Advertisement

Ecology and Epidemiology of Arenaviruses and Their Hosts

  • James E. Childs
  • Clarence J. Peters
Part of the The Viruses book series (VIRS)

Abstract

Arenavirus epidemiology must be understood on three levels: (1) The most fundamental and scientifically interesting concerns the distribution of virus in rodent populations. The dominant characteristic of the known, well-characterized arenaviruses is their ability to establish chronic viremic infections in specific rodent hosts. At the population level, this complex problem depends on the interaction of virus, rodent, and ecological variables that mutually determine the abundance of infected rodents, which may in turn contaminate humans with virus. (2) The variables that bring humans in contact with these rodents and their excreta in such a way as to lead to human infection. This process depends on human ecology and habits, as well as the dynamics of infected rodents. (3) The situations in which infected humans may be responsible for secondary infections of humans.

Keywords

House Mouse Hemorrhagic Fever Rodent Population Lymphocytic Choriomeningitis Lassa Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, R., 1973, Epidemiological aspects of lymphocytic choriomeningitis in man, in: Lymphocytic Choriomeningitis Virus and Other Arenaviruses (F. LehmannGrube, ed.), pp. 234–237, Springer-Verlag, New York.Google Scholar
  2. Ackermann, R., Bloedhorn, H., Kupper, B., Winkens, I., and Scheid, W., 1964, Ober die verbreitung des virus der lymphozytaren choriomeningitis unter den Mausen in Westdeutschland, Zentralbl. Bakter. Parasit. Infekt. Hyg. 194:407.Google Scholar
  3. Ackermann, R., Stille, W., Blumenthal, W., Helm, E. B., Keller, K., and Baldus, O., 1972, Syrische goldhamster als ubertrager von lymphozytaren choriomeningitis, Deut. Med. Wochen. 97:1725.CrossRefGoogle Scholar
  4. Ackermann, R., Korver, G., Turss, R., Wonne, R., and Hochgesand, P., 1974, Pranatale infektion mit dem virus der lymphozytaren choriomeningitis, Dtsch. Med. Wochenschr. 99:629.PubMedCrossRefGoogle Scholar
  5. Adair, C. V., Gauld, R. L., and Smadel, J. E., 1953, Aseptic meningitis, a disease of diverse etiology: Clinical and etiologic studies on 854 cases, Ann. Intern. Med. 39:675.PubMedGoogle Scholar
  6. Ahmed, R., Byrne, J. A., and Oldstone, M. B. A., 1984a, Virus specificity of cytotoxic T lymphocytes during acute lymphocytic choriomeningitis virus infection; role of the H-2 region in determining cross reactivity for different lymphocytic choriomeningitis virus strains, J. Virol. 51:34.Google Scholar
  7. Ahmed, R., Salmi, A, Butler, L. D., Chiller, J.-M., and Oldstone, M. B. A., 1984b, Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice: Role in suppression of cytotoxic T lymphocyte response and viral persistence, J. Exp. Med. 60:521.CrossRefGoogle Scholar
  8. Ahmed, R., Hahn, C. S., Somasundram, T., Villarete, L., Matloubian, M., and Strauss, J. H., 1991, Molecular basis or organ-specific selection of viral variants during chronic infection, J. Virol. 65:4242.PubMedGoogle Scholar
  9. Allan, W., and Doherty, P. C., 1989, Influence of non-major histocompatibility complex differences on the severity of lymphocytic choriomeningitis, J. Neuroimmunol 24:55.PubMedCrossRefGoogle Scholar
  10. Anderson, P. K., Dunn, L. C., and Beasley, A. B., 1964, Introduction of a lethal allele into a feral house mouse population, Am. Nat. 98:57.CrossRefGoogle Scholar
  11. Anderson, R. M., and May, R. M., 1979, Population biology of infectious diseases: Part I, Nature 280:361.PubMedCrossRefGoogle Scholar
  12. Anderson, R. M., and May, R. M., 1982, Coevolution of hosts and parasites, Parasitol. 85:411.CrossRefGoogle Scholar
  13. Apfelbaum, L. I., and Blanco, A., 1985a, Genetic polymorphism in populations of Akodon rodents, Can. J. Genet. Cytol. 27:12.Google Scholar
  14. Apfelbaum, L. I., and Blanco, A., 1985b, Temporal variation of allele frequencies in populations of Akodon dolores (Rodentia, Cricetidae), Theor. Appl. Genet. 70:569.CrossRefGoogle Scholar
  15. Arata, A. A., and Gratz, N. G., 1975, The structure of rodent faunas associated with arenaviral infections, Bull. WHO 52:621.PubMedGoogle Scholar
  16. Armstrong, C., 1940, Studies on choriomeningitis and poliomyelitis, Harvey Lect. 1940–41:39.Google Scholar
  17. Armstrong, C., and Sweet, L. K., 1939, Lymphocytic choriomeningitis, Public Health Rep. 54:673.CrossRefGoogle Scholar
  18. Barlow, J. C., 1969, Observations on the biology of rodents in Uruguay, Life Sci. Con. Roy. Ontario Mus. 75:1.Google Scholar
  19. Bellier, L., 1975, The genus Mastomys in the Ivory Coast, Bull. WHO 52:665.PubMedGoogle Scholar
  20. Berry, R. J., 1977, The population genetics of the house mouse, Sci. Progr. (Oxf.) 64:341.Google Scholar
  21. Berry, R. J., 1979, Genetical factors in animal population dynamics, in: Population Dynamics (R. M. Anderson, L. R. Taylor, and B. D. Turner, eds.), pp. 53–80, Blackwell, Oxford.Google Scholar
  22. Berry, R. J., 1981, Population dynamics of the house mouse, Symp. Zoo]. Soc. Lond. 47:395.Google Scholar
  23. Biggar, R. J., Woodall, J. P., Walter, P. D., and Haughie, G. E., 1975, Lymphocytic choriomeningitis outbreak associated with pet hamsters: Fifty-seven cases from New York state, J AMA 232:494.Google Scholar
  24. Biggar, R. J., Deibel, R., and Woodall, J. P., 1976, Implications, monitoring, and control of accidental transmission of lymphocytic choriomeningitis virus within hamster tumor cell lines, Cancer Res. 36:537.Google Scholar
  25. Blumenthal, W., Ackermann, R., and Scheid, W., 1968, Durchseuchung mit dem virus der lymphozytaren choriomeningitis in einem Endemiegebiet, Dtsch. Med. Wochenschr. 93:944.PubMedCrossRefGoogle Scholar
  26. Briggiler, A. M., Enria, D. A., Feuillade, M. R., and Maiztegui, J. I., 1987a, I. Contagio interhumano e infeccion clinica con virus Junin en matrimonios residentes del area endemica de fiebre hemorragica Argentina, in: Resumenes de las comunicaciones de la XXXII Reunion Cientifica de la Sociedad Argentina de Investigacion Clinica, Nov. 15–19, Mar del Plata, Argentina (abstract Nx 1), Medicina (Buenos Aires) 47:565.Google Scholar
  27. Briggiler, A. M., Enria, D. A., Feuillade, M. R., and Maiztegui, J. I., 1987b, 1. Contagio interhumano e infeccion inaparente por virus Junin en matrimonios residentes del area endemica de fiebre hemorragica Argentina, in: Resumenes de las comunicaciones de la XXXII Reunion Cientifica de la Sociedad Argentina de Investigacion Clinica, Nov. 15–19, Mar del Plata, Argentina (abstract Nx2), Medicina (Buenos Aires) 47:565.Google Scholar
  28. Buchmeier, M. J., 1983, Antigenic and structural studies on glycoproteins of lymphocytic choriomeningitis virus, in: Negative Strand Viruses (R. Compans and D. H. Bishop, eds.), Elsevier North-Holland, New York.Google Scholar
  29. Buchmeier, M. J., Lewicki, H. A., Tomori, O., and Oldstone, M. B. A., 1981, Monoclonal antibodies to lymphocytic choriomeningitis and Pichinde viruses: Generation, characterization and cross-reactivity with other arenaviruses, Virology 113:7.CrossRefGoogle Scholar
  30. Bush, M., Kravetz, F. O., Perich, R. E., and Zuleta, G. A., 1984, Propuesta para un control ecologico de la fiebre hemorrahica Argentina a traves del manejo del habitat, Medicina (Buenos Aires) 44:34.Google Scholar
  31. Byrne J. A., Ahmed, R., and Oldstone, M. B. A., 1984, Biology of cloned cytotoxic T lymphocytes for lymphocytic choriomeningitis virus. 1. Generation and recognition of virus strains and H-26 mutants, J. Immunol. 133:433.PubMedGoogle Scholar
  32. Callahan, R., and Todaro, G., 1978, Four major endogenous retrovirus classes each genetically transmitted in various species of Mus in: The Origins of Inbred Mice (H. C. Morse, III, ed.), pp. 689–713, Academic Press, New York.CrossRefGoogle Scholar
  33. Cameron, G. N., and Spencer, S. R., 1981, Sigmodon hispidus, in: Mammalian Species (D. F. Williams and T. E. Lawlor, eds.), No. 158, pp. 1–9, American Society of Mammalogists, Lawrence, KS.Google Scholar
  34. Carballal, G., Videla, C. M., Dulout, F., Cossio, P. M., Acuna, A. M., and Bianchi, N. O., 1986, Experimental infection of Akodon molinae (Rodentia, Cricetidae) with Junin virus, J. Med. Virol. 19:47.PubMedCrossRefGoogle Scholar
  35. Carballal, G., Videla, C. M., and Merani, M. S., 1988, Epidemiology of Argentine hemorrhagic fever, Eur. J. Epidemiol. 4:259.PubMedCrossRefGoogle Scholar
  36. Carey, D. E., Kemp, G. E., White, H. A., Pinneo, L., Addy, R. F., Fom, A. L. M. O., Stroh, G., Casals, J., and Henderson, B. E., 1972, Lassa fever: epidemiological aspects of the 1970 epidemic, Jos, Nigeria, Trans. Roy. Soc. Trop. Med. Hyg. 66:402.CrossRefGoogle Scholar
  37. Cerny, A., Sutter, S., Bazin, H., Hengartner, H., and Zinkernagel, R. M., 1988, Clearance of lymphocytic choriomeningitis virus in antibody-and B-cell-deprived mice, J. Virol. 62:1803.PubMedGoogle Scholar
  38. Childs, J. E., Korch, G. W., Smith, G. A., Terry, A. D., and LeDuc, J. W., 1985, Geographical distribution and age related prevalence of antibody to Hantaan-like virus in rat populations of Baltimore, Maryland, USA, Am. J. Trop. Med. Hyg. 34:385.PubMedGoogle Scholar
  39. Childs J. E., Glass, G. E., Korch, G. W., and LeDuc, J. W., 1987, Prospective seroepidemiology of hantaviruses and population dynamics of small mammal communities of Baltimore, Maryland, U. S. A., Am. J. Trop. Med. Hyg. 37:648.PubMedGoogle Scholar
  40. Childs J. E., Glass, G. E., Korch, G. W., and LeDuc, J. W., 1989, Effects of hantaviral infection on survival, growth, and fertility in wild rat (Rawls norvegicus) populations of Baltimore, Maryland, J. Wildlife Dis. 25:469.Google Scholar
  41. Childs, J. E., Glass, G. E., Korch, G. W., Ksiazek, T. G., and Leduc, J. W., 1991a, Lymphocytic choriomeningitis virus infection and house mouse (Mus musculus) distribution in urban Baltimore, Am. J. Trop. Med. Hyg. 46:390.Google Scholar
  42. Childs, J. E., Glass, G. E., and LeDuc, J. W., 1991b, Rodent sightings and contacts in an inner-city population of Baltimore, Maryland, USA, Bull. Soc. Vect. Ecol. 16:245.Google Scholar
  43. Childs, J. E., Glass, G. E., Ksiazek, T. G., Rossi, C. A., Barrera Oro, J. G., and Leduc, J. W., 1991c, Human-rodent contact and infection with Lymphocytic choriomeningitis and Seoul viruses in an inner-city population, Am. J. Trop. Med. Hyg. 44:117.Google Scholar
  44. Cockrum, E. L., 1948, The distribution of the hispid cotton rat in Kansas, Trans. Kansas Acad. Sci. 51:306.CrossRefGoogle Scholar
  45. Coetzee, C. G., 1975, The biology, behaviour, and ecology of Mastomys natalensis in southern Africa, Bull. WHO 52:637.PubMedGoogle Scholar
  46. Cole, G. A., and Nathanson, N., 1974, Lymphocytic choriomeningitis, Progr. Med. Virol. 18:94.Google Scholar
  47. Coulombie, F. C., Damonte, E. G., and Coto, C. E., 1984, Influencia de la celula huesped en las reactions de neutralization cruzada entre virus Junin y Tacaribe, Rev. Argent. Microbiol. 16:159.PubMedGoogle Scholar
  48. Crespo, J. A., 1966, Ecologia de una communidad de roedores silvestres en al Partido de Rojas, Provincia de Buenos Aires, Rev. Mus. Argent. Cien. Nal. Inst. Nac. Invest. Cien. Nat. Ecol. 1:79.Google Scholar
  49. Dalby, P. L., 1975, Biology of pampa rodents, Belcarce area, Argentina, Pub. Mus. Mich. State Biol. Ser. 5:149.Google Scholar
  50. Danes, L., Benda, R., and Fuchsova, M., 1963, Experimental inhalation infection with the lymphocytic choriomeningitis virus (WE strain) of the monkeys of the Macacus cynomolgus and Macacus rhesus species, Bratisl. lek. listy 43:21.Google Scholar
  51. DeFries, J. C., and McClearn, G. E., 1972, Behavioral genetics and the fine structure of mouse populations: A study in microevolution, in: Evolutionary Biology, Vol. 5 (T. Dobzhansky, M. K. Hecht, and W. C. Steere, eds.), pp. 279–291, New York.Google Scholar
  52. Deibel, R., Woodall, J. P., Decher, W. J., and Schryver, G. D., 1975, Lymphocytic choriomeningitis virus in man: Serological evidence of association with pet hamsters, PIMA 232:501.Google Scholar
  53. De Martini, J. C., Green, D. E., and Monath, T. P., 1975, Lassa virus infection in Mastomys natalensis in Sierra Leone, Bull. WHO 52:651.Google Scholar
  54. De Villafafie, G., 1981, Reproduccion y crecimiento de Calomys musculinus murillus (Thomas, 1916), Hist. Nat. (Argent.) 1:237.Google Scholar
  55. De Villafafie, G., and Bonaventure, S. M., 1987, Ecological studies in crop fields of the endemic area of Argentine hemorrhagic fever: Calomys musculinus movements in relation to habitat and abundance, Mammalia 51:233.Google Scholar
  56. De Villafafie, G., Kravetz, F. O., Donadio, O., Pecich, R. E., Kencher, L., Torres, M. P., and Fernandez, N., 1977, Dinamica de las communidades de roedores en agro-ecosistemas Pampasicos, Medicina (Buenos Aires) 37:128.Google Scholar
  57. Douglas G. R., Wiebenga, N. H., and Couch, R. B., 1965, Bolivian hemorrhagic fever probably transmitted by personal contact, Am. J. Epidemiol. 83:85.Google Scholar
  58. Downs, W. G., Anderson, C. R., Spence, L., Aitken, T. H. G., and Greenhall, A. H., 1963, Tacaribe virus, a new agent isolated from Artibeus bats and mosquitoes in Trinidad, West Indes, Am. J. Trop. Med. Hyg. 12:640.PubMedGoogle Scholar
  59. Dutko, F. J., and Oldstone, M. B. A., 1983, Genomic and biological variarion among commonly used lymphocytic choriomeningitis virus strains, J. Gen. Virol. 64:1689.PubMedCrossRefGoogle Scholar
  60. Eisenberg, J. F., 1981, The Mammalian Radiations: An Analysis in Trends in Evolution, Adaptation and Behavior, University of Chicago Press, Chicago.Google Scholar
  61. Ellas, D. J., and Fall, M. W., 1988, The rodent problem in latin America, in: Rodent Pest Management (I. Prakash, ed.), pp. 13–28, CRC Press, Boca Raton, FL.Google Scholar
  62. Elton, C., 1942, “Voles, Mice and Lemmings,” Oxford University Press, Oxford. Emmons, R. W., Yescott, R. E., and Dondero, D. V., 1978, A survey for lymphocytic choriomeningitis virus in the San Francisco Bay area, Calif. Vector Views 25:21.Google Scholar
  63. Fiedler, L. A., 1988, Rodent problems in Africa, in: Rodent Pest Management (I. Prakash, ed.), pp. 35–66, CRC Press, Boca Raton, FL.Google Scholar
  64. Frame, J. D., 1975, Surveillance of Lassa fever in missionaries stationed in West Africa, Bull, WHO 52:593.Google Scholar
  65. Frame, J. D., 1989, Clinical features of Lassa fever in Liberia, Rev. Infect. Dis. 11:S783.PubMedCrossRefGoogle Scholar
  66. Frame, J. D., Baldwin, Jr., J. M., Gocke, D. J., and Troup, J., 1970, Lassa fever: A new virus disease of man from west Africa. I. Clinical description and pathological findings, Am. J. Trop. Med. Hyg. 19:630.Google Scholar
  67. Fraser, D. W., Campbell, C. C., Monath, T. P., Goff, P. A., and Gregg, M. B., 1974, Lassa fever in the eastern province of Sierra Leone, 1970–1972. I. Epidemiological studies, Am. J. Trop. Med. Hyg. 23:1131.PubMedGoogle Scholar
  68. French, N. R., Stoddart, D. M., and Bobek, B., 1975, Patterns of demography in small mammals, in: Small Mammals: Their Productivity and Population Dynamics (F. B. Golley, K. Petrusewicz, and L. Ryszkowski, eds.), pp. 73–102, Cambridge University Press, Cambridge.Google Scholar
  69. Gardenal, C. N., and Blanco, A., 1985, Polimorfismo enzimatico en Calomys muscilinus: Nueva estimacion, Mendeliana 7:3.Google Scholar
  70. Gardenal, C. N., dejuarez, N. T., Gutierrez, M., and Sabattini, M. S., 1977a, Contribucion al conocimiento de tres especies del genero Calomys (Rodentia, Cricetidae). I. Estudios citogeneticos, Physis, Sec. C 36:169.Google Scholar
  71. Gardenal, C. N., Blanco, A., and Sabattini, M. S., 1977b, Contribucion al conocimiento de tres especies del genero Calomys (Rodentia, Cricetidae). II. Analisis electroforetico de formas multiples de enzimas como criterio de diferenciacion taxonomica, Physis Sec. C 36:179.Google Scholar
  72. Gardenal, C. N., Sabattini, M. S., and Blanco, A., 1980, Enzyme polymorphism in a population of Calomys musculinus (Rodentia: Cricetidae), Biochem. Genet. 18:563.PubMedCrossRefGoogle Scholar
  73. Gardenal, C. N., Sabattini, M. S., and Blanco, A., 1986, Geographic patterns of allele frequencies in Calomys musculinus reservoir-host of Junin virus, Medicina (Buenos Aires) 46:73.Google Scholar
  74. Gardner, M. B., Henderson, B. E., Estes, J. D., Menck, H., Parker, J. C., and Huebner, R. J., 1973, Unusually high incidence of spontaneous lymphomas in wild house mice, J. Natl. Cancer Inst. 50:1571.Google Scholar
  75. Gardner, M. B., Resheed, S., Pal, B. K., Estes, J. D., and O’Brien, S. J., 1980, Akvr-I,a dominant murine leukemia virus restriction gene, is polymorphic in leukemia-prone wild mice, Proc. Natl. Acad. Sci. USA 77:531.PubMedCrossRefGoogle Scholar
  76. Gonzalez, J. P., McCormick, J. B., Saluzzo, J. F., Herve, J. P., Georges, A. J., and Johnson, K. M., 1983, An arenavirus isolated from wild-caught rodents (Praomys species) in the Central African Republic, Intervirology 19:105.PubMedCrossRefGoogle Scholar
  77. Gonzalez, J. P., Georges, A. J., Kiley, M. P., Meunier, D. M. Y., Peters, C. J., and McCormick, J. B., 1986, Evolutionary biology of a Lassa virus complex, Med. Microbiol. lmmunol. 175:157.CrossRefGoogle Scholar
  78. Gordon, D. H., 1984, Evolutionary genetics of the Praomys (mastomys) natalensis species complex (Rodentia: Muridae), unpublished Ph.D. thesis, University of Witwaterstrand, 193 pp.Google Scholar
  79. Grant, P. R., 1972, Interspecific competition among rodents, Annu. Rev. Ecol. Syst. 3:79.CrossRefGoogle Scholar
  80. Gratz, N., and Arata, A., 1975, Problems associated with the control of rodents in tropical Africa, Bull. WHO 52:697.PubMedGoogle Scholar
  81. Green, C. A., Keogh, H., Gordon, D. H., Pinto, M., and Haitwig, E. K., 1980, The distribution, identification, and naming of the Mastomys natalensis species complex in southern Africa (Rodentia: Muridae), J. Zool. (Lond.) 192:17.CrossRefGoogle Scholar
  82. Gregg, M. B., 1975, Recent outbreaks of lymphocytic choriomeningitis in the United States of America Bull. WHO 52:549.PubMedGoogle Scholar
  83. Hall, E. R., and Kelson, K. R., 1959, The Mammals of North America,p. 671, Ronald Press, New York.Google Scholar
  84. Hamilton, G. D., and Bronson, F. H., 1985, Food restriction and reproductive development in wild house mice, Biol. Reprod. 32:773.PubMedCrossRefGoogle Scholar
  85. Happold, D. C. D., 1987, The Mammals of Nigeria, Oxford Science Publications, Clarendon Press, Oxford.Google Scholar
  86. Hattis, R. P., Halstead, S. B., Herrmann, K. L., and Witte, J. J., 1973, Rubella in an immunized island population, J AMA 223:1019.PubMedCrossRefGoogle Scholar
  87. Hinman, A R, Fraser, D. W., Douglas, R. G., et al. 1975, Outbreak of lymphocytic choriomeningitis virus infections in medical center personnel, Am. J. Epidemiol. 101:103.PubMedGoogle Scholar
  88. Hirsch, M. S., Moellering, Jr., R. C., Pope, H. G., and Poskanzer, D. C., 1974, Lymphocytic choriomeningitis virus infection traced to a pet hamster, N. Engl. J. Med. 291:610.CrossRefGoogle Scholar
  89. Horn, H. S., 1981, Sociobiology, in: Theoretical Ecology: Principles and Applications, 2nd ed. (R. M. May, ed.), pp. 272–294, Blackwell Scientific Publications, Boston.Google Scholar
  90. Hotchin, J., 1962, The biology of lymphocytic choriomeningitis infection: Virus-induced immune disease, Cold Spring Harbor Symp. Quant. Biol. 28:479.CrossRefGoogle Scholar
  91. Hotchin, J., and Collins, D. N., 1964, Glomerulonephritis and late onset disease of mice following neonatal virus infection, Nature 203:1357.PubMedCrossRefGoogle Scholar
  92. Hotchin, J., and Weigand, H., 1961, Studies of lymphocytic choriomeningitis in mice. 1. The relationship between age at inoculation and outcome of infection, J. Immunol. 86:392.PubMedGoogle Scholar
  93. Howard, C. R., 1986, Arenaviruses, Perspect. Med. Viro J. 2:1.CrossRefGoogle Scholar
  94. Jahrling, P. B., and Peters, C. J., 1986, Serology and virulence diversity among Old-World arenaviruses, and the relevance to vaccine development, Med. Microbiol. Immunol. 175:165.PubMedCrossRefGoogle Scholar
  95. Jennings, W. L., Lewis, A. L., Sethers, G. E., Pierce, L. V., and Bond, J. 0., 1970, Tamiami virus in the Tampa Bay area, Am. J Trop. Med. Hyg. 19:527.PubMedGoogle Scholar
  96. Johnson, K. M., 1965, Epidemiology of Machupo virus infection. III. Significance of virological observations in man and animals, Am. J. Trop. Med. Hyg. 14:816.PubMedGoogle Scholar
  97. Johnson, K. M., 1975, Status of arenavirus vaccines and their application, Bull. WHO 52:729.PubMedGoogle Scholar
  98. Johnson, K. M., 1981, Arenaviruses: Diagnosis of infection in wild rodents, in: Comparative Diagnosis of Viral Diseases (E. Kurstak and C. Kurstak, eds.), pp. 511, Academic Press, New York.Google Scholar
  99. Johnson, K. M., 1985, Arenaviruses, in: Virology (B. N. Fields and D. M. Knipe, eds.), pp. 1033–1053, Raven Press, New York.Google Scholar
  100. Johnson, K. M., Mackenzie, R. B., Webb, P. A., and Kuns, M. L., 1965, Chronic infection of rodents by Machupo virus, Science, 150:1618.PubMedCrossRefGoogle Scholar
  101. Johnson, K. M., Halstead, S. B., and Cohen, S. N., 1967, Hemorrhagic fevers of Southeast Asia and South America: A comparative appraisal, Progr. Med. Virol. 9:105.Google Scholar
  102. Johnson, K. M., Webb, P. A., and Justines, G., 1973, Biology of Tacaribe-complex viruses, in: Lymphocytic Choriomeningitis Virus and Other Arenaviruses (F LehmannGrube, ed.), pp. 241–258, Springer-Verlag, New York.CrossRefGoogle Scholar
  103. Johnson, K. M., Taylor, P., Elliott, L. H., and Tomori, O., 1981, Recovery of a Lassa-related arenavirus in Zimbabwe, Am. J. Trop. Med. Hyg. 30:1291.PubMedGoogle Scholar
  104. Johnson, K. M., McCormick, J. B., Webb, P. A., and Krebs, J. W., 1982, The comparative biology of Old World (Lassa) and New World (Junin-Machupo) arenaviruses, in: International Symposium on Tropical Arboviruses and Haemorrhagic Fevers (F. de. Pinheiro, ed.), pp. 287–294, Academia Brasileira de Ciencias, Rio de Janeiro.Google Scholar
  105. Justines, G., and Johnson, K. M., 1968, Use of oral swabs for detection of Machupo virus infection in rodents, Am. J. Trop. Med. Hyg. 17(5):788.PubMedGoogle Scholar
  106. Justines, G., and Johnson, K. M., 1969, Immune tolerance in Calomys callsous infected with Machupo virus, Nature 222:1090.PubMedCrossRefGoogle Scholar
  107. Justines, G., and Johnson, K. M., 1970, Observations on the laboratory breeding of the cricetine rodent Calomys callosus, Lab. Anim Care 20:57.PubMedGoogle Scholar
  108. Keenlyside, R. A., McCormick, J. B., Webb, P. A., Smith, E., Elliott, L., and Johnson, K. M., 1983, Case-control study of Mastomys natalensis and humans in Lassa virus-infected households in Sierra Leone, Am. J. Trop. Med. Hyg. 32:829.PubMedGoogle Scholar
  109. Kenyon, R. H., Green, D. E., Maiztegui, J. I., and Peters, C. J., 1988, Viral strain-dependent differences in experimental Argentine hemorrhagic fever (Junin virus) infection of guinea pigs, Intervirology 29:133.PubMedGoogle Scholar
  110. Kenyon, R. H., Condie, R. M., Jahrling, P. B., and Peters, C. J., 1990, Protection of guinea pigs against experimental Argentine hemorrhagic fever by purified human-IgG: Importance of elimination of infected cells, Microb. Pathog. 9:219.PubMedCrossRefGoogle Scholar
  111. Klavinskis, L. S., and Oldstone, M. B. A., 1986, Perturbation of endocrine functions during persistent infection of mice with lymphocytic choriomeningitis virus, Med. Microbial. Immun. 175:117.CrossRefGoogle Scholar
  112. Klavinskis, L. S., Whitton, J. L., Joly, E., and Oldstone, M. B. A., 1990, Vaccination and protection from a lethal viral infection: Identification, incorporation, and use of a cytotoxic T lymphocyte glycoprotein epitope, Virology 178:393.PubMedCrossRefGoogle Scholar
  113. Kravetz, F. O., and De Villafaile, G., 1981, Poblaciones de roedores en cultivos de maiz durante las etapas de madurez y rastrojo, Hist. Nat. 1:213.Google Scholar
  114. Kravetz, F. O., Percich, R. E., Zuleta, G. A., Calello, M. A., and Weissenbacher, M. C., 1986, Distribution of Junin virus and its reservoirs: Argentine hemorrhagic fever risk, Interciencia 11:185.Google Scholar
  115. Kuns, M., 1965, Epidemiology of Machupo virus infeqtion. II. Ecological and control studies of hemorrhagic fever, Am. I. Trop. Med. Hyg. 14:813.Google Scholar
  116. Langmuir, A. D., 1980, Changing concepts of acute contagious diseases: A reconsideration of classic epidemiologic theories, Ann. NY Acad. Sci. 353:35.PubMedCrossRefGoogle Scholar
  117. Laurie, E. M. 0., 1946, The reproduction of the house mouse (Mus musculus) living in different environmental conditions, Proc. Roy. Soc. (B) 133:248.CrossRefGoogle Scholar
  118. Lehmann-Grube, F., 1963, Lymphocytic choriomeningitis in the mouse. II. Establishment of carrier colonies, Arch. Virusforsch. 14:353.Google Scholar
  119. Lehmann-Grube, F., 1964, Lymphocytic choriomeningitis in the mouse. I. Growth in the brain, Arch. Ges. Virusforsch. 14:344.PubMedCrossRefGoogle Scholar
  120. Lehmann-Grube, F., 1971, Lymphocytic Choriomeningitis Virus, Virology Monograph 10, Springer-Verlag, Vienna.CrossRefGoogle Scholar
  121. Lehmann-Grube, F., 1984, Portrait of viruses: Arenaviruses, Intervirology 22:121.PubMedCrossRefGoogle Scholar
  122. Leirs, H., Hoofd, G., Verhagen, W., Lloyd, G., Micheals, M., Sabuni, C., Verhagen, R., and van der Groen, G., Antibodies against lassa or a lassa-related virus in rodents in Tanzania (submitted).Google Scholar
  123. Lukashevich, I. S., 1985, Lassa virus lethality for inbred mice, Ann. Soc. Beige Med. Trop. 65:207.Google Scholar
  124. Lund, M., 1988, Rodent problems in Europe, in: Rodent Pest Management (I. Prakash, ed.), pp. 29–34, CRC Press, Boca Raton, FL.Google Scholar
  125. Mackenzie, R. B., 1965, Epidemiology of Machupo virus infection. I. Pattern of human infection, San Joaquin, Bolivia, 1962–1964, Am. J. Trop. Med. Hyg. 14:808.PubMedGoogle Scholar
  126. Maiztegui, J. I., 1975, Clinical and epidemiological patterns of Argentine haemorrhagic fever, Bull. WHO 52:567.PubMedGoogle Scholar
  127. Maiztegui, J. I., Briggiler, A., Enria, D., and Feuillade, M. R., 1986, Progressive extension of the endemic area and changing incidence of Argentine hemorrhagic fever, Med. Microbiol. Immunol. 175:149.PubMedCrossRefGoogle Scholar
  128. Marsh, R. E., 1988, Rodent problems on the North American continent, in: Rodent Pest Management (I. Prakash, ed.), pp. 1–12, CRC Press, Boca Raton, FL.Google Scholar
  129. Marshall, J. T., Jr., 1981, Taxonomy, in: The Mouse in Biomedical Research. Vol. 1. History, Genetics,and Wild Mice (H. L. Foster, J. D. Small, and J. G. Fox, eds.), pp. 17–27, Academic Press, New York.Google Scholar
  130. McCormick, J. B., 1987, Epidemiology and control of lassa fever, in: Arenaviruses: Biology and Immunotherapy (M. B. A. Oldstone, ed.), pp. 69–78, Springer-Verlag, New York.Google Scholar
  131. McCormick, J. B., and Johnson, K. M., 1978, Lassa fever: Historical review and contempraw investigation, in: Ebola Virus Haemorrhagic Fever (S. R. Pattyn, ed.), pp. 279–285, North Holland Biomedical Press, New York.Google Scholar
  132. McCormick, J. B., Webb, P. A., Krebs, J. W., Johnson, K. M., and Smith, E. S., 1987, A prospective study of the epidemiology and ecology of Lassa fever, J. Infect. Dis. 155:437.CrossRefGoogle Scholar
  133. McKee, K. T., Jr., Mahlandt, B. G., Maiztequi, J. I., Eddy, G. A., and Peters, C. J., 1985, Experimental Argentine hemorrhagic fever in rhesus macaques, virus-strain dependent clinical response, J. Infect. Dis. 152:218.CrossRefGoogle Scholar
  134. Medeot, S. I., Contigiani, M. S., Diaz, F., and Sabattini, M. S., 1992, Experimental neuroinvasiveness of wild and laboratory Junin virus strains, Res. Virol. 143:259.PubMedCrossRefGoogle Scholar
  135. Medeot, S. I., Contigiani, M. S., Brandan, E. R., and Sabattini, M. S., 1990, Neurovirulence of wild and laboratory Junin virus strains in animal hosts, J. Med. Virol. 32:171–182.PubMedCrossRefGoogle Scholar
  136. Mello, D. A., 1978, Biology of Calomys callosus (Rengger, 1830) under laboratory conditions (Rodentia, Cricetinae), Rev. Bras. Biol. 38:807.Google Scholar
  137. Mercado, R. R., 1975, Rodent control programmes in areas affected by Bolivian haemorrhagic fever, Bull. WHO 52:691.PubMedGoogle Scholar
  138. Meyer, H. M., Jr., Johnson, R. T., Crawford, I. P., et al. 1960, Central nervous system syndromes of “viral” etiology, Am. J. Med. 29:334.PubMedCrossRefGoogle Scholar
  139. Mills, T. N., Ellis, B. A., McKee, Jr., K. T., Ksiazek, T. G., Barrera Oro, J. G., Maiztegui, J. I., Calderon, G. E., Peters, C. J., and Childs, J. E., 1991a, Junin virus activity in rodents from endemic and nonendemic loci in central Argentina, Am. J. Trop. Med. Hyg. 44:589.Google Scholar
  140. Mills, J. N., Ellis, B. A., McKee, Jr., K., Maiztegui, J. I., and Childs, J. E., 1991b, Habitat associations and relative densities of rodent populations in cultivated areas of central Argentina, J. Mammal. 72:470.CrossRefGoogle Scholar
  141. Mills, J. N., Ellis, B. A., McKee, Jr., K. T., Maiztegui, J. I., and Childs, J. E., 1992, Reproductive characteristics of the rodent cormnunity in cultivated areas of central Argentina, J. Mammal 73:515.CrossRefGoogle Scholar
  142. Mims, C. A., 1966, Immunofluorescence study of the carrier state and mechanism of vertical transmission in lymphocytic choriomeningitis virus infection in mice, J. Pathol. Bacteriol. 91:395.PubMedCrossRefGoogle Scholar
  143. Mims, C. A., 1969, Effect on the fetus of maternal infection with lymphocytic choriomeningitis (LCM) virus, J. Infect Dis. 120:582.PubMedCrossRefGoogle Scholar
  144. Mims, C A, 1970, observations on mice infected congenitally or neonatally with lymphocytic choriomeningitis (LCM) virus, Arch. ges. Virus 30:67.CrossRefGoogle Scholar
  145. Mims, C. A., 1973, Acute and chronic LCM disease, in: Lymphocytic Choriomeningitis Virus and Other Arenaviruses (F. Lehmann-Grube, ed.), pp. 167–173, SpringerVerlag, New York.CrossRefGoogle Scholar
  146. Mims, C. A., 1975, The meaning of persistent infections in nature, Bull. WHO 52:747.PubMedGoogle Scholar
  147. Monath, T. P., 1975, Lassa fever: Review of epidemiology and epizootiology, Bull. WHO 52:577.PubMedGoogle Scholar
  148. Monath, T. P., Mertens, P. E., Patton, R., Moser, C. R., Baum, J. J., Pinneo, L., Gary, G. W., and Kissling, R. E., 1973, A hospital epidemic of Lassa fever in Zorzor, Liberia, March-April, 1972, Am. J. Trop. Med. Hyg. 22:773.PubMedGoogle Scholar
  149. Monath, T. P., Newhouse, V. F., Kemp, G. E., Setzer, H. W., and Cacciapuoti, A., 1974, Lassa virus isolations from Mastomys natalensis rodents during an epidemic in Sierra Leone, Science, 185:263.PubMedCrossRefGoogle Scholar
  150. Montali, R. J., Ramsay, E. C., Stephensen, C. B., Worley, M., Davis, J. A., and Holmes, K. V., 1989, A new transmissible viral hepatitis of marmosets and tamarins, J. Infect. Dis. 160:759.PubMedCrossRefGoogle Scholar
  151. Murphy, F. A., and Walker, D. H., 1978, Arenaviruses: Persistent infection and viral survival in reservoir hosts, in: Viruses and Environment (E. Kurstak and K. Maramorosch, eds.), pp. 155–180, Academic Press, New York.Google Scholar
  152. Murphy, F. A., Winn, W. C., Walker, D. H., Flemister, M. R., and Witfield, S. G., 1976, Early lympho reticular viral tropism and antigen persistence. Tamiami virus infection in the cotton rat, Lab. Invest. 43:125.Google Scholar
  153. Myers, J. H., 1974, The absence of t alleles in feral populations of house mice, Evolution 27:702.CrossRefGoogle Scholar
  154. O’Connell, M. A., 1982, Population biology of North and South American grassland rodents: A comparative review, in: Mammalian Biology in South America (M. A. Mares and H. H. Genoways, eds.), pp. 167–185, Pymamuning Laboratory, Linesville, PA.Google Scholar
  155. Oehen, S., Hengartner, H., and Zinkernagel, R. M., 1991, Vaccination for disease, Science 251:195.PubMedCrossRefGoogle Scholar
  156. Oldstone, M. B. A., and Dixon, F. J., 1967, Lymphocytic choriomeningitis: Production of antibody by “tolerant” infected mice, Science 158:1193.PubMedCrossRefGoogle Scholar
  157. Oldstone, M. B. A., and Dixon, F. J., 1968, Susceptibility of different mouse strains to lymphocytic choriomeningitis virus, J. Immunol. 100:355.PubMedGoogle Scholar
  158. Oldstone, M. B. A., Tishon, T., and Buchmeier, M. J., 1983, Virus-immune complex disease: Genetic control of clq binding complexes in the circulation of mice persistently infected with lymphocytic choriomeningitis virus, J. Immunol. 130:912.PubMedGoogle Scholar
  159. Oldstone, M. B. A., Rodriguez, M., Daughaday, W. H., and Lampert, P. W., 1984, Viral perturbation of endocrine function: Disordered cell function leads to disturbed homeostasis and disease, Nature 307:278.PubMedCrossRefGoogle Scholar
  160. Oldstone, M. B. A., Ahmed, R., Byrne, J., Buchmeier, M. J., Riviera, Y., and Southern, P., 1985, Virus and immune responses: Lymphocytic choriomeningitis virus as a prototype model of viral pathogenesis, Br. Med. Bull. 44:70.Google Scholar
  161. Parker, J. C., Igel, H. J., Reynolds, R. K., Lewis, Jr., A. M., and Rowe, W. P., 1976, Lymphocytic choriomeningitis virus infection in fetal, newborn, and young adult syrian hamsters (Mesocricetus auratus), Infect. Immun. 13:967.PubMedGoogle Scholar
  162. Peralta, L. A. M., Cossio, P. M., Sabattini, M., Maiztegui, J. I., Arana, R. M., and Laguens, R. P., 1979a, Ultrastructural, immunohistochemical, and virological studies in organs of Calomys musculinus infected with Junin virus by natural routes, Medicina (Buenos Aires) 39:213.Google Scholar
  163. Peralta, L. A. M., Laguens, R. P., Cossio, P. M., Sabattini, M. S., Maiztegui, J. I., and Arana, R. M., 1979b, Presence of viral particles in the salivary gland of Calomys musculinus infected with Junin virus by a natural route, Intervirology 11:111.CrossRefGoogle Scholar
  164. Percich, 1988, Habitat selection, social structure, density and predation in populations of Calomys rodents in the pampa region of Argentina and the effects of agricultural practices on them, Mammalia 52:339.Google Scholar
  165. Perrigo, G., and Bronson, F. H., 1983, Foraging effort, food intake, fat deposition and puberty in female mice, Biol. Reprod. 29:455.PubMedCrossRefGoogle Scholar
  166. Peters, C. J., 1991, Arenaviruses, in: Textbook of Human Virology, 2nd ed. (R. Belshe, ed.), Chapter 20, pp. 541–570, Mosby Year Book, St. Louis.Google Scholar
  167. Peters, C. J., Webb, P. A., and Johnson, K. M., 1973, Measurement of antibodies to Machupo virus by the indirect fluorescent technique (37060), Proc. Soc. Exp. Biol. Med. 142:526.PubMedGoogle Scholar
  168. Peters, C. J., Kuehne, R. W., Mercado, R. R., et al., 1974, Hemorrhagic fever in Cochabamba, Bolivia, 1971, Am. J. Epidemiol. 99:425.PubMedGoogle Scholar
  169. Peters, C. J., Jahrling, P. B., Liu, C. T., Kenyon, R. H., McKee, Jr., K. T., and Oro, J. G. B., 1987, Experimental studies of arenaviral hemorrhagic fevers, Curr. Top. Microbial. Immunol. 134:5.CrossRefGoogle Scholar
  170. Peters, C. J., Johnson, E. D., and McKee, K. T., 1991, Filoviruses and management of viral hemorrhagic fevers, in: Textbook of Human Virology, 2nd ed. (R. Belshe, ed.), Chapter 26, pp. 699–712, Mosby Year Book, St. Louis.Google Scholar
  171. Petter, F., 1966, Origine des Murides Plan cricetin et murin, Mammalia 30:202.Google Scholar
  172. Pevear, D. C., and Pfau, C. J., 1989, Lymphocytic choriomeningitis virus, in: Clinical and Molecular Aspects of Neurotropic Virus Infection (D. H. Gilden and H. L. Lipton, eds.), pp. 141–172, Kluwer Academic Publishers, New York.CrossRefGoogle Scholar
  173. Pinheiro, F. P., Woodall, J. P., Travassos da Rosa, A. P. A., and Travassos da Rosa, J. F., 1977, Studies on arenaviruses in Brazil, Medicina (Buenos Aires) 37:175.Google Scholar
  174. Pirosky, I., Zuccarini, J., Molinelli, E. A., Di Pietro, A., Barrera Oro, J. G., Martini, P., and Copello, A. R., 1959, Virosis hemorragica del noroeste bonaerense, in: Virosis Hemorragica del Noroeste Bonaerense, Republica Argentina, Poder Ejecutivo Nacional, Ministerio de Asistencia Social y Salud Publica, Insituto Nacional de Microbiologia, Buenos Aires.Google Scholar
  175. Ramsay, E. C., Montali, R. J., Worley, M., Stephensen, C. B., and Holmes, K. V., 1989, Callithrichid hepatitis: Epizootiology of a fatal hepatitis in zoo tamarins and marmosets, J. Zoo Wildlife Med. 20:178.Google Scholar
  176. Reig, O. A., 1987, An assessment of the systematics and evolution of the Akodontini, with the description of new fossil species of Akodon (Cricetidae: Sigmodontinae), in: Studies in Neotropical Mammalogy: Essays in Honor of Philip Hershkovitz (B. D. Patterson and R. M. Timm, eds.), pp. 347–400, Field Museum of Natural History, Chicago.Google Scholar
  177. Richards, C. G. J., 1988, Large-scale evaluation of rodent control technologies, in: Rodent Pest Management (I. Prakash, ed.), pp. 269–284, CRC Press, Boca Raton, FL.Google Scholar
  178. Riviere, Y., Gresser, I., Guillon, J. C., Bandu, M. T., Ronco, P., Morel-Moroger, L., and, Verroust, P., 1980, Severity of lymphocytic choriomeningitis virus disease in different strains of suckling mice correlates with increasing amounts of endogenous interferon, J. Exp. Med. 152:633.PubMedCrossRefGoogle Scholar
  179. Robbins, C. B., Krebs, Jr., J. W., and Johnson, K. M., 1983, Mastomys (Rodentia: Muridae) species distinguished by hemoglobin pattern differences, Am. J. Trop. Med. Hyg. 32:624.PubMedGoogle Scholar
  180. Rosevear, D. R., 1969, The Rodents of West Africa, 604 pp, British Museum, London.Google Scholar
  181. Rowe, W. P., Pugh, W. E., Webb, P. A., et al., 1970, Serological relationship of the Tacaribe complex of viruses to lymphocytic choriomeningitis virus, J. Virol. 5:289.PubMedGoogle Scholar
  182. Sabattini, M. S., and Contigiani, M. S., 1982, Ecological and biological factors influencing the maintenance of arenaviruses in nature, with special reference to the agent of Argentinean haemorrhagic fever (AHF), in: International Symposium on Tropical Arboviruses and Haemorrhagic Fevers (F. deP. Pinheiro, ed.), pp. 251–262, Academia Brasileira de Ciencias, Rio de Janeiro.Google Scholar
  183. Sabattini, M. S., Barrera Oro, J. G., Maiztegui, J. I., Fernandez, D., Contigiani, M. S., and Diaz, G. E., 1970, Aislamiento de un Arenavirus relacionado con el de la coriomeningitis linfocitica (LCM) a partir de un Mus musculus capturado en zona endemica de fiebre hemorragica Argentina (FHA), Rev. Soc. Argent. Microbial. 11:182.Google Scholar
  184. Sabattini, M. S., Gonzalez de Rios, L. E., Diaz, G., and Vega, V. R., 1977, Infeccion natural y experimental de roedores con virus Junin, Medicina (Buenos Aires) 37:149.Google Scholar
  185. Sage, R. D., 1981, Wild mice, in: The Mouse in Biomedical Research. Vol. 1. History, Genetics, and Wild Mice (H. L. Foster, J. D. Small, and J. G. Fox, eds.), pp. 40–90, Academic Press, New York.Google Scholar
  186. Salas, R., de Manzione, N., Tesh, R. B., Rico-Hesse, R., Shope, R. E., Betancourt, A., Godoy, O., Bruzual, R., Pacheco, M. E., Ramos, B., Taibo, M. E., Tamayo, J. G., Jaimes, E., Vasquez, C., Araoz, F., and Querales, J., 1991, Venezuelan haemorrhagic fever—A severe multisystem illness caused by a newly recognized arenavirus, Lancet 338:1033.PubMedCrossRefGoogle Scholar
  187. Salvato, M. S., and Shimomaye, E. M., 1989, The completed sequence of LCMV reveals a new gene encoding a zinc-finger protein, Virology 173:1.PubMedCrossRefGoogle Scholar
  188. Salvato, M. S., Shimomaye, E. M., Southern, P. J., and Oldstone, M. B. A., 1988, Virus, lymphocyte interactions. IV. Molecular characteristics of LCMV Armstrong (CTL+) small genomic segment and that of its variant, Clone 13 (CTLI Virology 164:517–522.PubMedCrossRefGoogle Scholar
  189. Sauer, J. R., and Slade, N. A., 1986, Size-dependent population dynamics of Microtus ochrogaster, Am. Nat. 127:902.CrossRefGoogle Scholar
  190. Sauer, J. R., and Slade, N. A., 1987, Size-based demography of vertebrates, Annu. Rev. Ecol. Syst. 18:71.CrossRefGoogle Scholar
  191. Seamer, J., 1964, The growth, reproduction and mortality of mice made immunologically tolerant to lymphocytic choriomeningitis virus by congenital infection, Arch. ges. Virus. 15:169.CrossRefGoogle Scholar
  192. Selander, R. K., and Kaufman, D. W., 1973, Genic variabilty and strategies of adaptation in animals, Proc. Natl. Acad. Sci. USA 70:1875.PubMedCrossRefGoogle Scholar
  193. Shwartzman, G., 1946, Alterations in pathogenesis of experimental lymphocytic choriomeningitis caused by prepassage of the virus through heterologous host, J. Immunol. 54:293.PubMedGoogle Scholar
  194. Skinner, H. H., and Knight, E. H., 1973, Natural routes for post-natal transmission of murine lymphocytic choriomeningitis, Lab. Anim. 7:171.PubMedCrossRefGoogle Scholar
  195. Skinner, H. H., and Knight, E. H., 1974, Factors influencing prenatal infection of mice with lymphocytic choriomeningitis virus, Arch. ges. Virus. 46:1.CrossRefGoogle Scholar
  196. Skinner, H. H., Knight, E. H., and Buckley, L. S., 1976, The hamster as a secondary reservoir host of lymphocytic choriomeningitis virus, J. Hyg. (Camb.) 76:299.CrossRefGoogle Scholar
  197. Skinner, H. H., Knight, E. H., and Grove, R., 1977, Murine lymphocytic choriomeningitis: The history of a natural cross-infection from wild to laboratory mice, Lab. Anim. 11:219.PubMedCrossRefGoogle Scholar
  198. Smithard, E. H. R., and Macrae, A. D., 1951, Lymphocytic choriomeningitis associated human and mouse infection, Br. Med. J. 51:1299.Google Scholar
  199. Southern, H. N., 1979, The stability and instability of small mammal populations, in: Ecology of Small Mammals (D. M. Stoddart, ed.), pp. 103–134, Chapman and Hall, London.CrossRefGoogle Scholar
  200. Southwick, C. H., 1966, Reproduction, mortality and growth of murid rodent populations, in: Indian Rodent Symposium (D. W. Parrick, ed.), pp. 152–176, Johns Hopkins University and USAID, Calcutta.Google Scholar
  201. Stephensen, C. B., Jacob, J. R., Montali, R. J., Holmes, K. V., Muchmore, E., Compans, R. W., Arms, E. D., Buchmeier, M. J., and Lanford, R. E., 1991, Isolation of an arena-virus from a marmoset with callitrichid hepatitis and its serologic association with disease, J. Virol. 65:3995.PubMedGoogle Scholar
  202. Stephenson, E. H., Larson, E. W., and Dominik, J. W., 1984, Effect of environmental factors on aerosol-induced Lassa virus infection, J. Med. Virol. 14:295.PubMedCrossRefGoogle Scholar
  203. Swanepoel, R., Leman, P. A., Shepherd, A. J., Shepherd, S. P., Kiley, M. P., and McCormick, J. B., 1985, Identification of Ippy virus as a Lassa-fever-related virus, Lancet 1:639.PubMedCrossRefGoogle Scholar
  204. Tauraso, N., and Shelokov, A., 1965, Protection against Junin virus by immunization with live Tacaribe virus, Proc. Soc. Exp. Biol. Med. 119:608.PubMedGoogle Scholar
  205. Tosolini, F. A., and Mims, C. A., 1971, Effect of murine strain and viral strain on the pathogenesis of lymphocytic-choriomeningitis infection and a study of footpad responses; J. Infect. Dis. 123:134.PubMedCrossRefGoogle Scholar
  206. Trapido, H., and Sanmartin, C., 1971, Pichinde virus: A new virus of the Tacaribe group from Columbia, Am. J. Trop. Med. Hyg. 20:63.Google Scholar
  207. Traub, E., 1936a, The epidemiology of lymphocytic choriomeningitis in white mice, J. Exp. Med. 64:183.CrossRefGoogle Scholar
  208. Traub, E., 1936b, An epidemic in a mouse colony due to the virus of acute lymphocytic choriomeningitis, J. Exp. Med. 63:533.CrossRefGoogle Scholar
  209. Traub, E., 1938, Factors influencing the persistence of choriomeningitis virus in the blood of mice after clinical recovery, J. Exp. Med. 68:229.PubMedCrossRefGoogle Scholar
  210. Traub, E., 1939, Epidemiology of lymphocytic choriomeningitis in a mouse stock observed for four years, J. Exp. Med. 69:801.PubMedCrossRefGoogle Scholar
  211. Traub, E., 1973, LCM virus research, retrospect and prospects, in: Lymphocytic Choriomeningitis Virus and Other Arenaviruses (F. Lehmann-Grube, ed.), pp. 3–10, Springer-Verlag, New York.CrossRefGoogle Scholar
  212. Videla, C., Kajon, A., Carballal, G., and Weissenbacher, M. C., 1989, Calomys callidus as a potential Junin virus reservoir, J. Med. Virol. 27:238.PubMedCrossRefGoogle Scholar
  213. Vitullo, A. D., and Merani, M. S., 1988, Is vertical transmission sufficient to maintain Junin virus in nature? J. Gen Virol. 69:1437.PubMedCrossRefGoogle Scholar
  214. Vitullo, A. D., and Merani, M. S., 1990, Vertical transmission of Junin virus in experimentally infected adult Calomys musculinus, Intervirology 31:339.Google Scholar
  215. Vitullo, A. D., Hodera V. L., and Merani, M. S., 1987, Effect of persistent infection with Junin virus on growth and reproduction of its natural reservoir, Callomys musculinus, Am. J. Trop. Med. Hyg. 37:663.Google Scholar
  216. Volkert, M., Bro-Jorgensen, K., and Marker, O., 1975, Persistent LCM virus infection in the mouse: Immunity and tolerance, Bull. WHO 52:471.PubMedGoogle Scholar
  217. Walker, D. H., Wulff, H., Lange, J. V., and Murphy, F. A., 1975, Comparative pathology of Lassa virus infection in monkeys, guinea-pigs, and Mastomys natalensis, Bull. WHO 52:523.Google Scholar
  218. Webb, P. A., Johnson, K. M., Peters, C. J., and Justines, G., 1973, Behavior of machupo and latino viruses in Calomys callosus from two geographic areas of Bolivia, in: Lymphocytic Choriomeningitis Virus and Other Arenaviruses (F. Lehmann-Grube, ed.), pp. 314–322, Springer-Verlag, New York.Google Scholar
  219. Webb, P. A., Justines, G., and Johnson, K. M., 1975, Infection of wild and laboratory animals with Machupo and Latino viruses, Bull. WHO 52:493.PubMedGoogle Scholar
  220. Webb, P. A., McCormick, J. B., King, I. J., et al. 1986, Lassa fever in children in Sierra Leone, West Africa, Trans. Roy. Soc. Trop. Med. Hyg. 80:577.PubMedCrossRefGoogle Scholar
  221. Webb, S. D., and Marshall, L. G., 1982, Historical biogeography of recent South American land mammals, in: Mammalian Biology in South America (M. A. Mares and H. H. Genoways, eds.), University of Pittsburgh Press, Pittsburgh.Google Scholar
  222. Weigand, H., and Hotchin, J., 1961, Studies of lymphocytic choriomeningitis in mice. 2. A comparison of the immune status of newborn and adult mice surviving inoculation, J. Immunol. 86:401.PubMedGoogle Scholar
  223. Weissenbacher, M. C., De Duerrero, L. B., and Boxaca, M. C., 1975, Experimental biology and pathogenesis of Junin virus infection in animals and man, Bull. WHO 52:507.PubMedGoogle Scholar
  224. Weissenbacher, M. C., Calello, M. A., Carballal, G., Planes, N., de la Vega, M. T., and Kravetz, F., 1985, Actividad del virus Junin en humanos y roedores de areas no endemical de la provincia de Buenos Aires, Medicina (Buenos Aires) 45:263.Google Scholar
  225. Weissenbacher, M. C., Laguens, R. P., and Coto, C. E., 1987, Argentine hemorrhagic fever, in: Arenaviruses: Biology and Immunotherapy (M. B. A. Oldstone, ed.), pp. 79–116, Springer-Verlag, New York.Google Scholar
  226. Whitton, J. L., Tishon, A., Lewicki, H., Gebhard, J., Cook, T., Salvato, M., Joly, E., and Oldstone, M. B. A., 1989, Molecular analyses of a five-amino-acid cytotoxic T lymphocyte (CTL) epitope: An immunodominant region which induces nonreciprocal CTL cross-reactivity, J. Virol. 63:4303.PubMedGoogle Scholar
  227. Winn, W. C., and Murphy, F. A., 1975, Tamiami virus infection in mice and cotton rats, Bull. WHO 52:501.PubMedGoogle Scholar
  228. Wulff, H., Fabiyi, A., and Monath, T. P., 1975, Recent isolations of Lassa virus from Nigerian rodents, Bull. WHO 52:609.PubMedGoogle Scholar
  229. Wulff, H., McIntosh, B. M., Hammer, D. B., and Johnson, K. M., 1977, Isolation of an Arenavirus closely related to Lassa virus from Mastomys natalensis in south-east Africa, Bull. WHO 55:441.PubMedGoogle Scholar
  230. Yunes, R. M. F., Cutrera, R. A., and Castro-Vasquez, A., 1991, Nesting and digging behavior in 3 species of Calomys (Rodentia, Cricetidae), Physiol. Behay. 49:489.CrossRefGoogle Scholar
  231. Zeller, H. G., Karabatsos, N., Calisher, C. H., Digoutte, J-P., Murphy, F. A., and Shope, R. E. 1989, Electron microscopy and antigen studies of uncharacterized viruses. I. Evidence suggesting the placement of viruses in family Arenaviridae, Paramvxoviridae or Poxiviridae, Arch. Virol. 108:191.Google Scholar
  232. Zinkernagel R. M., and Doherty, P. C., 1974, Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system, Nature 248:701.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • James E. Childs
    • 1
  • Clarence J. Peters
    • 2
  1. 1.Department of Immunology and Infectious DiseasesThe Johns Hopkins University School of Hygiene and Public HealthBaltimoreUSA
  2. 2.Disease Assessment DivisionU.S. Army Medical Research Institute of Infectious DiseasesFort Detrick, FrederickUSA

Personalised recommendations