Skip to main content

Influence of Ionic Composition of the Medium on Acetylcholinesterase Conformation

  • Chapter

Abstract

The recent crystallographic analysis of a dimeric glycophospholipid form of AchE from Torpedo californica (Sussman et al., 1991) provides an ideal opportunity for comparing the catalytic behaviour and recognition properties of the enzyme with its atomic structure. The globular subunit is determined to be an α/ß protein containing numerous crossover motifs of the type ß-α-ß or ß-loop-ß. The catalytic residue, Ser 200, resides 4 A above the base of a 20 A deep cavity - or gorge - lined with numerous aromatic amino acid residues accounting for approximately 40 percents of the active center surface. A catalytic charge-relay triad comprising Ser 200-His 440-Glu327 is identified. Quite surprisingly, only few net negative amino acid residues are found within the gorge: Asp 285 and Glu 273 at the top, Asp 72 about half-way into the gorge, and G1u 199, proximal to Ser 200, near the base. Overall, the atomic coordinates afford a picture of the active center as that of a deep, highly aromatic cavity, rich in pi-electron density. No evidence exists for an anionic choline-binding locus situated approximately 5 A from Ser 200.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berman, H.A. and Decker, M.M. (1986a) Kinetic, equilibrium, and spectroscopic studies on cation association at the active center of acetylcholinesterase: Topographic distinction between trimethyl and trimethylammonium sites. Biochim. Biophys. Acta,872:126.

    Article  Google Scholar 

  • Berman, H.A. and Decker, M.M. (1986b) Kinetic, equilibrium and spectroscopic studies on dealkylation (“Aging”) of alkyl organophosphonyl-acetylcholinesterase: Electrostatic control of enzyme topography. J. Biol. Chem. 261:10646.

    CAS  Google Scholar 

  • Berman, H.A. and Leonard, K.J. (1989) Chiral reactions of acetylcholinesterase probed with enantiomeric methylphosphonothioates: Noncovalent determinants of enzyme chiral preference. J. Biol. Chem. 264:3942.

    PubMed  CAS  Google Scholar 

  • Berman, H.A. and Leonard, K. (1990) Ligand exclusion on acetylcholinesterase. Biochemistry 29:10640.

    Article  PubMed  CAS  Google Scholar 

  • Berman, H.A., Leonard, K.J., and Nowak, M.W. (1991) Function of the peripheral anionic site of acetyl-cholinesterase, in “Cholinesterases: Structure, Function, Mechanism, Genetics, and Cell Biology ”, J. Massoulie, F. Bacou, E. Barnard, A. Chatonnet, B.P. Doctor, and D.M. Quinn, eds. American Chemical Society Press, Washington, D.C.

    Google Scholar 

  • Berman, H.A., Olshefski, D.F., Gilbert, M., and Decker, M.M. (1985) Fluorescent phosphonate labels for serine hydrolases. J. Biol. Chem. 260:3462.

    PubMed  CAS  Google Scholar 

  • Changeux, J.-P. (1966) Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol. Pharmacol. 2:369.

    PubMed  CAS  Google Scholar 

  • Gibney, G., Camp, S., Dionne, M., MacPhee-Quigley, K., and Taylor, P. (1990) Mutagenesis of essential functional residues in acetylcholinesterase. Proc. Natl. Acad. Sci., USA 87:7546.

    Article  PubMed  CAS  Google Scholar 

  • Hol, W.G.J. (1985) The role of the a helix dipole in protein function and structure. Prog. Biophys. Molec. Biol. 45:149.

    Article  CAS  Google Scholar 

  • Jachter, H. and Sachs, F. (1982) Ionic depletion and voltage gradients at the endplate. Biophysical J. 37:311a.

    Google Scholar 

  • Nolte, H.-J., Rosenberry, T.L., and Neumann, E. (1980) Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry 17:3705.

    Article  Google Scholar 

  • Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Silman, I. (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine binding protein. Science 253:872.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, P. and Lappi, S. (1975) Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium. Biochemistry 14:1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berman, H.A., Nowak, M.W. (1992). Influence of Ionic Composition of the Medium on Acetylcholinesterase Conformation. In: Shafferman, A., Velan, B. (eds) Multidisciplinary Approaches to Cholinesterase Functions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3046-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3046-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6328-6

  • Online ISBN: 978-1-4615-3046-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics