Skip to main content

Acetaldehyde Oxidation by Aldehyde Dehydrogenase Loaded Erythrocytes

  • Chapter
Book cover The Use of Resealed Erythrocytes as Carriers and Bioreactors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 326))

Abstract

The most important role in ethanol metabolism is played in mammals by the liver. It has been calculated that this organ oxidizes about 80% of the ingested ethanol,while the remainder is metabolized at other body sites or it is excreted in breath, urine and sweat. Ethanol is oxidized to acetaldehyde (Ach) in liver by three different enzymatic pathways: alcohol dehydrogenase (ADH), the cytochrome P-450 microsomal ethanol oxidizing system (MEOS) and the catalase pathways (Fig.1). A non enzymatic ethanol oxidizing system has also been proposed.1 All these pathways have been recently reviewed in detail by Kennedy and Tipton.2 In contrast to ADH which is only slightly inducible3, the MEOS specifically increases its activity following chronic ethanol consumption.4,5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Koop,Minor pathways of ethanol metabolism.In:“Human Metabolism of alcohol”.Vol.2.K.E.Crow and R.D.Batt eds.p 133.CRC Press,Boca Raton.

    Google Scholar 

  2. P. Kennedy and K.F. Tipton, Ethanol metabolism and alcoholic liver disease. Essay Biochem. 22:137 (1990).

    Google Scholar 

  3. K.E. Crow and M.J. Hardman, Regulation of rates of ethanol metabolism.In“ Human Metabolism of Alcohol ” Vol.2 (K.E. Crow & R.D. Batt, eds., p. 3, CRC Press, Boca Raton. (1989).

    Google Scholar 

  4. C.S. Lieber and L.M. DeCarli, Hepatic microsomal ethanol-oxidizing system. In vitro characteristics and adaptive properties in vivo. J. Biol. Chem. 245:2505 (1970).

    PubMed  CAS  Google Scholar 

  5. D.W. Koop, G.D. Nordblom and M.J. Coon, Immunochemical evidence for a role of cytochrome P-450 in liver microsomal ethanol oxidation, Arch. Biochem. Biophys. 235:228 (1984).

    Article  PubMed  CAS  Google Scholar 

  6. R. Pietruszko, Alcohol and aldehyde dehydrogenase isozymes from mammalian liver. Their structural and functional differences.Curr. Top. Biol. Med Res. 4, 131 (1980).

    Google Scholar 

  7. J.P. von Wartburg, Acetaldehyde.In:“Psycopharmacology of Alcohol”, M. Sandler. ed.p 137.Raven Press,New York (1980).

    Google Scholar 

  8. O.E. Pratt, The fetal alcohol syndrome: transport of nutrients and transfer of alcohol and acetaldehyde from mother to fetus. In Psychopharmacology of Alcohol, M. Sandler. ed.,p.229.Raven Press, New York (1980).

    Google Scholar 

  9. D.J. Tuma and M.F. Sorrell, Covalent binding of acetaldehyde to hepatic proteins: Role in alcoholic liver injury. In:“ Aldehyde Adducts in Alcoholism”. M.A. Collins ed p. 3. Alan R. Liss, Inc., New York (1985).

    Google Scholar 

  10. C.S. Lieber, Metabolic effects of acetaldehyde.Biochem. Soc. Trans. 16:241 (1988).

    CAS  Google Scholar 

  11. A.D. Dawson, Ethanol oxidation in systems containing soluble and mitochondrial fraction of rat livers: regulation by acetaldehyde, Biochem. Pharmacol. 32:2157 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. K. Inoue, H. Nishimukai and K. Yamasawa, Purification and partial characterization of aldehyde dehydrogenase from human erythrocytes, Biochim.Biophys. Acta. 569:117 (1979).

    Article  PubMed  CAS  Google Scholar 

  13. D.P. Agarwal, C. Muller, C. Korencke, U. Mika, S. Harada and H.W. Goedde, Changes in erythrocyte and liver aldehyde dehydrogenase in alcoholics. In“Enzymology of Carbonyl Metabolism ” T.G. Flynn & H. Weiner, eds.,p. 113. Alan R. Liss Inc, New York (1985).

    Google Scholar 

  14. A. Zorzano, and E. Herrera, Differences in the kinetic properties and sensitivity to inhibitors of human placental, erythrocyte, and mayor hepatic aldehyde dehydrogenase isoenzymes. Biochem Pharmaco1.39:873 (1990).

    Article  CAS  Google Scholar 

  15. G.C. Mills and F.L. Hill, Metabolic control mechanisms in human erythrocytes. The role of glyceraldehyde phosphate dehydrogenase, Arch.Biochem. Biophys.146:306 (1971)

    Article  PubMed  CAS  Google Scholar 

  16. D. Jendrassek, A. Steinbuchel and M.G. Schlegel, Three different proteins exhibiting NAD-dependent acetaldehyde dehydrogenase activity from Alcaligens Eutrophus. Eur. J. Biochem. 167:541 (1987).

    Article  Google Scholar 

  17. C. Ropars, M. Chassaigne, M.C. Villereal, G. Avenard, C. Hurel and C. Nicolau, Resealed red blood cells as a new blood transfusion product. In: “Red Blood Cells as Carriers for Drugs”, J.R. DeLoach and U. Sprandel eds, p. 82, Karger, Basel (1985).

    Google Scholar 

  18. M. Magnani, L. Rossi, M. Bianchi, G. Fornaini, U. Benatti, L. Guida, E. Zocchi and A. De Flora, Improved metabolic properties of hexokinase overloaded human erythrocytes. Biochim. Biophys. Acta 972:1 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. P. Ninfali. F. Palma, M.P. Piacentini and G. Fornaini, Action of acetaldehyde on glucose metabolism of newborn and adult erythrocytes. Biol. Neonate. 52:257 (1987).

    Google Scholar 

  20. M. Magnani, M. Laguerre, L. Rossi, M. Bianchi, P. Ninfali, F. Mangani and C. Ropars, In vivo accelerated acetaldehyde metabolism using acetaldehyde dehydrogenase-loaded erythrocytes, Alcohol Alcoholism 25: 627 (1990).

    CAS  Google Scholar 

  21. F. Mangani and P. Ninfali, Gas chromatographic determination of acetaldehyde and acetone in human blood by purge and trap, using permeation tubes for calibration. J.Chromatogr.437: 294 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. Korsten, M. A., Matsuzaki, A., Feinman, L. and Lieber, C. S.,1975. High blood acetaldehyde levels after ethanol administration: differences between alcoholic and non-alcoholic subjects. New Eng.J Med.292: 386 (1989).

    Article  Google Scholar 

  23. Y. Mizoi, T. Fukunaga and J. Adachi, The flushing syndrome in orientais. In: “Human Metabolism of Alcohol.” Vol 2 K.E. Crow & R.D. Batt. eds.p 219 CRC Press. Boca Raton (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ninfali, P., Rossi, L., Baronciani, L., Ropars, C., Magnani, M. (1992). Acetaldehyde Oxidation by Aldehyde Dehydrogenase Loaded Erythrocytes. In: Magnani, M., DeLoach, J.R. (eds) The Use of Resealed Erythrocytes as Carriers and Bioreactors. Advances in Experimental Medicine and Biology, vol 326. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3030-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3030-5_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6321-7

  • Online ISBN: 978-1-4615-3030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics