Skip to main content

Membrane Properties of Senescent and Carrier Human Erythrocytes

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 326))

Abstract

Studies about human red cell senescence have shown that the viability and post-transfusion survival of red cells is related to the structure of their plasma membrane.1 In an attempt to analyze the survival potential in the circulation of red cells manipulated for loading with drugs or biosubstances, we addressed our investigation to the identification of new parameters useful to describe membrane characteristics of red cells with a decreased life expectancy. In this study we have analyzed membrane properties of young, middle-aged, and senescent red cells, and compared them with those of red cells manipulated for loading, in order to discern the membrane structural lesions leading to a decreased survival potential. Removal from the circulation of senescent red cells seems to be triggered by the binding of autologous antibodies2 recognizing band 3 (B3) protein3–5, α-galactosyl groups, probably belonging to glycolipids6, and other epitopes not yet defined.5 Although the role played by autoantibodies in the removal of senescent cells has not been completely elucidated, their presence on the surface of senescent erythrocytes focused on plasma membrane studies about cell aging and raised questions about the mechanisms leading to the expression on the cell surface of the senescence antigens. Among the processes modifying the structure of membrane components and described to occur during red cell senescence, oxidation seems to play an important role.7–11 Therefore we have analyzed the oxidative state of membrane proteins in young, middle-aged and senescent normal red cells and tried to relate it with the functional activity of B3 protein12, considering that the involvement of B3 in the expression of the senescence antigen has been recognized by different authors.3–5,11 The same investigation was carried out on red cells submitted to hypotonic dialysis and resealed. The aim of this investigation was to identify steps of cell loading processes producing cell suffering and decrease of the survival potential, in order to prevent or minimize the cellular damage with appropriate protocols.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.R. Clark, Senescence of red blood cells: progress and problems, Physiol. Rev. 68:503 (1988).

    PubMed  CAS  Google Scholar 

  2. M.M.B. Kay, Mechanism of removal of senescent cells by human macrophages ‘in situ’, Proc. Natl. Acad. Sci. USA 72:3521 (1975).

    Article  PubMed  CAS  Google Scholar 

  3. M.M.B. Kay, Localization of senescent cell antigen on band 3, Proc. Natl. Acad. Sci. USA 81:5753 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. H.U. Lutz, R. Flepp and G. Stringaro-Wipf, Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein, the major integral membrane protein of human red blood cells, J. Immunol. 133:2610 (1984).

    PubMed  CAS  Google Scholar 

  5. M.P. Sorette, U. Galili and M.R. Clark, Comparison of serum anti-band 3 and anti-Gal antibody binding to density-separated human red blood cells, Blood 77:628 (1991).

    PubMed  CAS  Google Scholar 

  6. U. Galili, B.A. Macher, J. Buehler and S.B. Shohet, Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha(1–3)-linked galactose residues, J. Exp. Med. 162:573 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. G.J. Johnson, D.W. Allen, T.P. Flynn, B. Finkel and J.G. White, Decreased survival in vivo of diamide-incubated dog erythrocytes, J. Clin. Invest. 66:955 (1980).

    Article  PubMed  CAS  Google Scholar 

  8. M.M.B. Kay, G.J.C.G.M. Bosman, S.S. Shapiro, A. Bendich and P.S. Bassel, Oxidation as a possible mechanism of cellular aging: vitamin E deficiency causes premature aging and IgG binding to erythrocytes, Proc. Natl. Acad. Sci. USA 83:2463 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. P. Arese, F. Bussolino, R. Flepp, P. Stammler, S. Fasler and H.U. Lutz, Diamide enhances phagocytosis of human red cell in a complement-and anti band 3 antibody-dependent process, Biomed. Biochim. Acta 46:S84 (1987).

    PubMed  CAS  Google Scholar 

  10. M. Beppu, A. Mizukami, M. Nagoya and K. Kikugawa, Binding of anti-band 3 auto-antibody to oxidatively damaged erythrocytes, J. Biol. Chem. 265:3226 (1990).

    PubMed  CAS  Google Scholar 

  11. P.S. Low, Interaction of native and denatured hemoglobins with band 3: consequences for erythrocyte structure and function, in: “Red Blood Cell Membranes”, P. Agre and J.C. Parker, eds, M. Dekker, New York, (1989).

    Google Scholar 

  12. D. Jay and L. Cantley, Structural aspects of the red cell anion exchange protein, Ann. Rev. Biochem. 55:511(1986).

    Google Scholar 

  13. E. Beutler, C. West and K. G. Blume, The removal of leukocytes and platelets from whole blood, J. Lab. Clin. Med. 88:328 (1976).

    PubMed  CAS  Google Scholar 

  14. C. Seppi, M.A. Castellana, G. Minetti, G. Piccinini, C. Balduini and A. Brovelli, Evidence for membrane protein oxidation during in vivo aging of human erythrocytes Mech. Ageing Dev. 57:247 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. J. R. Murphy, Influence of temperature and method of centrifugation on the separation of erythrocytes, J. Lab. Clin. Med. 82:334 (1973).

    PubMed  CAS  Google Scholar 

  16. W. J. Griffiths, The determination of creatine in body fluids and muscle, and of phosphocreatine in muscle, using the autoanalyzer, Clin. Chim. Acta 9:210 (1964).

    Article  PubMed  CAS  Google Scholar 

  17. J. Fehr and M. Knob, Comparison of red cell creatine level and reticulocyte count in appraising the severity of hemolytic processes, Blood 53:966 (1979).

    PubMed  CAS  Google Scholar 

  18. V. T. Marchesi and J. E. Palade, The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes, J. Cell Biol. 35:385 (1967).

    Article  PubMed  CAS  Google Scholar 

  19. C. Ropars, M. Chassaigne, M.C. Villeral, G. Avenard, C. Hurel and C. Nicolau, Resealed red blood cells as a new blood transfusion product, in: “Red Cells as Carrier for Drugs”, J.R. De Loach and U. Sprandel, eds., Karger, Basel (1985).

    Google Scholar 

  20. K. Yamamoto, T. Sehne and Y. Kanaoka, Fluorescent thiol reagents - Fluorescent tracer method for protein SH groups using N-(7-dimethylamino-4-methyl coumarinyl) maleimide. An application to the proteins separated by SDS-polyacrylamide gel electrophoresis, Anal. Biochem. 79:83 (1977).

    Article  PubMed  CAS  Google Scholar 

  21. E. Nigg, M. Kessler and R.J. Cherry, Labelling of human erythrocyte membranes with eosin probes used for protein diffusion measurements. Inhibition of anion transport and photo-oxidative inactivation of acetylcholinesterase, Biochim. Biophys. Acta 550:328 (1979).

    Article  PubMed  CAS  Google Scholar 

  22. C.E. Cobb and A.H. Beth, Identification of the eosynil-5-maleimide reaction site on the human erythrocyte anion exchange protein: overlap with the reaction sites of other chemical probes, Biochemistry 29:8283 (1990).

    Article  PubMed  CAS  Google Scholar 

  23. T. Chiba, Y. Sato and Y. Suzuki, Characterization of eosin 5-isothiocyanate binding site in band 3 protein of the human erythrocyte, Biochim. Biophys. Acta 897:14 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. M.K. Ho and G. Guidotti, A membrane protein from human erythrocytes involved in anion exchange, J. Biol. Chem. 250:675 (1975).

    PubMed  CAS  Google Scholar 

  25. U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227: 680 (1970).

    Article  PubMed  CAS  Google Scholar 

  26. O. H. Lowry, N. J. Rosebrough, A. L. Fan and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193:265 (1951).

    PubMed  CAS  Google Scholar 

  27. E. Beutler, The preparation of red cells for assay, in: “Red cell metabolism - A Manual of Biochemical Methods” 3rd edition, Grune and Stratton, New York (1984).

    Google Scholar 

  28. E. Beutler, Reduced glutathione (GSH), in: “Red cell metabolism - A Manual of Biochemical Methods” 3rd edition, Grune and Stratton, New York (1984).

    Google Scholar 

  29. F. Tietze, Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione, Anal. Biochem. 27:502 (1969).

    Article  PubMed  CAS  Google Scholar 

  30. K.J.A. Davies and A.L. Goldberg, Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells, J. Biol. Chem. 262:8227 (1987).

    PubMed  CAS  Google Scholar 

  31. A. Brovelli, C. Seppi, A.M. Castellana, M.R. De Renzis, A. Blasina and C. Balduini, Oxidative lesion to membrane proteins in senescent erythrocytes, Biomed. Biochim. Acta 49:S218 (1990).

    PubMed  CAS  Google Scholar 

  32. G. Bartosz, Erythrocyte aging: physical and chemical membrane changes, Gerontology 37:33 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Castellana, M.A. et al. (1992). Membrane Properties of Senescent and Carrier Human Erythrocytes. In: Magnani, M., DeLoach, J.R. (eds) The Use of Resealed Erythrocytes as Carriers and Bioreactors. Advances in Experimental Medicine and Biology, vol 326. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3030-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3030-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6321-7

  • Online ISBN: 978-1-4615-3030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics