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6328-6

  • Online ISBN: 978-1-4615-3046-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics