Networks with Semi-Flexible Chains

  • B. Erman
  • I. Bahar
  • A. Kloczkowski
  • J. E. Mark


Classical theories of rubber elasticity1 are based on the flexible-chain model. A flexible chain may be classified as one with a characteristic ratio of the order of unity. The elasticity of the network is primarily of intramolecular origin arising from the entropy of the individual chains. Intermolecular contributions are of secondary importance. The phantom network model in which the chains do not experience any interaction with their neighbors seems to be a good firstorder approximation for real networks that consist of flexible chains. Recently, a large body of experimental work has been reported on networks made by crosslinking semi-flexible or semi-rigid chains. Stress-strain, swelling and birefringence measurements on these networks show significant deviations from the predictions of the classical network model. Among these networks are those prepared from aromatic polyamide chains2,3 from cellulose and amylose4–6 and from side-chain and main-chain liquid-crystalline systems.7–11 The chains constituting these networks have characteristic ratios which are several orders of magnitude larger than those of classical flexible chains. The networks are marked with very high degree of segmental orientability under macroscopic deformation and a discontinuous stress-strain behavior indicating a phase transition under external stress. These experimental observations can not be predicted by the classical network theories. Instead, a theory recognizing the reduced flexibility of these semi-rigid chains is required.


Axial Ratio Network Chain Helmholtz Free Energy Persistence Length Characteristic Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Mark, J. E.; Erman, B. Rubberlike Elasticity: A Molecular Primer ,Wiley Interscience: New York, 1988.Google Scholar
  2. (2).
    Aharoni, S. M.; Edwards, S. F. Macromolecules 1989, 22 ,3361.CrossRefGoogle Scholar
  3. (3).
    Aharoni, S. M.; Hatfield, G. R.; O’Brien, K. P. Macromolecules 1990, 23 ,1330.CrossRefGoogle Scholar
  4. (4).
    Erman, B.; Bahar, I.; Yang, Y.; Kloczkowski, A.; Mark, J. E. In P&G New York, 1991Google Scholar
  5. (5).
    Song, C. Q.; Litt, M. H.; Manas-Zloczower, I. In Polymeric Materials Science and Engineering; American Chemical Society: Washington, D. C., 1990; p 445.Google Scholar
  6. (6).
    Song, C. Q.; Litt, M. H.; Manas-Zloczower, I. J. Appl. Polym. Sci. 1991, 42 ,2517.CrossRefGoogle Scholar
  7. (7).
    Matoussi, H.; Ober, R.; Veyssie, M.; Finkelmann, H. Europhysics Letters 1986,2, 233.CrossRefGoogle Scholar
  8. (8).
    Zentel, R.; Reckert, G. Makromol. Chemie. 1986, 187 ,1915.CrossRefGoogle Scholar
  9. (9).
    Zentel, R.; Benalia, M. Makromol. Chemie. 1987, 188 ,665.CrossRefGoogle Scholar
  10. (10).
    Schatzle, J.; Kaufhold, W.; Finkelmann, H. Makromol. Chemie. 1989, 190 ,3269.CrossRefGoogle Scholar
  11. (11).
    Zentel, R. Angew. Chem. Int. Ed. Engl. Adv. Mater. 1989, 28 ,1407.CrossRefGoogle Scholar
  12. (12).
    Flory, P. J. In The Materials Science and Engineering of Rigid Rod Polymers 1989; p 3.Google Scholar
  13. (13).
    Abe, A.; Ballauff, M. In Liquid crystallinity in polymers A. Ciferri, Ed.; VCH: 1991.Google Scholar
  14. (14).
    Ballauff, M.; Wu, D.; Flory, P. J.; Barrall, E. M. Ber. Bunsenges. Phys. Chem. 1984, 88 ,524.CrossRefGoogle Scholar
  15. (15).
    Erman, B.; Flory, P. J.; Hummel, J. P. Macromolecules 1980, 13 ,484.CrossRefGoogle Scholar
  16. (16).
    Jung, B.; Schürmann, B. L Macromolecules 1989, 22 ,477.CrossRefGoogle Scholar
  17. (17).
    Lautenschlager, P.; Brickmann, J.; Ruiten, J.; Meier, R. J. Macromolecules 1991,24, 1284.CrossRefGoogle Scholar
  18. (18).
    Gilbert, R. D.; Patton, P. A. Prog. Poly. Sci. 1983, 9 ,115.CrossRefGoogle Scholar
  19. (19).
    Bur, A. J.; Fetters, L J. Chem. Revs. 1976, 76 ,727.CrossRefGoogle Scholar
  20. (20).
    Schaefgen, J. R.; Flory, P. J. J. Am. Chem. Soc. 1950, 72 ,689.CrossRefGoogle Scholar
  21. (21).
    de Gennes, P. G. C. R. Acad. Sci. Ser. 61975, 281 ,101.Google Scholar
  22. (22).
    Wang, X. J.; Warner, M. J. Phys. A: Math. Gen 1986, 19 ,2215.CrossRefGoogle Scholar
  23. (23).
    Wang, X. J.; Warner, M. J. Phys. A: Math. Gen 1987, 20 ,713.CrossRefGoogle Scholar
  24. (24).
    Warner, M.; Gelling, K.; Vilgis, T. J. C. P. J. Chem. Phys. 1988, 88 ,4408.CrossRefGoogle Scholar
  25. (25).
    Renz, W.; Warner, M. Proc. R. Soc. London 1988, A417 ,213.Google Scholar
  26. (26).
    Warner, M. In Side chain liquid crystal polymers C. B. Mc Ardle, Ed.; Chapman & Hall: New York, 1989; p 7.Google Scholar
  27. (27).
    Warner, M.; Wang, X. J. Macromolecules 1991, 24 ,4932.CrossRefGoogle Scholar
  28. (28).
    Warner, M.; Wang, X. J. Macromolecules 1992, 25 ,445.CrossRefGoogle Scholar
  29. (29).
    Abramchuk, S. S.; Khoklov, A. R. Dokl. Phys. Chem. 1988, 297 ,1069.Google Scholar
  30. (30).
    Bahar, I.; Erman, B.; Kloczkowski, A.; Mark, J. E. Macromolecules 1990, 23,5341.CrossRefGoogle Scholar
  31. (31).
    Erman, B.; Bahar, I.; Kloczkowski, A.; Mark, J. E. Macromolecules 1990, 23 ,5335.CrossRefGoogle Scholar
  32. (32).
    Erman, B.; Bahar, I.; Kloczkowski, A.; Mark, J. E. In Elastomeric Polymer Networks; J. E. Mark B. Erman, Ed.; Prentice Hall: New Jersey, 1992; p 142.Google Scholar
  33. (33).
    Kloczkowski, A.; Mark, J. E.; Erman, B.; Bahar, I. In ; I. Noda, Ed.; 1992.Google Scholar
  34. (34).
    Di Marzio, E. A. J. Chem. Phys. 1962, 36 ,1563.CrossRefGoogle Scholar
  35. (35).
    Tanaka, T.; Allen, G. Macromolecules 1977, 10 ,426.CrossRefGoogle Scholar
  36. (36).
    Flory, P. J. Proc. R. Soc., London, Ser. A. 1954, 234 ,73.Google Scholar
  37. (37).
    Flory, P. J.; Ronca, G. Mol. Cryst. Liq. Cryst. 1979, 54 ,289.CrossRefGoogle Scholar
  38. (38).
    Flory, P. J.; Ronca, G. Mol. Cryst. Liq. Cryst. 1979, 54 ,311.CrossRefGoogle Scholar
  39. (39).
    Warner, M.; Flory, P. J. J. Chem. Phys. 1980, 73 ,6327.CrossRefGoogle Scholar
  40. (40).
    Jarry, J. P.; Monnerie, L Macromolecules 1979, 12 ,316.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • B. Erman
    • 1
  • I. Bahar
    • 1
  • A. Kloczkowski
    • 2
  • J. E. Mark
    • 2
  1. 1.Polymer Research CenterBogazici UniversityIstanbulTurkey
  2. 2.Chemistry DepartmentUniversity of CincinnatiCincinnatiUSA

Personalised recommendations