The Developing Mouse Whiskerpad: Pattern Formation at the Periphery of a Highly Organized Somatosensory Pathway

  • W. Ourednik
  • W. Wahli
  • H. Van der Loos
Part of the NATO ASI Series book series (NSSA, volume 234)

Abstract

To a recent volume of the NATO-ASI series having as subject “The Neocortex: Ontogeny and Phylogeny”, our group contributed two reports on the development and plasticity of brain maps (Van der Loos et al., 1990; Welker et al., 1990). The subject of both reports was the somatosensory whisker-to-barrel pathway of rodents. In the mouse - our experimental animal - and in a number of other rodent species, one of the major characteristics of this pathway is the pattern of vibrissal follicles -sensory organs - on the animal’s muzzle. This pattern finds, at the other end of the pathway, its central counterpart in a homeomorphic arrangement of multineuronal units, “barrels”, in a defined region of the primary somatosensory cortex (Fig. 1 and Woolsey and Van der Loos, 1970). Today it is still not known how the geometry of the pattern is generated at the periphery, respected throughout the pathway and what the developmental mechanisms are by which periphery and brain interact, resulting in the homeomorphic relationship alluded to. In line with our earlier argument that the periphery plays a major role in the creation of the pattern in the central nervous system (Van der Loos and Dörfl, 1978; Andrés and Van der Loos, 1983; Van der Loos and Welker, 1985; Van der Loos et al., 1986), the present paper describes ideas, born here and elsewhere, about the developmental rules that guide the formation of the vibrissal pattern.

Keywords

Migration Phenol Recombination Agarose Assure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrés, F.L. and Van der Loos, H. (1983) Cultured embryonic non-innervated mouse muzzle is capable of generating a whisker pattern. Int. J. Dev, Neurosci. 1:319–338.CrossRefGoogle Scholar
  2. Andres, K.H. (1966) Ueber die Feinstruktur der Rezeptoren an Sinushaaren. Z. Zellforsch. 75:339–365.PubMedCrossRefGoogle Scholar
  3. Baker, N.E., Mlodzik, M. and Rubin, G.M. (1990) Spacing differentiation in the developing Drosophila eye: A fibrinogen-related lateral inhibitor encoded by scabrous. Science 250:1370–1377.PubMedCrossRefGoogle Scholar
  4. Bate, CM. (1976) Pioneer neurons in an insect embryo. Nature 260:54–56.PubMedCrossRefGoogle Scholar
  5. Benoît, R., Sassoon, D., Jacq, B., Gehring, W. and Buckingham, M. (1989) Hox-7, a mouse homeobox gene with a novel pattern of expression during embryogenesis. EMBO J. 8:91–100.Google Scholar
  6. Cajal, S.R. (1929) “Etudes sur la neurogenese de quelques vertébrés”, Tipografia Artistica, Madrid. We used the version “Studies on vertebrate neurogenesis” translated by L. Guth (1960), Charles C. Thomas: Springfield, IL, USA, chapter 4:149–200.Google Scholar
  7. Campenot, R.B. (1982a) Development of sympathetic neurons in compartmentalized cultures. I. Local control of neurite growth by nerve growth factor. Dev. Biol. 93:1–12.PubMedCrossRefGoogle Scholar
  8. Campenot, R.B. (1982b) Development of sympathetic neurons in compartmentalized cultures. II. Local control of neurite survival by nerve growth factor. Dev. Biol. 93:13–21.PubMedCrossRefGoogle Scholar
  9. Carrasco, A.E., McGinnis, W., Gehring, W. and De Robertis, E.M. (1984) Cloning of an X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell 37:409–414.PubMedCrossRefGoogle Scholar
  10. Chuong, C.-M., Oliver, G., Ting, S.A., Jegalian, B., Chen, H.M. and De Robertis, E.M. (1990) Gradients of homeoproteins in developing feather buds. Development 110:1021–1030.PubMedGoogle Scholar
  11. Danforth, C.H. (1925) Hair in its relation to questions of homology and phylogeny. Amer. J. Anat. 36:47–68.CrossRefGoogle Scholar
  12. Davidson, D.R. (1983) The mechanism of feather pattern development in the chick. II. Control of the sequence of pattern formation. J. Embryol. Exp. Morph. 74:271–283.Google Scholar
  13. Davies, A.M. and Lumsden, A. (1984) Relation of target encounter and neuronal death to nerve growth factor responsiveness in the developing mouse trigeminal ganglion. J. Comp. Neurol. 223:124–137.PubMedCrossRefGoogle Scholar
  14. Davies, A.M., Bandtlow, C., Heumann, R., Korsching, S., Rohrer, H. and Thoenen, H. (1987) Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature 326:353–358.PubMedCrossRefGoogle Scholar
  15. Dhouailly, D. (1977) Regional specification of cutaneous appendages in mammals. Wilhelm Roux Arch. Dev. Biol. 181:3–10.CrossRefGoogle Scholar
  16. Dhouailly, D. (1984) Specification of feather and scale patterns, in: “Pattern Formation: A primer in developmental biology”, G.M. Malacinski and S.V. Bryant, eds., Macmillan: New York, 581–601.Google Scholar
  17. Diamond, J. (1979) The regulation of nerve sprouting by extrinsic influences. In: “The Neurosciences, Fourth Study Section”, F.O. Schmitt and F.G. Worden, eds., MIT Press: Cambridge, MA 937–955.Google Scholar
  18. Dollé, P., Izpisua-Belmonte, J.-C., Falkenstein, H., Renucci, A. and Duboule, D. (1989) Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation. Nature 342:767–772.PubMedCrossRefGoogle Scholar
  19. Dörfl, J. (1985) The innervation of the mystacial region of the white mouse: A topographical study. J. Anat. 142:173–184.PubMedGoogle Scholar
  20. Eichele, G. (1989) Retinoids and vertebrate limb pattern formation. Trends Genet. 5:246–251.PubMedCrossRefGoogle Scholar
  21. Gans, C. (1987) The neural crest: A spectacular invention. In: “Developmental and evolutionary aspects of the neural crest”, Wiley Series in Neurobiology, R.G. Northcutt and P.F.A. Maderson, eds., John Wiley & Sons: New York, etc., 361–379.Google Scholar
  22. Gans, C. and Northcutt, R.G. (1983) Neural crest and the origin of vertebrates: A new head, 220:268–274.Google Scholar
  23. Gierer, A. and Meinhardt, H. (1972) A theory of biological pattern formation. Kybernetik 12:30–39.PubMedCrossRefGoogle Scholar
  24. Gu, J., Polak, J.M., Tapia, F.J., Marangos, P.J. and Pearce, A.G.E. (1981) Neuron specific enolase in the Merkel cells of mammalian skin. Am. J. Pathol. 104:63–68.PubMedGoogle Scholar
  25. Gundersen, R.W. and Barrett, J.N. (1979) Neuronal chemotaxis: Chick dorsal-root axons turn toward high concentrations of nerve growth factor. cience 206:1079–1080.PubMedCrossRefGoogle Scholar
  26. Gundersen, R.W. and Barrett, J.N. (1980) Characterization of the turning response of dorsal root neurites toward nerve growth factor. J. Cell. Biol. 87:546–554.PubMedCrossRefGoogle Scholar
  27. Heilig, J.S., Freeman, M., Laverty, T., Lee, K.J., Campos, A.R., Rubin, G.M. and Steller, H. (1991) Isolation and characterization of the disconnected gene of Drosophila melanogaster. EMBO J. 10:809–815.PubMedGoogle Scholar
  28. Hill, R.E., Jones, P.F., Rees, A.R., Sime, C.M., Justice, M.J., Copeland, N.G., Jenkins, N.A., Graham, E. and Davidson, D.R. (1989) A new family of mouse homeobox containing genes: Molecular structure, chromosomal location and developmental expression of Hox 7. Genes Dev. 3:26–37.PubMedCrossRefGoogle Scholar
  29. Hoogland, P.V., Welker, E. and Van der Loos, H. (1987) Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP. Exp. Brain Res. 68:73–87.PubMedCrossRefGoogle Scholar
  30. Hovemann, B., Richter, S., Walldorf, U. and Cziepluch, C. (1988) Two genes encode related cytoplasmic elongation factors la (EF-la) in Drosophila melanogaster with continuous and stage specific expression. Nucleic Acids Res. 16:3175–3194.PubMedCrossRefGoogle Scholar
  31. Hunt, P., Wilkinson, D. and Krumlauf, R. (1991) Patterning the vertebrate head: Murine Hox 2 genes mark distict subpopulations of premigratory and migrating cranial neural crest. Development 112:43–50.PubMedGoogle Scholar
  32. Kauffman, S.A. (1984) Pattern generation and regeneration. In: “Pattern Formation: A primer in developmental biology”, G.M. Malacinski and S.V. Bryant, eds., Macmillan: New York, 73–102.Google Scholar
  33. Kaziro, Y. (1978) The role of guanosine 5’-triphosphate in polypeptide chain elongation. Biochim. Biophys. Acta. 505:95–127.PubMedCrossRefGoogle Scholar
  34. Kessel, M. and Gruss, P. (1990) Murine developmental control genes. Science 249:374–379.PubMedCrossRefGoogle Scholar
  35. Killackey, H.P. (1980) Pattern formation in the trigeminal system of the rat. Trends Neurosci. 3:303–306.Google Scholar
  36. Klein, B.G. and Rhoades, R.W. (1985) Representation of whisker follicle intrinsic musculature in the facial motor nucleus of the rat. J. Comp. Neurol. 232:55–69.PubMedCrossRefGoogle Scholar
  37. Klose, M. and Bentley, D. (1989) Transient pioneer neurons are essential for formation of an embryonic peripheral nerve. Science 245:982–984.PubMedCrossRefGoogle Scholar
  38. Lebeau, M.-C., Alvarez-Bolado, G., Wahli, W. and Catsicas, S. (1991) PCR driven DNA-DNA competitive hybridization: A new method for sensitive differential cloning. Nucleic Acids Res. 19:4778.PubMedCrossRefGoogle Scholar
  39. Letourneau, P.C. (1978) Chemotactic response of nerve fibre elongation to nerve growth factor. Dev. Biol. 66:183–196PubMedCrossRefGoogle Scholar
  40. Linsenmayer, T.F. (1972) Control of integumentary patterns in the chick. Dev. Biol. 27:244–271.PubMedCrossRefGoogle Scholar
  41. Lumsden, A.G.S. and Davies, A.M. (1983) Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor. Nature 306:786–788.PubMedCrossRefGoogle Scholar
  42. Lumsden, A.G.S. and Davies, A.M. (1986) Chemotropic effect of specific target epithelium in the developing mammalian nervous system. Nature 323:538–539.PubMedCrossRefGoogle Scholar
  43. Maden, M., Ong, D.E., Summerbell, D. and Chytil, F. (1989) The role of retinoid-binding proteins in the generation of pattern in the developing limb, the regenerating limb and the nervous system. Development 107 (supplement: The molecular basis of positional signalling):109–119.PubMedGoogle Scholar
  44. Mauger, A. (1972) Rôle du mésoderme somitique dans le développement du plumage dorsal chez l’embryon de poulet. II. Régionalisation du mésoderme plumigène. J. Embryol. Exp. Morph. 28:343–366.PubMedGoogle Scholar
  45. McConnell, S.K., Ghosh, A. and Shatz, C.J. (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245:978–982.PubMedCrossRefGoogle Scholar
  46. Melton, D.A., Krieg, P.A., Rebagliati, M.R., Maniatis, T., Zinn, K. and Green, M.R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acid Res. 12:7035–7056.PubMedCrossRefGoogle Scholar
  47. Miller, F.D., Naus, C.C.G., Higgins, G.A., Bloom, F.E. and Milner, R.J. (1987) Developmentally regulated rat brain mRNAs: molecular and anatomical characterization. J. Neurosci. 7:2433–2444.PubMedGoogle Scholar
  48. Molnar, Z. and Blakemore, C. (1991) Lack of regional specificity for connections formed between thalamus and cortex in coculture. Nature 351:475–477.PubMedCrossRefGoogle Scholar
  49. Monaghan, A.P., Davidson, D., Sime, C., Graham, E., Baldock, R., Bhattacharya, S. and Hill, R.E. (1991) The Msh-like homeobox genes define domains in the developing vertebrate eye. Development. 112:1053–1061.PubMedGoogle Scholar
  50. Newman, S.A. and Comper, W.D. (1990) “Generic” physical mechanisms of morphogenesis and pattern formation. Development 110:1–18.PubMedGoogle Scholar
  51. Novel, G. (1973) Feather pattern stability and reorganisation in cultured skin. J. Embryol. Exp. Morph. 30:605–633.PubMedGoogle Scholar
  52. Nurse, C.A. and Diamond, J. (1984) A fluorescent microscopic study on the development of rat touch domes and their Merkel cells. Neurosnience 11:509–520.CrossRefGoogle Scholar
  53. Nurse, C.A. and Farraway, L. (1988) Development of Merkel cell populations with contrasting sensitivities to neonatal deafferentation in the rat whiskerpad. Somatosensory and Motor Res. 6:141–162.CrossRefGoogle Scholar
  54. Oliver, G., Wright, Ch.V.E., Hardwicke, J. and De Robertis, E.M. (1988) Differential antero-posterior expression of two proteins encoded by a homeobox gene in xenopus and mouse embryos. EMBO J. 7:3199–3209.PubMedGoogle Scholar
  55. Porteus, M.H., Brice, A.E.J., Bulfone, A., Usdin, T.B., Ciaranello, R.D. and Rubenstein, J.L.R. (1992) Isolation and characterization of a library of cDNA clones that are preferentially expressed in the embryonic telencephalon. Mol. Brain Res. 12:7–22.PubMedCrossRefGoogle Scholar
  56. Rhyner, T.A., Biguet, N.F., Berrard, S., Borbely, A.A. and Mallet, J. (1986) An efficient approach for the selective isolation of specific transcripts from complex brain mRNA populations. J. Neurosci. Res. 16:167–181.PubMedCrossRefGoogle Scholar
  57. Rice, F.L., Mance, A. and Munger, B.L. (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J. Comp. Neurol. 252:154–174.PubMedCrossRefGoogle Scholar
  58. Rohrer, H., Heumann, R. and Thoenen, H. (1988) The synthesis of nerve growth factor (NGF) in developing skin is independent of innervation. Dev. Biol. 128:240–244.PubMedCrossRefGoogle Scholar
  59. Rosenfeld, M.G. (1991) POU-domain transcription factors: powerful developmental regulators. Genes and Development 5:897–907.PubMedCrossRefGoogle Scholar
  60. Rugh, R. (1990) “The mouse: Its reproduction and development”, Oxford University Press: Oxford, UK, etc.Google Scholar
  61. Sengel, P., Dhouailly, D. and Kieny, M. (1969) Aptitude des constituants cutanés de l’aptérie médio-ventrale à former des plumes. Dev. Biol. 19:436–446.PubMedCrossRefGoogle Scholar
  62. Sengel, P. (1976) “Morphogenesis of Skin”, Cambridge University Press: Cambridge, UK etc.Google Scholar
  63. Shepherd, J.C.W., Walldorf, U., Hug, P. and Gehring, W.J. (1989) Fruit flies with additional expression of the elongation factor EF-la live longer. Proc. Natl. Acad. Sci. USA 86:7520–7521.PubMedCrossRefGoogle Scholar
  64. Stainier, D.Y.R. and Gilbert, W. (1990) Pioneer neurons in the mouse trigeminal sensory system. Proc. Natl. Acad. Sci. USA 87:923–927.PubMedCrossRefGoogle Scholar
  65. Steller, H., Fischbach, K.-F. and Rubin, G.M. (1987) disconnected: A locus required for neuronal pathway formation in the visual system of Drosophila. Cell 50:1139–1153.PubMedCrossRefGoogle Scholar
  66. Stern, C. (1968) Developmental genetics of pattern. In: “Genetic mosaics and other essays”, Harvard University Press: Cambridge, MA 135–173.Google Scholar
  67. Tello, J.F. (1923) Genèse des terminaisons motrices et sensitives II. Terminaisons dans les poils de la souris blanche. Travaux du Laboratoire de recherches biologigues de 1’Université de Madrid 21:257–384.Google Scholar
  68. Thomson, K.S. (1987) Speculations concerning the role of the neural crest in the morphogenesis and evolution of the vertebrate skeleton. In: “Developmental and evolutionary aspects of the neural crest”, Wiley Series in Neurobiology, R.G. Northcutt and P.F.A. Maderson, eds., John Wiley & Sons: New York, etc., 301–338.Google Scholar
  69. Tokunaga, C. (1978) Genetic mosaic studies of pattern formation in Drosophila melanogaster, with special reference to the prepattern hypothesis. In: “Genetic mosaics and cell differentiation”, W.J. Gehring, ed., Springer-Verlag: Berlin, etc., 157–204.Google Scholar
  70. Tosney, K.W. and Landmesser, L.T. (1985) Growth cone morphology and trajectory in the lumbosacral region of the chick embryo. J. Neurosci. 5:2345–2358.PubMedGoogle Scholar
  71. Travis, G.H. and Sutcliffe, J.G. (1988) Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs. Proc. Nat. Acad. Sci. USA 85:1696–1700.PubMedCrossRefGoogle Scholar
  72. Turing, A. (1952) The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B237:37–72.Google Scholar
  73. Van der Loos, H. and Dörfl, J. (1978) Does the skin tell the somatosensory cortex how to construct a map of the periphery? Neurosci. Lett. 7:23–30.PubMedCrossRefGoogle Scholar
  74. Van der Loos, H. and Welker, E. (1985) Development and plasticity of somatosensory brain maps. In: “Development, organization, and processing in somatosensory pathways”, M. Rowe and W.D. Willis Jr. eds., Alan R. Liss, Inc.: New York, NY, 53–67.Google Scholar
  75. Van der Loos, H., Welker, E., Dörfl, J. and Rumo, G. (1986) Selective breeding for variations in patterns of mystacial vibrissae of mice; bilaterally symmetrical strains derived from ICR-stock. J. Hered. 77:66–82.PubMedGoogle Scholar
  76. Van der Loos, H., Welker, E., Dörfl, J. and Hoogiand, P. (1990) Brain maps: Development, plasticity and distribution of signals beyond. In: “The Neocortex: ontogeny and phylogeny”, B.L. Finlay, G. Innocenti and H. Scheich, eds., Plenum Press: New York, NY, 229–236.Google Scholar
  77. Van Exan, R.J. and Hardy, M.H. (1980) A spatial relationship between innervation and the early differentiation of vibrissa follicles in the embryonic mouse. J. Anat. 131:643–656.PubMedGoogle Scholar
  78. Vos, P., Stark, F. and Pittman, R.N. (1991) Merkel cells in vitro: Production of nerve growth factor and selective interactions with sensory neurons. Dev. Biol. 144:281–300.PubMedCrossRefGoogle Scholar
  79. Webster, G.C. (1985) “Molecular biology of aging, gene stability and gene expression”, R.S. Sohal, L.S. Birnbaum and R.G. Culter, eds., Raven: New York, 263–289.Google Scholar
  80. Welker, E., Gubbels, E.J. and Van der Loos, H. (1985) Mode of inheritance of supernumerary vibrissae and their sensory innervation as studied in a cross-breeding experiment, involving a normal and an “enriched” mouse strain. Neurosci. Lett. (Suppl.) 22:S344.Google Scholar
  81. Welker, E., Van der Loos, H., Dörfl, J and Soriano, E. (1990) The possible role of GABA-ergic innervation in plasticity of adult cerebral cortex. In: “The Neocortex: ontogeny and phylogeny”, B.L. Finlay, G. Innocenti and H. Scheich, eds., Plenum Press: New York, NY, 237–243.Google Scholar
  82. White, T.J., Arnheim, N. and Erlich, H.A. (1989) The polymerase chain reaction. Trends in Genetics 5:185–189.PubMedCrossRefGoogle Scholar
  83. Wolpert, L. (1969) Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 193:296–307.Google Scholar
  84. Woolsey, T.A. and Van der Loos, H. (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. Brain Res. 17:205–242.PubMedCrossRefGoogle Scholar
  85. Wrenn, J.T. and Wessells, N.K. (1984) The early development of mystacial vibrissae in the mouse. J. Embryol. Exp. Mornp. 83:137–156.Google Scholar
  86. Zafra, F., Hengerer, B., Leibrock, J., Thoenen, H. and Lindholm, D. (1990) Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 9:3545–3550.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • W. Ourednik
    • 1
  • W. Wahli
    • 2
  • H. Van der Loos
    • 1
  1. 1.Institut d’AnatomieUniversité de LausanneLausanneSwitzerland
  2. 2.Institut de Biologie AnimaleUniversité de LausanneLausanneSwitzerland

Personalised recommendations