Analytical Subcellular Fractionation of Endosomal Compartments in Rat Hepatocytes

  • Pierre J. Courtoy
Part of the Subcellular Biochemistry book series (SCBI, volume 19)

Abstract

This chapter focuses on the contribution of complementary analytical fractionation procedures to the dissection of the endosomal compartments in rat hepatocytes. It also describes their composition and properties, and concludes with the proposal of a structural model. Recent reviews on endosomes and opinions on some unsolved issues can be found elsewhere (e.g., Gruenberg and Howell, 1989; Hubbard, 1989; Courtoy, 1991; Griffiths and Gruenberg, 1991; Murphy, 1991; Stoorvogel et al., 1991).

Keywords

Cholesterol Sedimentation Polypeptide Disulfide Hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajioka, R. S., and Kaplan, J., 1987, Characterization of endocytic compartments using the horseradish peroxidase-diaminobenzidine density shift technique, J. Cell Biol. 104: 77–85.PubMedGoogle Scholar
  2. Amar-Costesec, A., Beaufay, H., Wibo, M., Thinès-Sempoux, D., Feytmans, E., Robbi, M., and Berthet, J., 1974a, Analytical study of microsomes and isolated subcellular membranes from rat liver. II. Preparation and composition of the microsomal fraction, J. Cell Biol. 61: 201–212.PubMedGoogle Scholar
  3. Amar-Costesec, A., Wibo, M., Thinès-Sempoux, D., Beaufay, H., and Berthet, J., 1974b, Analytical study of microsomes and isolated subcellular membranes from rat liver. IV. Biochemical, physical and morphological modifications of microsomal components induced by digitonin, EDTA, and pyrophosphate, J. Cell Biol. 62: 717–745.PubMedGoogle Scholar
  4. Bartles, J. R., Feracci, H. M., Stieger, B., and Hubbard, A. L., 1987, Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation, J. Cell Biol. 105: 1241–1251.PubMedGoogle Scholar
  5. Beaumelle, B. D., Gibson, A., and Hopkins, C. R., 1990, Isolation and preliminary characterization of the major membrane boundaries of the endocytic pathway in lymphocytes, J. Cell Biol. 111: 1811–1823.PubMedGoogle Scholar
  6. Beaufay, H. and Amar-Costesec, A., 1976, Cell fractionation techniques, in Methods in Membrane Biology, vol. 6 ( E. D. Korn, ed.), pp. 1–100, Plenum Press, New York.Google Scholar
  7. Berg, T., Ford, T., Kindberg, G. M., Blomhoff, R., and Drevon, C. A., 1985, Intracellular degradation of asialoglycoproteins in hepatocytes starts in a subgroup of lysosomes, Exp. Cell Res. 156: 570–574.PubMedGoogle Scholar
  8. Bergeron, J. J. M., Cruz, J., Khan, M. N., and Posner, B. I., 1985, Uptake of insulin and other ligands into receptor-rich endocytic components of target cells: the endosomal apparatus, Ann. Rev. Physiol. 47: 383–403.Google Scholar
  9. Bergeron, J. J. M., Searle, N., Khan, M. S., and Posner, B. I., 1986, Differential and analytical subfractionation of rat-liver components internalizing insulin and prolactin, Biochemistry, 25: 1756–1764.PubMedGoogle Scholar
  10. Besterman, J. M., Airhart, J. A., Woodworth, R. C., and Low, R. B., 1981, Exocytosis of pinocytosed fluid in cultured cells; kinetic evidence for rapid turnover and compartmentation, J. Cell Biol. 91: 716–727.PubMedGoogle Scholar
  11. Blomhoff, R., Nenseter, M. S., Green, M. H., and Berg, T., 1989, A multicompartmental model of fluid-phase endocytosis in rabbit-liver parenchymal cells, Biochem. J. 262: 605–610.PubMedGoogle Scholar
  12. Blouin, A., Bolender, R. P., and Weibel, E. R., 1977, Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat-liver parenchyma: a stereological study, J. Cell Biol. 72: 441–455.PubMedGoogle Scholar
  13. Bomsel, M., Prydz, K., Parton, R. G., Gruenberg, J., and Simons, K., 1989, Endocytosis in filter-grown Madin-Darby Canine Kidney cells, J. Cell Biol. 109: 3243–3258.PubMedGoogle Scholar
  14. Branch, W. J., Mullock, B. M., and Luzio, J. P., 1987, Rapid subcellular fractionation of the rat-liver endocytic compartments involved in transcytosis of polymeric immunoglobulin A and endocytosis of asialofetuin, Biochem. J. 244: 311–315.PubMedGoogle Scholar
  15. Brodsky, F. M., 1988, Living with clathrin: its role in intracellular membrane traffic, Science 242: 1396–1402.PubMedGoogle Scholar
  16. Brown, W. J., Goodhouse, J., and Farquhar, M. G., 1986, Mannose-6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes, J. Cell Biol. 103: 1235–1247.PubMedGoogle Scholar
  17. Cain, C. C., Sipe, D. M., and Murphy, R. F., 1989, Regulation of endocytic pH by the Na+,K+ATPase in living cells, Proc. Natl. Acad. Sci. USA 86: 544–548.Google Scholar
  18. Casanova, J. E., Breitfeld, P. P., Ross, S. A., and Mostov, K. E., 1990, Phosphorylation of the polymeric immunoglobulin receptor is required for its efficient transcytosis, Science 248: 74 2745.Google Scholar
  19. Casciola, R. and Hubbard, A. L., 1991, Hydrolases in intracellular compartments of rat liver cell: evidence for selective activation and/or delivery, J. Biol. Chem. 266: 4341–4347.Google Scholar
  20. Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K., and Zerial, M., 1990, Localization of low molecular weight GTP-binding proteins to exocytic and endocytic compartments, Cell 62: 317329.Google Scholar
  21. Chen, S. D., Widnell, C., Vaerman, J. P., Baudhuin, P., and Courtoy, P. J., 1987, Ultrastructural localization of 5’-nucleotidase in the normal rat liver, and after bile duct ligation, J. Cell Biol. 105: 233a.Google Scholar
  22. Clarke, B. J., and Weigel, P. H., 1989, Differential effects of leupeptin, monensin and colchicine on ligand degradation by the two asialoglycoprotein receptor pathways in isolated rat hepatocytes, Biochem. J. 262: 277–284.PubMedGoogle Scholar
  23. Collins, D. S., Unanue, E. R., and Harding, C. V., 1991, Reduction of disulfide bonds within lysosomes is a key step in antigen processing, J. Immunol. 147: 4054–4059.PubMedGoogle Scholar
  24. Courtoy, P. J., 1984, Receptor-mediated endocytosis in rat hepatocytes with special reference to the pathways of polymeric IgA and Galactose-exposing proteins, (Thèse d’Agrégation de l’Enseignement Supérieur), Bruxelles, pp. 1–156.Google Scholar
  25. Courtoy, P. J., 1989, Use of thimerosal in diaminobenzidine-induced density shift, J. Cell Biol. 109: 325a.Google Scholar
  26. Courtoy, P. J., 1991, Dissection of endosomes, in “Intracellular trafficking of proteins” (C. Steer and J. Hanover, Eds.), pp. 103–156, Cambridge University Press.Google Scholar
  27. Courtoy, P. J., Quintart, J, and Baudhuin, P., 1984, Shift of equilibrium density induced by 3,3’diaminobenzidine cytochemistry: a new procedure for the analysis and purification of peroxidase-containing organelles, J. Cell Biol. 98: 870–876.PubMedGoogle Scholar
  28. Courtoy, P. J., Quintart, J., Limet, J. N., De Roe, C., and Baudhuin, P., 1985, Polymeric IgA and galactose-specific pathways in rat hepatocytes: evidence for intracellular ligand sorting, in Endocytosis ( I. Pastan and M. C. Willingham, eds.), pp. 163–194, Plenum Press, New York.Google Scholar
  29. Courtoy, P. J., Quintart, J., Draye, J. P., and Baudhuin, P., 1988, The DAB-induced density shift: principle, validity, and application to endosomes, in “Cell-free analysis of membrane traffic”, Progress in Clinical and Biological Research, vol. 270, (D. J. Moiré, K. E. Howell, G. M. W. Cook, and W. H. Evans, Eds.), pp. 169–183, Alan R. Liss, New York.Google Scholar
  30. Courtoy, P. J., Leruth-Deridder, M., Vaerman, J. P., and Baudhuin, P., 1992, Analytical subcellular fractionation of receptor-mediated transcytosis in rat hepatocytes, in “Endocytosis, from cell biology to health, disease and therapy” (P. J. Courtoy, ed.), NATO ASI Series H62, Springer Verlag, pp. 291–300.Google Scholar
  31. Dautry-Varsat, A., Ciechanover, A., and Lodish, H. F., 1983, pH and the recycling of transferring during receptor-mediated endocytosis, Proc. Natl. Acad. Sci. USA 80: 2258–2262.Google Scholar
  32. Dean, R. T., Jessup, W., and Roberts, C. R., 1984, Effects of exogenous amines on mammalian cells, with particular reference to membrane flow, Biochem. J. 217: 27–40.PubMedGoogle Scholar
  33. Debanne, M. T., Bolyos, M., Gauldie, J., and Regoeczi, E., 1984, Two populations of prelysosomal structures transporting asialoglycoproteins in rat liver, Proc. Natl. Acad. Sci. USA 81: 2995–2999.PubMedGoogle Scholar
  34. de Brabander, M., Nuydens, R., Geerts, H., and Hopkins, C. R., 1988, Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy, Cell Motility and the Cytoskeleton 9: 30–47.PubMedGoogle Scholar
  35. de Chastellier, C., Lang, T., Ryter, A., and Thilo, L., 1987, Exchange kinetics and composition of endocytic membranes in terms of plasma membrane constituents: a morphometric study in macrophages, Eur. J. Cell Biol. 44: 112–123.PubMedGoogle Scholar
  36. de Duve, 1964, Principles of tissue fractionation, J. Theoret. Biol. 6: 33–59.Google Scholar
  37. de Duve, C., Berthet, J., and Beaufay, H., 1959, Gradient centrifugation of cell particles: theory and applications, Prog. Biophys. Biol. Chem. 9: 325–369.Google Scholar
  38. de Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R., and Appelmans, F., 1955, Tissue fractionation studies. VI. Intracellular distribution patterns of enzymes in rat-liver tissue, Biochem. J. 60: 604–617.Google Scholar
  39. Deng, Y. and Storrie, B., 1988, Animal cell lysosomes rapidly exchange membrane proteins, Proc. Natl. Acad. Sci. USA 85: 3860–3864.PubMedGoogle Scholar
  40. De Roe, C., Courtoy, P. J., and Baudhuin, P., 1987, A model of protein-colloidal gold interactions, J. Histochem. Cytochem. 35: 1191–1198.PubMedGoogle Scholar
  41. Desbuquois, B., Lopez, S., and Burlet, H., 1982, Ligand-induced translocation of insulin receptors in intact rat liver, J. Biol. Chem. 257: 10852–10860.PubMedGoogle Scholar
  42. Desbuquois, B., Authier, F., Clot, J. P., Janicot, M., and Fouque, F., 1992, Degradation of insulin and glucagon in isolated liver endosomes: functional relationships with ATP-dependent endosomal acidification and partial characterization of degradation products, in “Endocytosis, from cell biology to health, disease and therapy” (Courtoy P. J. ed.), NATO ASI Series H62, Springer, Heidelberg, pp. 141–149.Google Scholar
  43. Diaz, R., Wileman, T. E., Anderson, S. J., and Stahl, P., 1989, The use of permeabilized cells to study the ion requirements of receptor-ligand dissociation in endosomes, Biochem. J. 260: 127–134.PubMedGoogle Scholar
  44. Diment, S. and Stahl, P., 1985, Macrophage endosomes contain proteases which degrade endocytosed protein ligands, J. Biol. Chem. 260: 15311–15317.PubMedGoogle Scholar
  45. Diment, S., Leech, M. S., and Stahl, P. D., 1988, Cathepsin D is membrane-associated in macrophage endosomes, J. Biol. Chem. 263: 6901–6907.PubMedGoogle Scholar
  46. Doherty, J. J. II, Kay, D. G., Lai, W. H., Posner, B. I., and Bergeron, J. J. M., 1990, Selective degradation of insulin within rat-liver endosomes, J. Cell Biol. 110: 35–42.PubMedGoogle Scholar
  47. Draye, J. P., Courtoy, P. J., Quintart, J., and Baudhuin, P., 1987, Relations between plasma membrane and lysosomal membrane. 2. Quantitative evaluation of plasma membrane marker enzymes in the lysosomes, Eur. J. Biochem. 170: 405–411.PubMedGoogle Scholar
  48. Draye, J. P., Quintart, J., Courtoy, P. J., and Baudhuin, P., 1988, A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation, J. Cell Biol. 107: 2109–2115.PubMedGoogle Scholar
  49. Duncan, R., and Pratten, M. K., 1977, Membrane economics in endocytic systems, J. Theoret. Biol. 66: 727–735.Google Scholar
  50. Dunn, W. A. and Hubbard, A. L., 1984, Receptor-mediated endocytosis of epidermal growth factor by hepatocytes in the perfused rat liver: ligand and receptor dynamics, J. Cell Biol. 98: 2148 2159.Google Scholar
  51. Dunn, W. A., Hubbard, A. L., and Aronson, N. N. Jr., 1980, Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 125I-asialofetuin by the perfused rat liver, J. Biol. Chem. 255: 5971–5978.PubMedGoogle Scholar
  52. Evans, W. H., and Flint, N., 1985, Subfractionation of hepatic endosomes in Nycodenz gradients and by free flow electrophoresis, Biochem. J. 232: 25–32.PubMedGoogle Scholar
  53. Evans, W. H., and Hardison, W. G. M., 1985, Phospholipid, cholesterol, polypeptide, and glycoprotein composition of hepatic endosome subfractions, Biochem. J. 232: 33–36.PubMedGoogle Scholar
  54. Feener, E. P., Shen, W. C., and Ryser, H. J. P., 1990, Cleavage of disulfide bonds in endocytosed macromolecules: a processing not associated with lysosomes or endosomes. J. Biol. Chem. 265: 18780–18785.PubMedGoogle Scholar
  55. Ferris, A. L., Brown, J. C., Park, R. D., and Storrie, B., 1987, Chinese hamster ovary-cell lysosomes rapidly exchange contents, J. Cell Biol. 105: 2703–2712.PubMedGoogle Scholar
  56. Fuchs, R., Mâle, Ph., and Mellman, I., 1989a, Acidification and ion permeabilities of highly purified rat-liver endosomes, J. Biol. Chem. 264: 2212–2220.PubMedGoogle Scholar
  57. Fuchs, R., Schmid, S., and Mellman, I., 1989b, A possible role for Na+•K+-ATPase in regulating ATP-dependent endosome acidification, Proc. Natl. Acad. Sci. USA. 86: 539–543.PubMedGoogle Scholar
  58. Fuchs, R., Schmid, S., Mellman, I., and Klapper, H., 1992, Regulation of ATP-dependent endosome acidification, in “Endocytosis from cell biology to health, disease and therapy” (Courtoy P. J., ed.). NATO ASI series H62, Springer, Heidelberg, pp. 135–140.Google Scholar
  59. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Lodish, H. F., and Schwartz, A. L., 1983, Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double label immunoelectron microscopy during receptor-mediated endocytosis, Cell 32: 277–287.PubMedGoogle Scholar
  60. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Peppard, J., Von Figura, J., Hasilik, A., and Schwartz, A. L., 1984, Intracellular receptor sorting during endocytosis: comparative immunoelectron microscopy of multiple receptors in rat liver, Cell 37: 195–204.PubMedGoogle Scholar
  61. Geuze, H. J., Slot, J. W., and Schwartz, A. L., 1987, Membranes of sorting organelles display lateral heterogeneity in receptor distribution, J. Cell Biol. 104: 1715–1723.PubMedGoogle Scholar
  62. Geuze, H. J., Stoorvogel, W., Strous, G. J., Slot, J.W., Bleekemolen, J. D., and Mellman, I., 1988, Sorting of mannose-6-phosphate receptors and lysosomal membrane proteins in endocytic vesicles, J. Cell Biol. 107: 2491–2501.PubMedGoogle Scholar
  63. Gierow, P., Sommarin, M., Larsson, C., and Jergil, B., 1986, Fractionation of rat-liver plasma membrane region by two-phase partitioning, Biochem. J. 235: 681–685.Google Scholar
  64. Gordon, P. B. and Seglen, P. O., 1988, Prelysosomal convergence of autophagic and endocytic pathways, Biochem. Biophys. Res. Comm. 151: 40–47.PubMedGoogle Scholar
  65. Gorvel, J. P., Chavrier, P., Zerial, M., and Gruenberg, I., 1991, rab 5 controls early endosome fusion in vitro, Cell 64: 915–925.Google Scholar
  66. Grant, K. I., Casciola, L. A. F., Coetzee, G. A., Sanan, D. A., Gevers, W., and van der Westhuyzen, 1990, Ammonium chloride causes reversible inhibition of low-density lipoprotein receptor recycling and accelerates receptor degradation, J. Biol. Chem. 265: 4041–4047.PubMedGoogle Scholar
  67. Griffiths, G., and Gruenberg, J., 1991, The arguments for pre-existing early and late endosomes, Trends Cell Biol. 1: 5–9.PubMedGoogle Scholar
  68. Griffiths, G., Hoflack, B., Simons, K., Mellman, I., and Kornfeld, K., 1988, The mannose-6phosphate receptor and the biogenesis of lysosomes, Cell 52: 329–341.PubMedGoogle Scholar
  69. Griffiths, G., Back, R., and Marsh, M., 1989, A quantitative analysis of the endocytic pathway in baby hamster kidney cells, J. Cell Biol. 109: 2703–2720.PubMedGoogle Scholar
  70. Gruenberg, J. and Howell, K. E., 1989, Membrane traffic in endocytosis: insights from cell-free assays, Ann. Rev. Cell Biol. 5: 453–481.PubMedGoogle Scholar
  71. Harford, J., Bridges, K., Ashwell, G., and Klausner, R. D., 1983, Intracellular dissociation of receptor-bound asialoglycoproteins in cultured hepatocytes: a pH-mediated nonlysosomal event, J. Biol. Chem. 258: 3191–3197.PubMedGoogle Scholar
  72. Helmy, S., Porter-Jordan, K., Dawidowicz, E. A., Pilch, P., Schwartz, A. L., and Fine, R. E., 1986, Separation of endocytic from exocytic coated vesicles using a novel cholinesterase-mediated density-shift technique, Cell 44: 497–506.PubMedGoogle Scholar
  73. Henning, R., 1974, The lysosomal membrane: characteristic features of composition and function, in Methodological Developments in Biochemistry ( E. Reid, ed.), pp. 187–194, Longman, London.Google Scholar
  74. Henning, R., and Plattner, H., 1974, Isolation of rat-liver lysosomes by loading with colloidal gold, Biochim. Biophys. Acta 354: 114–120.PubMedGoogle Scholar
  75. Hopkins, C. R., Gibson, A., Shipman, M., and Miller, K., 1990, Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum, Nature 346: 335–339.PubMedGoogle Scholar
  76. Hoppe, C. A., Connolly, T. P., and Hubbard, A. L., 1985, Transcellular transport of polymeric IgA in the rat hepatocyte: biochemical and morphological characterization of the transport pathway, J. Cell Biol. 101: 2113–2123.PubMedGoogle Scholar
  77. Homick, C., Hamilton, R. L., Spaziani, E., Enders, G. H., and Havel, R. J., 1985, Isolation and characterization of multivesicular bodies from rat hepatocytes: an organelle distinct from secretory vesicles of the Golgi apparatus, J. Cell Biol. 100: 1558–1569.Google Scholar
  78. Hubbard, A. L., 1989, Endocytosis. Current opinion in Cell Biology 1: 675–683.PubMedGoogle Scholar
  79. Jacques, P., 1968, Epuration plasmatique des protéines étrangères, leur capture et leur destinée dans l’appareil vacuolaire du foie, (Thèse d’Agrégation de l’Enseignement Supérieur), Librairie Universitaire, Louvain, pp. 1–149.Google Scholar
  80. Jadot, M., Misquith, S., Dubois, F., Wattiaux-De Coninck, S., and Wattiaux, R., 1986, Intracellular pathway followed by invertase endocytosed by rat liver, Eur. J. Biochem. 161: 695–700.PubMedGoogle Scholar
  81. Janicot, M. and Desbuquois, B., 1987, Fate of injected 125I-labeled cholera toxin taken up by rat liver in vivo. Generation of the active Al peptide in the endosomal compartment, Eur. J. Biochem. 163: 433–442.PubMedGoogle Scholar
  82. Kay, D. G., Khan, M. N., Posner, B. I., and Bergeron, J. J. M., 1984, In vivo uptake of insulin into hepatic Golgi fractions: application of the diaminobenzidine-shift protocol. Biochem. Biophys. Res. Comm. 123: 1144–1148.Google Scholar
  83. Kelly, R. B., 1985, Pathways of protein secretion in eukaryotes, Science 230: 25–32.PubMedGoogle Scholar
  84. Kennedy, J. and Cooper, C., 1988, The time-dependent distribution of 125I-asialo-orosomucoid-horseradish peroxidase and 1311-immunoglobulin A among three endosomal subfractions iso-lated from rat liver, Biochem. J. 252: 739–752.PubMedGoogle Scholar
  85. Kielian, M. C., Marsh, M., and Helenius, A., 1986, Kinetics of endosome acidification detected by mutant and wild-type Semliki Forest Virus, EMBO J. 5: 3103–3109.PubMedGoogle Scholar
  86. Kindberg, G. M., Ford, T., Blomhoff, R., Rickwood, D., and Berg, T., 1984, Separation of endocytic vesicles in Nycodenz gradients, Anal. Biochem. 142: 455–462.PubMedGoogle Scholar
  87. Khan, M. N., Baquiran, G., Brule, C., Burgess, J., Foster, B., Bergeron, J. J. M., and Posner, B. I., 1989, Internalization and activation of the rat-liver insulin receptor kinase in vivo, J. Biol. Chem. 264: 12931–12940.PubMedGoogle Scholar
  88. Klausner, R. D., Ashwell, G., Van Renswoude, J., Harford, J. B., and Bridges, K. R., 1983, Binding of apotransferrin to K562 cells: explanation of the transferrin cycle, Proc. Natl. Acad. Sci. USA 80: 2263–2266.PubMedGoogle Scholar
  89. Kolset, S. O., Tolleshaug, H., and Berg, T., 1979, The effects of colchicine and cytochalasin B on uptake and degradation of asialoglycoproteins in isolated rat hepatocytes, Exp. Cell Res. 122: 159–167.PubMedGoogle Scholar
  90. Lai, W. H., Cameron, P. H., Wada, I., Dohert, J. J. II, Kay, D. G., Posner, B. I., and Bergeron, J. J. M., 1989a, Ligand-mediated internalization, recycling, and downregulation of the epidermal growth factor receptor in vivo, J. Cell Biol. 1989: 2741–2749a.Google Scholar
  91. Lai, W. H., Cameron, P. H., Doherty, J. J. II, Posner, B. I., and Bergeron, J. J. M., 1989b, Ligand-mediated autophosphorylation activity of the epidermal growth factor during internalization, J. Cell Biol. 109: 2751–2760.PubMedGoogle Scholar
  92. Larkin, J. M., Sztul, E. S., and Palade, G. E., 1986, Phosphorylation of the rat hepatic polymeric IgA receptor, Proc. Natl. Acad. Sci. USA 83: 4759–4763.PubMedGoogle Scholar
  93. Leighton, F., Poole, B., Beaufay, H., Baudhuin, P., Coffey, J. W., Fowler, S., and de Duve, C., 1968, The large-scale separation of peroxisomes, mitochondria and lysosomes from the livers of rats injected with Trition WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions, J. Cell Biol. 37: 482–513.PubMedGoogle Scholar
  94. Lemaître-Coelho, I., Jackson, G. D. F., and Vaerman, J. P., 1977, Rat bile as a convenient source of secretory IgA and free secretory component, Eur. J. Immunol. 8: 588–590.Google Scholar
  95. Lemansky, P., Hasilik, A., Von Figura, K., Helmy, S., Fishman, J., Fine, R. E., Kedersha, N. L., and Rome, L. N., 1987, Lysosomal enzyme precursors in coated vesicles derived from the exocytic and endocytic pathways, J. Cell Biol. 104: 1743–1748.PubMedGoogle Scholar
  96. Limet, J. N., Schneider, Y. J., Vaerman, J. P., and Trouet, A., 1982, Binding, uptake and intracellular processing of polymeric rat IgA by cultured rat hepatocytes, Eur. J. Biochem. 125: 437443.Google Scholar
  97. Limet, J. N., Quintart, J., Schneider, Y-J., and Courtoy, P. J., 1985, Receptor-mediated endocytosis of polymeric IgA and galactosylated serum albumin in rat liver. Evidence for intracellular ligand sorting and identification of distinct endosomal compartments, Eur. J. Biochem, 146: 539–548.PubMedGoogle Scholar
  98. Lindh, E. and Björk, I., 1976, Binding of secretory component to dimers of immunoglobulin A in vitro: mechanism of the covalent bond formation, Eur. J. Biochem. 62: 263–270.PubMedGoogle Scholar
  99. Lippincott-Schwartz, J. and Fambrough, D. M., 1986, Lysosomal membrane dynamics: structure and interorganellar movement of a major lysosomal membrane glycoprotein, J. Cell Biol. 102: 1593–1605.PubMedGoogle Scholar
  100. Magnusson, S. and Berg, T., 1989, Extremely rapid endocytosis mediated by the mannose receptor of sinusoidal endothelial rat-liver cells, Biochem. J. 257: 651–656.PubMedGoogle Scholar
  101. Marsh, M. and Helenius, A., 1989, Virus entry into animal cells, Adv. in Virus Res. 36:107–151.Google Scholar
  102. Matsuura, S., Eto, S., Kato, K., and Tashiro, Y., 1984, Ferritin immunoelectron microscopic localization of 5’-nucleotidase on rat-liver cell surface, J. Cell Biol., 99: 166–173.PubMedGoogle Scholar
  103. Matter, A., Orci, L., and Rouiller, C., 1969, A study on the permeability barriers between Disse’s space and the bile canaliculus. J. Ultrastruct. Res. (Supp) 11: 1–71.Google Scholar
  104. Mayorga, L. S., Diaz, R., Stahl, P. D., 1989, Regulatory role for GTP-binding proteins in endocytosis, Science 244: 1475–1477.PubMedGoogle Scholar
  105. McKanna, J. A., Haigler, H. T., and Cohen, S., 1979, Hormone receptor topology and dynamics: morphological analysis using ferritin-labeled epidermal growth factor, Proc. Natl. Acad. Sci. USA, 76: 5689–5693.PubMedGoogle Scholar
  106. Mellman, I., Fuchs, R., and Helenius, A., 1986, Acidification of the endocytic and exocytic pathways, Ann. Rev. Biochem. 55: 663–700.PubMedGoogle Scholar
  107. Mueller, S. C. and Hubbard, A. L., 1986, Receptor-mediated endocytosis of asialoglycoproteins by rat hepatocytes: receptor-positive and receptor-negative endosomes, J. Cell Biol. 102: 932–942.PubMedGoogle Scholar
  108. Mullock, B. M., Branch, W. J., Van Schaik, M., Gilbert, L. K., and Luzio, J. P., 1989, Reconstitution of an endosome-lysosome interaction in a cell-free system, J. Cell Biol. 108: 2093–2099.PubMedGoogle Scholar
  109. Munniksma, J., Notebom, M., Kooistra, T., Stienstra, S., Bouma, J. M. W., Gruber, M., Brouwer, A., Praaning-Van Dalen, D., and Knook, D. L., 1980, Fluid endocytosis by rat liver and spleen, Biochem. J. 192: 613–621.PubMedGoogle Scholar
  110. Murkofsky, N. A. and Lamm, M. E., 1979, Effect of a disulfide interchange enzyme on the assembly of human secretory immunoglobulin A from immunoglobulin A and free secretory component, J. Biol. Chem. 254: 12181–12184.PubMedGoogle Scholar
  111. Murphy, R. F., 1989, Endosomal pH regulation and lysosome biogenesis, J. Cell Biol. 109:6a. Murphy, R. F., 1991, Maturation models for endosome and lysosome biogenesis, Trends Cell Biol. 1: 77–82.Google Scholar
  112. Musil, L. S. and Baenziger, J. U., 1988, Proteolytic processing of rat-liver membrane secretory component: cleavage activity is localized to bile canalicular membranes, J. Biol. Chem. 263: 15799–15808.PubMedGoogle Scholar
  113. Oka, J. A. and Weigel, P. H., 1983, Recycling of the asialoglycoprotein receptor in isolated rat hepatocytes: dissociation of internalized ligand from receptor occurs in two kinetically and thermally distinguishable compartments, J. Biol. Chem. 258: 10253–10262.PubMedGoogle Scholar
  114. Olsnes, S., and Sandvig, K., 1985, Entry of polypeptide toxins into animal cell, in Endocytosis ( I. Pastan and M. C. Willingham, eds.), pp. 195–237, Plenum Press, New York.Google Scholar
  115. Opresko, L. K., and Karpf, R. A., 1987, Specific proteolysis regulates fusion between endocytic compartments in Xenopus oocytes, Cell 51: 557–568.PubMedGoogle Scholar
  116. Ose, L., Ose, T., Reinertsen, R., and Berg, T., 1980, Fluid endocytosis in isolated rat parenchymal and nonparenchymal liver cells, Exp. Cell Res. 126: 109–119.PubMedGoogle Scholar
  117. Ottosen, P. D., Courtoy, P. J., and Farquhar, M. G., 1980, Pathways followed by membrane recovered from the surface of plasma cells and myeloma cells, J. Exp. Med. 152: 1–19.PubMedGoogle Scholar
  118. Pease, R. J., Smith, G. D., and Peters, T. J., 1987, Characterization of insulin degradation by rat-liver low-density vesicles, Eur. J. Biochem. 164: 251–257.PubMedGoogle Scholar
  119. Perez, J. H., Branch, W. J., Smith, B., Mullock, B. M., and Luzio, J. P., 1988, Investigation of endosomal compartments involved in endocytosis and transcytosis of polymeric immunoglobulin A by subcellular fractionation of perfused rat liver, Biochem. J. 251: 763–770.PubMedGoogle Scholar
  120. Quintart, J., Courtoy, P. J., Limet, J. N., and Baudhuin, P., 1983, Galactose-specific endocytosis in rat liver: biochemical and morphological characterization of a low-density compartment isolated from hepatocytes, Eur. J. Biochem. 131: 105–112.PubMedGoogle Scholar
  121. Quintart, J., Courtoy, P. J., and Baudhuin, P., 1984, Receptor-mediated endocytosis in rat liver: purification and enzymic characterization of low-density organelles involved in uptake of galactose-exposing proteins, J. Cell Biol. 98: 877–884.PubMedGoogle Scholar
  122. Quintart, J., Baudhuin, P., and Courtoy, P. J., 1989, Marker enzymes of rat-liver vesicles involved in transcellular transport, Eur. J. Biochem. 184: 567–574.PubMedGoogle Scholar
  123. Regoeczi, E., Chindemi, P. A., Debanne, M. T., and Charlwood, P. A., 1982, Partial resialylation of human asialotransferrin type 3 in the rat, Proc. Natl. Acad. Sci. USA 79: 2226–2230.PubMedGoogle Scholar
  124. Rijnboutt, S., Kal, A. J., Geuze, H. J., Aerts, H., and Strous, G. J., 1991, Mannose 6-phosphateindependent targeting of cathepsin D to lysosomes in HepG2 cells, J. Biol. Chem. 266: 2358623592.Google Scholar
  125. Robert, A., Carpentier, J. L., Van Obberghen, E., Canivet, B., Gorden, P., and Orci, L., 1985, The endosomal compartment of rat hepatocytes: its characterization in the course of 125I-insulin internalization, Exp. Cell Res. 159: 113–126.PubMedGoogle Scholar
  126. Roederer, M., Bowser, R., and Murphy, R. F., 1987, Kinetics and temperature dependence of exposure of endocytosed material to proteolytic enzymes and low pH: evidence for a maturation model for the formation of lysosomes, J. Cell Physiol. 131: 200–209.PubMedGoogle Scholar
  127. Scharschmidt, B. F., Lake, J. R., Renner, E. L., Licko, V., and Van Dyke, R. W., 1986, Fluid-phase endocytosis by cultured rat hepatocytes and perfused rat liver: implications for plasma membrane turnover and vesicular trafficking of fluid-phase markers. Proc. Natl. Acad. Sci. USA 83: 9488–9492.PubMedGoogle Scholar
  128. Schaudies, R. P., Gorman, R. M., Savage, C. R., Jr, and Poretz, R. D., 1987, Proteolytic processing of EGF within endosomes. Biochim. Biophys. Res. Comm. 143: 710–715.Google Scholar
  129. Schiff, J. M., Fisher, M. M., Jones, A. L., and Underdown, B. J., 1986, Human IgA as a hetero-valent ligand: switching from the asialoglycoprotein receptor to secretory component during transport across the rat hepatocyte, J. Cell Biol. 102: 920–931.PubMedGoogle Scholar
  130. Schmid, S. L., Fuchs, R., Mâle, Ph., and Mellman, I., 1988, Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes, Cell 52: 73–83.PubMedGoogle Scholar
  131. Shepherd, V. L., Lee, Y. C., Schlesinger, P. H., and Stahl, P. D., 1981, L-fucose-terminated glycoconjugates are recognized by pinocytosis receptors on macrophages, Proc. Natl. Acad. Sci. 78: 1019–1022.PubMedGoogle Scholar
  132. Sibille, J. C., Octave, J. S., Schneider, Y-J., Trouet, A., and Crichton, R., 1986, Subcellular localization of transferrin protein and iron in the perfused rat liver: effect of Triton WR1339, digitonin and temperature. Eur. J. Biochem. 155: 47–55.PubMedGoogle Scholar
  133. Slot, J. W., Geuze, H. J., Gigengack, S., Lienhard, G. E., and James, D. E., 1991, Immunolocalization of the insulin regulatable glucose transporter in brown adipose tissue of the rat, J. Cell Biol. 113: 123–135.PubMedGoogle Scholar
  134. Smith, G. D. and Peeters, T. J., 1982, The localization in rat liver of alkaline phosphodiesterase to a discrete organelle implicated in ligand internalization, Biochim. Biophys. Acta 716: 24–30.PubMedGoogle Scholar
  135. Snider, M. D. and Rogers, O. C., 1985, Intracellular movement of cell surface receptors after endocytosis: resialylation of asialotransferrin receptor in human erythroleukemia cells, J. Cell Biol. 100: 826–834.PubMedGoogle Scholar
  136. Solari, R., Schaerer, E., Tallichet, C., Braiterman, L. T., Hubbard, A. L., and Kraekenbuhl, J. P., 1989, Cellular location of the cleavage event of the polymeric immunoglobulin receptor and fate of its anchoring domain in the rat hepatocyte, Biochem. J. 257: 759–768.PubMedGoogle Scholar
  137. Steinman, R. M., Silver, J. M., and Cohn, Z. A., 1974, Pinocytosis in fibroblasts: quantitative studies in vitro, J. Cell Biol. 63: 949–969.PubMedGoogle Scholar
  138. Steer, C. J., Bisher, M., Blumenthal, R., and Steven, A. C., 1984, Detection of membrane cholesterol by filipin in isolated rat liver coated vesicles is dependent upon removal of the clathrin coat, J. Cell Biol. 99: 315–319.PubMedGoogle Scholar
  139. Stockert, R. J., Haimes, H. B., Morell, A. G., Novikoff, P. M., Novikoff, A. B., Quintana, N., and Sternlieb, I., 1980, Endocytosis of asialoglycoprotein-enzyme conjugates by hepatocytes, Lab. Invest. 43: 556–563.PubMedGoogle Scholar
  140. Stoorvogel, W., Geuze, M. J., Griffith, J. M., Schwartz, A. L., and Strous, G. J., 1989, Relations between the intracellular pathways of the receptors for transferrin, asialoglycoprotein and mannose-6-phosphate in human hepatoma cells, J. Cell Biol. 108: 2137–2148.PubMedGoogle Scholar
  141. Stoorvogel, W., Strous, G. J., Geuze, H. J., Oorschot, V., and Schwartz, A. L., 1991, Late endosomes derive from early endosomes by maturation, Cell 65: 417–427.PubMedGoogle Scholar
  142. Sztul, E. S., Howell, K. E., and Palade, G. E., 1983, Intracellular and transcellular transport of secretory component and albumin in rat hepatocytes, J. Cell Biol. 97: 1582–1591.PubMedGoogle Scholar
  143. Sztul, E., Kaplin, A., Saucan, L., and Palade, G. E., 1991, Protein traffic between distinct plasma membrane domains: isolation and characterization of vesicular carriers involved in transcytosis, Cell 64: 81–89.PubMedGoogle Scholar
  144. Takahashi, T., Nakada, H., Okumara, T., Sawamura, T., and Tashiro, Y., 1985, Phosphorylation of the rat hepatocyte asialoglycoprotein receptor, Biochem. Biophys. Res. Comm. 126: 1054–1060.PubMedGoogle Scholar
  145. Thinès-Sempoux, D., 1972, A comparison between the lysosomal and the plasma membrane, in Lysosomes in biology and pathology, vol. 3, ( J. T. Dingle, ed.), Elsevier, Amsterdam, pp. 278–299.Google Scholar
  146. Tolleshaug, H. and Berg, T., 1981, The effect of leupeptin on intracellular digestion of asialofetuin in rat hepatocytes, Exp. Cell Res. 134: 207–217.PubMedGoogle Scholar
  147. Tolleshaug, H., Berg, T., and Holte, K., 1982, Effects of local anesthetics and related compounds on the endocytosis and catabolism of asialoglycoproteins in isolated hepatocytes, Biochim. Biophys. Acta. 714: 114–121.PubMedGoogle Scholar
  148. Tooze, J., and Hollinshead, M., 1991, Tubular early endosomal networks in AtT20 and other cells, J. Cell Biol. 115: 635–653.PubMedGoogle Scholar
  149. Tran, D., Carpentier, J. L., Sawano, F., Gorden, P., and Orci, L., 1987, Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway, Proc. Natl. Acad. Sci. USA 84: 7957–7961.PubMedGoogle Scholar
  150. Van der Sluijs, P., Braakman, I., Meijer, D. K. F., and Groothuis, G. M. M., 1988, Heterogeneous acinar localization of the asialoglycoprotein internalization system in rat hepatocytes, Hepatology 8: 1521–1529.PubMedGoogle Scholar
  151. Van der Sluijs, P., Hull, M., Zahraoui, A., Tavitian, A., Goud, B., and Mellman, I., 1991, The small GTP-binding protein rab 4 is associated with early endosomes, Proc. Natl. Acad. Sci. USA 88: 6313–6317.Google Scholar
  152. Van Deurs, B., Sandvig, K., Petersen, O. W., Olsnes, S., Simons, K., and Griffiths, G., 1988, Estimation of the amount of internalized ricin that reaches the trans-Golgi network, J. Cell Biol. 106: 253–267.PubMedGoogle Scholar
  153. Van Deurs, B., Petersen, O. W., Olsnes, S., and Sandvig, K., 1989, The ways of endocytosis, Int. Rev. Cytol. 117: 131–177.PubMedGoogle Scholar
  154. Van Dyke, R. W., Homick, C. A., Belcher, J., Scharschmidt, B. F., and Havel, R. J., 1985, Identification and characterization of the ATP-dependent proton transport by rat-liver multi-vesicular bodies, J. Biol. Chem. 260: 11021–11026.PubMedGoogle Scholar
  155. Vergés, M., Evans, W. H., and Enrich, C., 1992, Calmodulin-binding proteins in rat liver endosomes. Identification of tau proteins in the endosome fractions, in Mechanisms of hepatic endocytosis ( Windier E. and Greten H., eds.) Zuckschwerdt, Munich, pp. 192–198.Google Scholar
  156. Von Figura, K. and Hasilik, A., 1986, Lysosomal enzymes and their receptors, Ann. Rev. Biochem. 55: 167–193.Google Scholar
  157. Wada, I., Lai, W. E., Posner, B. I., and Bergeron, J. J. M., 1992, Association of the tyrosinephosphorylated EGF receptor with a 55-kD tyrosine-phosphorylated protein at the cell surface and in endosomes, J. Cell Biol. 116: 321–330.PubMedGoogle Scholar
  158. Wall, D. A. and Hubbard, A. L., 1985, Receptor-mediated endocytosis of asialoglycoproteins by rat-liver hepatocytes: biochemical characterization of the endosomal compartments. J. Cell Biol. 101: 2104–2112.PubMedGoogle Scholar
  159. Wall, D. A., Wilson, G., and Hubbard, A. L., 1980, The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes, Cell 21: 79–93.PubMedGoogle Scholar
  160. Weibel, E. R., Staübli, W., Gnägi, H. R., and Hess, F. A., 1969, Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods and normal morphometric data for rat liver, J. Cell Biol. 42: 68–91.PubMedGoogle Scholar
  161. Weigel, P. H. and Oka, J. A., 1983, The large intracellular pool of asialoglycoprotein receptors functions during the endocytosis of asialoglycoproteins by isolated rat hepatocytes, J. Biol. Chem. 258: 5095–5102.PubMedGoogle Scholar
  162. Wibo, M., Thinès-Sempoux, D., Amar-Costesec, A., Beaufay, H., and Godelaine, D., 1981, Analytical study of microsomes and isolated subcellular membranes from rat liver. VIII. Sub-fractionation of preparations enriched with plasma membranes, outer mitochondrial membranes, or Golgi complex membranes, J. Cell Biol. 89: 456–474.PubMedGoogle Scholar
  163. Wisse, E., De Zanger, R. B., Jacobs, R., and McCuskey, R. S., 1983, Scanning electron microscope observations on the structure of portal veins, sinusoids, and central veins in rat liver, Scanning Electron Microscopy 3: 1441–1452.Google Scholar
  164. Zijderhand-Bleekemolen, J. E., Schwartz, A. L., Slot, J. W., Strous, G. J., and Geuze, H. J., 1987, Ligand-and weak base—induced redistribution of asialoglycoprotein receptors in hepatoma cells, J. Cell Biol. 104: 1647–1654.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Pierre J. Courtoy
    • 1
  1. 1.Cell Biology UnitInternational Institute of Cellular and Molecular Pathology and University of Louvain Medical SchoolBrusselsBelgium

Personalised recommendations