Electrochemistry of Nerve Excitation

  • Martin Blank
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 24)

Abstract

Physiologists and biophysicists are, by and large, satisfied that the fundamental processes of nerve excitation are well understood. In brief, the explanation usually given is as follows: Cells contain solutions of ions, with K+ as the main cation. The extracellular solutions contain mainly Na+ salts. Since the cell membrane is more permeable to K+ than to Na+, the efflux of K+ establishes an electrical potential difference across the membrane, called the resting potential. In a squid axon the value is about 65 mV, with the inside surface negative with respect to the medium. The electrical potential opposes the chemical potential driving the efflux of K+ ions and establishes a steady state. The loss of K+ ions is replenished by the “pump” flux due to the action of the Na,KA-TPase of the membrane.

Keywords

Permeability Entropy Migration Magnesium Microwave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Hodgkin and A. F. Huxley, J. Physiol. (London)117(1952) 500.Google Scholar
  2. 2.
    K. S. Cole, Physiol. Rev.45(1965) 340.Google Scholar
  3. 4.
    C. Doring and M. Colombini, Biophys. J.45(1984) 44.CrossRefGoogle Scholar
  4. 4.
    A. Klug, Harvey Lectures74(1979) 141.Google Scholar
  5. 5.
    M. A. Lauffer, Entropy-Driven Processes in Biology, Springer-Verlag, Berlin, 1975. 6 G. K. Ackers, Biophys. J.32(1980) 331.Google Scholar
  6. 6.
    G. K. Ackers Biophys. J. 32 (1980) 331.CrossRefGoogle Scholar
  7. 7.
    M. Blank, Colloids Surf1 (1980) 139.CrossRefGoogle Scholar
  8. 8.
    M. Blank, Colloids Surf.42(1989) 355.Google Scholar
  9. 9.
    M. Blank, J. Theor. Biol.108(1984) 55.CrossRefGoogle Scholar
  10. 10.
    D. L. Gilbert, in Biophysics and Physiology of Excitable Membranes, Ed. by W. J. Adelman, Van Nostrand Reinhold, New York, 1971, p. 359.Google Scholar
  11. 11.
    L. Bass and W. J. Moore, Prog. Biophys. Mol. Biol.27(1973) 143.Google Scholar
  12. 12.
    J. V. Howarth, Phil Trans. R. Soc. London, Ser. B270(1975) 425.Google Scholar
  13. 13.
    R. D. Keynes and X. Aubert, Nature (London)203(1964) 261.CrossRefGoogle Scholar
  14. 14.
    J. Bernstein and A. Tschermak, Pflug. Arch. Ges. Physiol.112(1906) 439.Google Scholar
  15. 15.
    S. Numa and M. Noda, Ann. N.Y. Acad. Sci.479(1986) 338.CrossRefGoogle Scholar
  16. 16.
    S. R. Levinson and H. Meves, Phil. Trans. R. Soc. London, Ser. B270(1975) 349.Google Scholar
  17. 17.
    H. Wachtel, R. Seaman, and W. Joines, Ann. N.Y. Acad. Sci.247(1975) 46.CrossRefGoogle Scholar
  18. 18.
    F. S. Barnes, Bioelectromag.5(1984) 113.CrossRefGoogle Scholar
  19. 19.
    W Nernst and E. H. Riesenfeld, Ann. Physik8(1902) 600.CrossRefGoogle Scholar
  20. 20.
    W. Nernst, Pflugers Arch. Ges. Physiol.122(1908) 275.CrossRefGoogle Scholar
  21. 21.
    M. Blank and S. Feig, Science141(1963) 1173.CrossRefGoogle Scholar
  22. 22.
    M. Blank and I. R. Miller, J. Colloid Sci.26(1968) 26.CrossRefGoogle Scholar
  23. 23.
    I. R. Miller and M. Blank, J. Colloid Sci.26(1968) 34.CrossRefGoogle Scholar
  24. 24.
    M. Blank, Biochim. Biophys. Acta906(1987) 277.Google Scholar
  25. 25.
    M. Blank and J. S. Britten, Bioelectrochem. Bioenerg.5(1978) 528.CrossRefGoogle Scholar
  26. 26.
    M. Blank and W. P. Kavanaugh, Bioelectrochem. Bioenerg.9(1982) 427.CrossRefGoogle Scholar
  27. 27.
    M. Blank, W. P. Kavanaugh, and G. Cerf, Bioelectrochem. Bioenerg.9(1982) 439.CrossRefGoogle Scholar
  28. 28.
    M. Blank, Bioelectrochem. Bioenerg.10(1983) 451.CrossRefGoogle Scholar
  29. 29.
    M. Blank, Bioelectrochem. Bioenerg.13(1984) 93.CrossRefGoogle Scholar
  30. 30.
    M. Blank, Bioelectrochem. Bioenerg.9(1983) 615.CrossRefGoogle Scholar
  31. 31.
    B. I. Khodorov and S. V. Revenko, Neuroscience4(1979) 1315.CrossRefGoogle Scholar
  32. 32.
    A. Wei, M. Covarrubias, A. Butler, K. Baker, M. Pak, and L. Salkoff, Science248(1990) 599.CrossRefGoogle Scholar
  33. 33.
    M. Blank, Bioelectrochem. Bioenerg.13(1984) 317.CrossRefGoogle Scholar
  34. 34.
    M. Blank, J. Electrochem. Soc.134(1987) 1112.CrossRefGoogle Scholar
  35. 35.
    E. H. Serpersu and T. Y. Tsong, J. Biol. Chem.259(1984) 7155.Google Scholar
  36. 36.
    T. Y. Tsong, D. S. Liu, F. Chauvin, A. Gaigalas, and R. D. Astumian, Bioelectro-chem. Bioenerg.21(1989) 319.CrossRefGoogle Scholar
  37. 37.
    M. Blank and L. Soo, Bioelectrochem. Bioenerg.22(1989) 313.CrossRefGoogle Scholar
  38. 38.
    M. Blank and L. Soo, Bioelectrochem. Bioenerg.24(1990) 51.CrossRefGoogle Scholar
  39. 39.
    H. Wachtel and E. R. Kandel, Science158(1967) 1206.CrossRefGoogle Scholar
  40. 40.
    S. J. D. Karlish, A. Rephaeli, and R. Braw, Perspectives of Biological Energy Transduction, Academic Press, New York, 1987, p. 265.Google Scholar
  41. 41.
    J. S. Britten and M. Blank, Biochim. Biophys. Acta159(1968) 160.Google Scholar
  42. 42.
    J. S. Britten and M. Blank, J. Colloid Interface Sci.43(1973) 564.CrossRefGoogle Scholar
  43. 43.
    J. Bernstein, Pflugers Arch.92(1902) 521.CrossRefGoogle Scholar
  44. 44.
    T. Teorell, Proc. Soc. Exp. Biol. Med.33(1935) 282.Google Scholar
  45. 45.
    I. R. Miller, Top. Bioelectrochem. Bioenerg.4(1981) 161.Google Scholar
  46. 46.
    M. Blank and E. Findl, Eds., Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems, Plenum Press, New York, 1987.Google Scholar
  47. 47.
    M. Blank, FASEB J.6(1992) 2434.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Martin Blank
    • 1
  1. 1.Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUSA

Personalised recommendations