Network Formation Theories and Their Application to Systems of Industrial Importance

  • Karel Dušek
  • Ján Šomvársky


The structure of polymer networks is closely related to the network formation (structure growth) process. A covalent polymer network is a giant macromolecule of dimensions commensurable with the macroscopic dimensions of a given object. Although it can be characterized by a number of average structural parameters, like sol fraction or crosslinking density, its internal structure can be very different1 varying from that of a random loosely crosslinked network of vulcanized rubber to that of very dense networks of some thermosets or ceramers. Also, micronetworks (microgels) or other microscopic precursors (dendritic structures, star- burst polymers, etc.) are formed first and then they grow into a macronetwork with the same or other types of structure growth processes. Vinyl-divinyl copolymerization can serve as an example.2 Therefore, the understanding of structure growth is necessary for understanding the network structure, and the properties of polymer networks can be correlated with their structure. An important role in undestanding of the network structure via the network formation process is played by the network formation theories.


Polymer Network Network Formation Substitution Effect Isocyanate Group Structure Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Dušek, Polymer networks: A challenge to theorist and technologist, J. Macromol. Sci.-Chem. A28: 843 (1991).Google Scholar
  2. 2.
    K. Dušek, Network formation in chain crosslinking (co)polymerisation, in: “Advances in Polymerisation. 3.,” R. N. Haward, ed., Applied Science Publishers, Barking (1982).Google Scholar
  3. 3.
    K. Dušek, Formation-structure relationship in polymer networks, Brit. Polym. J. 17: 185 (1985).CrossRefGoogle Scholar
  4. 4.
    K. Dušek and J. Šomvársky, Build-of polymer networks by initiated poly reactions. I. Comparison of the kinetic and statistical approaches to living polymerization type build-up, Polym. Bull. 13: 313 (1985).CrossRefGoogle Scholar
  5. 5.
    S. I. Kuchanov, “Application of the kinetic method in polymer chemistry” (in Russian), Nauka, Moscow 1978.Google Scholar
  6. 6.
    K. Dušek, Polymer networks. Formation and structure, Rec. Trav. Chirn. Pays-Bas 110: 507 (1991).Google Scholar
  7. 7.
    N. G. van Kampen, “Stochastic processes in physics and chemistry,” North Holland, Amsterdam (1981).Google Scholar
  8. 8.
    D. Stauffer, A. Coniglio, and M. Adam, Gelation and critical phenomena, Adv. Polym. Sci. 44: 103 (1981).CrossRefGoogle Scholar
  9. 9.
    H. M. J. Boots, J. G. Kloosterboer, G. M. M. van de Hei, and R. B. Pandey, Inhomogeneity during the bulk polymerisation of divinyl compounds: differential scanning calorimetry experiments and percolation theory, Br. Polym. J. 17: 219 (1985).CrossRefGoogle Scholar
  10. 10.
    Y. K. Leung and B. E. Eichinger, Computer simulations of end-linked elements. I. Trifunctional networks cured in bulk, J. Chem. Phys. 80: 3877, 3885 (1984).CrossRefGoogle Scholar
  11. 11.
    A. M. Gupta, R. C. Hendrickson, and C. W. Macosko, Monte Carlo description of Ay homopolymerization: Diffusional effects, J. Chem. Phys. 95: 2097 (1991).CrossRefGoogle Scholar
  12. 12.
    “Kinetics of aggregation and gelation,” F. Family and D. P. Landau, eds., Elsevier (1984).Google Scholar
  13. 13.
    L. Y. Shy, Y. K. Leung, and B. E. Eichinger, Critical exponent for off-lattice gelation of polymer chains, Macromolecules 18: 983 (1985).CrossRefGoogle Scholar
  14. 14.
    F. Leyvraz and H. R. Tschudi, Critical kinetics near gelation, J. Phys. A: Math. Gen. 15: 1951 (1982).CrossRefGoogle Scholar
  15. 15.
    E. M. Hendrics, M. H. Ernst, and R. M. Ziff, Coagulation equations with gelation, J. Stat. Phys. 31: 519 (1983).CrossRefGoogle Scholar
  16. 16.
    S. I. Kuchanov and E. S. Povolotskaya, Calculation of gel point for non-equilibrium polycondensation taking into account the substitution effect, Vysokomol. Soedin. A24: 2179 (1982).Google Scholar
  17. 17.
    H. Galina and A. Szustalewicz, A kinetic approach to network formation in an alternating stepwise copolymerizations, Macromolecules 23: 3833 (1990).CrossRefGoogle Scholar
  18. 18.
    H. Tobita and A. E. Hamielec, A kinetic model for network formation in free radical polymerization, Macromol. Chem., Macromol. Symp. 20/21: 501 (1988).CrossRefGoogle Scholar
  19. 19.
    H. Tobita and A. E. Hamielec, Modeling of network formation in free radical polymerization, Macromolecules 22: 3098 (1989).CrossRefGoogle Scholar
  20. 20.
    A. G. Mikos, C. G. Tsakoudis, and N. A. Peppas, Kinetic modeling of copolymerization/cross-linking reactions, Macromolecules 19: 2174 (1986).CrossRefGoogle Scholar
  21. 21.
    K. Dušek, J. Šomvársky, M. Ilavský, and L. Matějka, Gelation and network formation by polyetherification of polyepoxides initiated by hydroxyl groups: Theory, Comput. Polym. Sci. 1: 90 (1991).Google Scholar
  22. 22.
    D. A. McQuarrie, “Methuen’s review series on applied probability. Volume 8. Stochastic approach to chemical kinetics,” Methuen, London (1967).Google Scholar
  23. 23.
    J. Mikes and K. Dušek, Simulation of the polymer network formation by the Monte-Carlo method, Macromolecules 15: 93 (1982).CrossRefGoogle Scholar
  24. 24.
    H. P. Breuer, J. Honerkamp, and F. Petruccione, Stochastic simulation of polymerization reactions, Comput. Polym. Sci. 1: 233 (1991).Google Scholar
  25. 25.
    K. Kang and S. Redner, Fluctuation-dominated kinetics in diffusion-controlled reactions, Phys. Rev. A 32: 435 (1985).CrossRefGoogle Scholar
  26. 26.
    R. J. J. Williams, C. C. Riccardi, and K. Dušek, Build-up of polymer networks by initiated polyreaction. 3. Analysis of the fragment approach to living polymerization type of buildup, Polym. Bull 17: 515 (1987).CrossRefGoogle Scholar
  27. 27.
    D. R. Miller and C. W. Macosko, Calculation of average network parameters using combined kinetic and Markovian analysis, in: “Biological and synthetic polymer networks,” O. Kramer, ed., Elsevier 1988, p. 219.CrossRefGoogle Scholar
  28. 28.
    K. Dušek and W. J. MacKnight, Cross-linking and structure of polymer networks, in: “Cross-linked polymers. Chemistry, properties, and applications,” R. A. Dickie and R. S. Bauer, eds., ACS Symp. Ser. No. 367, American Chemical Society, Washington, D.C., 1988, p. 2.Google Scholar
  29. 29.
    G. R. Dobson and M. Gordon, Theory of branching processes and statistics of rubber elasticity, J. Chem. Phys. 43: 705 (1965).CrossRefGoogle Scholar
  30. 30.
    D. R. Miller and C. W. Macosko, Network parameters for crosslinking of chains with length and size distribution, J. Polym. Sci., Part. B: Polym. Phys. 26: 1 (1988).CrossRefGoogle Scholar
  31. 31.
    K. Dušek and M. Ilavský, Cyclization in crosslinking polymerization. I. Chain copolymer-ization of a bisunsaturated monomer (monodisperse case); II. Chain copolymerization of a bisunsaturated monomer (polydisperse case), J. Polym. Sci., Symposium No. 53 ,13: 57, 75 (1975).Google Scholar
  32. 32.
    G. P. J. M. Ttiemersma-Thone, B. J. R. Scholtens, K. Dušek, and M. Gordon, Theories of network formation in multi-stage processes, J. Polym. Sci., Part. B: Polym. Phys. 20: 463 (1991).CrossRefGoogle Scholar
  33. 33.
    C. Sarmoria and D. R. Miller, Models for the first shell substitution effect in stepwise polymerization, Macromolecules 24: 1833 (1991).CrossRefGoogle Scholar
  34. 34.
    N. A. Dotson, Correlations on nonlinear free-radical polymerizations: Substitution effect, Macromolecules 25: 308 (1992).CrossRefGoogle Scholar
  35. 35.
    S. I. Kuchanov, S. V. Korolyov, and M. G. Slinko, Configurational statistics of branched poly condensation type polymers, Vysokomol. Soedin. A26: 263 (1984).Google Scholar
  36. 36.
    M. Gordon and G. R. Scantlebury, The theory of branching processes and kinetically controlled ring-chain competition processes, J. Polym. Sci., Part C 16: 3933 (1968).Google Scholar
  37. 37.
    R. F. T. Stepto, Intramolecular reaction and gelation in condensation or random polycon-densation, in: “Developments in Polymerisation. 3.,” R. N. Haward, ed., Applied Science Publ., Barking 1982, p. 81.Google Scholar
  38. 38.
    R. F. T. Stepto, Intramolecular reaction: effect on network formation and properties, in: “Cross-linked polymers. Chemistry, properties, and applications,” R. A. Dickie, S. S. Labana, and R. S. Bauer, eds., ACS Smp. Ser. No. 367, American Chemical Society, Washington, D.C., 1988, p. 28.CrossRefGoogle Scholar
  39. 39.
    C. Sarmoria, E. Valles, and D. R. Miller, Ring-chain competition kinetic models for linear and nonlinear step reaction copolymerizations, Makromol. Chem., Macromol. Symp. 2: 69 (1986).CrossRefGoogle Scholar
  40. 40.
    K. Dušek, M. Gordon, and S. B. Ross-Murphy, Graphlike state of matter. 10. Cyclization and concentration of elastically active network chains in polymer networks, Macromolecules 11: 236 (1978).CrossRefGoogle Scholar
  41. 41.
    K. Dušek and V. Vojta, Concentration of elastically active network chains and cyclisation in networks obtained by alternating step wise polyadition, Br. Polym. J. 9: 164 (1977).CrossRefGoogle Scholar
  42. 42.
    W. H. Stockmayer, Theory of molecular size distribution and gel formation in branched chain polymers, J. Chem. Phys. 11: 45 (1943).CrossRefGoogle Scholar
  43. 43.
    K. Dušek, Correspondence between the theory of branching processes and the kinetic theory for random crosslinking in the post-gel stage, Polym. Bull. 1: 523 (1979).CrossRefGoogle Scholar
  44. 44.
    R. M. Ziffand E. D. McGrady, The kinetics of cluster framentation and depolymerisation, J. Phys. A: Math. Gen. 18: 3027 (1985).CrossRefGoogle Scholar
  45. 45.
    R. M. Ziffand E. D. McGrady, Kinetics of polymer degradation, Macromolecules 19: 2513 (1986).CrossRefGoogle Scholar
  46. 46.
    M. Demjanenko and K. Dušek, Statistics of degradation and crosslinking of polymer chains with the use of the theory of branching processes, Macromolecules 13: 571 (1980).CrossRefGoogle Scholar
  47. 47.
    J. E. Martin and D. Adolf, The sol-ge transition in chemical gels, Annu. Rev. Phys. Chem. 42: 311 (1991).CrossRefGoogle Scholar
  48. 48.
    K. Dušek, M. Špírková, and I. Havlícek, Network formation in polyurethanes due to side reactions, Macromolecules 23: 1774 (1990).CrossRefGoogle Scholar
  49. 49.
    K. Dušek, Network formation in curing of epoxy resins, Adv. Polym. Sci. 81: 167 (1986).CrossRefGoogle Scholar
  50. 50.
    L. Matějka and K. Dušek, The mechanism of curing of epoxides based on diglycidylamine with aromatic amine. I. Reaction between diglycidylaniline, Macromolecules 22: 2902, 2911 (1991).Google Scholar
  51. 51.
    L. Matëjka and K. Dušek, Influence of the reaction mechanism on the network formation of amine cured N,N-diglycidylamine epoxy resins, Polymer 32: 3195 (1991).CrossRefGoogle Scholar
  52. 52.
    K. Dušek, B. J. R. Scholtens, and G. P. J. M. Tiemersma-Thoone, Theoretical treatment of network formation by a multistage process, Polym. Bull. 17: 239 (1987).CrossRefGoogle Scholar
  53. 53.
    G. P. J. M. Tiemersma-Thoone, B. J. R. Scholtens, and K. Dušek, A stochastic description of copolymerization and network formation in a three-stage process, Proc. 1st Internat. Conf. Ind. Appl. Mathematics ,Amsterdam 1989, p. 295.Google Scholar
  54. 54.
    A. Matsumoto, H. Matsou, H. Ando, and M. Oiwa, Solvent effect in the copolymerization of methyl methacrylate with oligoglycol dimethacrylate, Eur. Polym. J. 25: 237 (1989).CrossRefGoogle Scholar
  55. 55.
    A. Matsumoto, H. Ando, and M. Oiwa, Gelation in the copolymerization of methyl methacrylate with trimethylolpropane trimethacrylate, Eur. Polym. J. 25: 385 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Karel Dušek
    • 1
  • Ján Šomvársky
    • 1
  1. 1.Institute of Macromolecular ChemistryCzechoslovak Academy of SciencesPrague 6Czechoslovakia

Personalised recommendations