Skip to main content

Investigations of the Biosynthesis of Aristeromycin

  • Chapter
Book cover Secondary-Metabolite Biosynthesis and Metabolism

Part of the book series: Environmental Science Research ((ESRH,volume 44))

Abstract

Aristeromycin (1) (Figure 1) is a carbocyclic analogue of adenosine which was first synthesized in racemic form in 1966.1 Shortly thereafter, the compound was isolated from the fermentation broth of Streptomyces citricolor, its structure was elucidated, and its absolute configuration was determined.2 Aristeromycin displays a variety of interesting biological activities,3,4 including inhibition of cell division and elongation in rice plants, inhibition of AMP synthesis in mammalian cells, and inhibition of the enzyme S-adenosylhomocysteine hydrolase.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. F. Shealy and J. D. Clayton, 9-[ß-DL-2α,3α-Dihydroxy-4ß-(hydroxymethyl)-cyclopentyl]adenine, the Carbocyclic Analog of Adenosine, J. Am. Chem. Soc. 88:3885 (1966).

    Article  Google Scholar 

  2. T. Kusatka, H. Yamomoto, M. Shibata, M. Muroi, T. Kishi, and K. Mizuno, Streptomyces Citricolor Nov. Sp. and a New Antibiotic, Aristeromycin, J. Antibiot. 21:255 (1968)

    Article  Google Scholar 

  3. T. Kishi, M. Muroi, T. Kusaka, M. Nishikawa, K. Kamiya, and K. Mizuno, The Structure of Aristeromycin, Chem. PharmBull. 20:940 (1972).

    Article  CAS  Google Scholar 

  4. R. J. Suhadolnik, Nucleosides as Biological Probes ,Wiley, New York (1979) p 147.

    Google Scholar 

  5. R. J. Suhadolnik, Nucleoside Antibiotics ,Wiley-Interscience, New York (1970) p 236.

    Google Scholar 

  6. A. Guranowski, J. A. Montgomery, G. L. Cantoni, and P. K. Chiang, Adenosine Analogs as Substrates and Inhibitors of S-Adenosylhomocysteine Hydrolase, Biochemistry ,20:110 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. S. Yaginuma, N. Muto, M. Tsujino, Y. Sudate, M. Hayashi, and M. J. Otani, Studies on Neplanocin A, New Antitumor Antibiotic. I. J. Antibiot. 34:359 (1981).

    Article  PubMed  CAS  Google Scholar 

  8. M. Hayashi, S. Yaginuma, H. Yoshioka, and K. Nakatsu, Studies on Neplanocin A,New Antitumor Antibiotic. Π. J. Antibiot. 34:675 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. R. T. Borchardt, B. T. Keller, and U. Patel-Thombre, Neplanocin A. A Potent Inhibitor of S-Adenosylhomocysteine Hydrolase and of Vaccinia Virus Multiplication in Mouse L929 Cells, J. Biol. Chem. 259:4353 (1984).

    PubMed  CAS  Google Scholar 

  10. S. Omura, H. Ishikawa, H. Kuga, N. Imamura, S. Taga, Y. Takahashi, and H. Tanaka,Adecypenol, A Unique Adenosine Deaminase Inhibitor Containing Homopurine and Cyclopentene Rings, J. Antibiot. 39:1219 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. H. Nakamura, G. Koyama, Y. Iitaka, M. Ohno, N. Yagisawa, S. Kondo, K. Maeda,and H. Umezawa, Structure of Coformycin, an Unusual Nucleoside of Microbial Origin, J. Am. Chem. Soc. 96:4327 (1974).

    Article  PubMed  CAS  Google Scholar 

  12. D. L. Williams and T. W. Whaley, Syntheses with Stable Isotopes: D-Glucose-6-13C and 1,6-Anhydro-ß-L-Idopyranose-6-13C, J. Labelled Compds. Radiopharm.19:669 (1982).

    Article  CAS  Google Scholar 

  13. B. Kohn and P. Kohn, The Preparation of Radioactive D-Galactose from Radioactive D-Glucose, J. Org. Chem. 28:1037 (1963).

    Article  CAS  Google Scholar 

  14. C. E. Snipes, G.-U. Brillinger, L. Sellers, L. Mascaro, and H. G. Floss, Stereochemistry of the dTDP-glucose Oxidoreductase Reaction, J. Biol. Chem. 252:8113 (1977).

    PubMed  CAS  Google Scholar 

  15. There appears to be some excess tritium loss from both the 65 and 6R isomers (compare with ref. 24). The reason for this is presently unknown.

    Google Scholar 

  16. S. C. Hartman, Metabolic Pathways ,3rd ed., D. M. Greenberg, ed., Academic Press, New York, Vol. IV (1970).

    Google Scholar 

  17. T. Kozluk and I. D. Spenser, 13C NMR Spectroscopy as a Biosynthetic Probe: The Biosynthesis of Purines in Yeast, J. Am. Chem. Soc. 109:4698 (1987)

    Article  CAS  Google Scholar 

  18. H. Kochi and G. Kikuchi, Mechanism of the Reversible Glycine Cleavage Reaction in Arthrobacter globiformis, J. Biochem. 75:1113 (1974).

    PubMed  CAS  Google Scholar 

  19. N. L. Lawrence, The Cleavage of Adenosine by Spores of Bacillus Cereus, J.Bacteriol. 70:577 (1955)

    PubMed  CAS  Google Scholar 

  20. J. Hurwitz, L. A. Heppel, and B. L. Horecker, The Enzymatic Cleavage of Adenylic Acid to Adenine and Ribose-5-phosphate, J. Biol. Chem. 226:525 (1957).

    PubMed  CAS  Google Scholar 

  21. C. R. Johnson and T. D. Penning, Triply Convergent Synthesis of (-) Prostaglandin E2 Methyl Ester, J. Am. Chem. Soc. 110:4726 (1988).

    Article  CAS  Google Scholar 

  22. For previous examples of the photochemical addition of methanol to enones see: B. Frazier-Reid, N. L. Holden, D. R. Hicks, and D. L. Walker, Synthetic Applications of the Photochemically Induced Addition of Oxycarbinyl Species to α-Enones. Part I, II, Can. J. Chem. 55:3978, 3986 (1977).

    Article  Google Scholar 

  23. C. R. Johnson and J. R. Medlich, Efficient Preparation of [(Methoxymethoxy)methyl]-tributylstannane, a Convenient Hydroxymethyl Anion Equivalent, J. Org. Chem. 53:4131 (1988).

    Article  CAS  Google Scholar 

  24. C. Marschner, G. Penn, and H. Griengl, Synthesis of α and ß-D-Carbaribofuranose from (+)-Norborn-5-en-2-one, Tetrahedron Lett. 31:2873 (1990);

    Article  CAS  Google Scholar 

  25. K. Tadano, M. Hashino, S. Ogawa, and T. Suami, Transformation of D-Erythrose to Some Pseudoaldopentafuranoses. Synthesis of (1S, 2R, 35, 4S)-, (1R ,2R, 35, 4S)-, and (1R, 2R ,3S, 4S)-2, 3, 4-Trihydroxy-l-(hydroxymethyl)cyclopentanes and (1R ,2S, 3R, 4R)-2, 3-Dihydroxy-4-(hydroxymethyl)-l-cyclopentanamine, J. Org. Chem. 53:1427 (1988).

    Article  CAS  Google Scholar 

  26. E. J. Corey, K. C. Nicolaou, R. D. Balanson, and Y. Machida, A Useful Method for the Conversion of Azides to Amines, Synthesis ,590 (1975).

    Google Scholar 

  27. G. Flesch and M. J. Rohmer, Biosynthesis of a Carbocyclic Pentose Analogue Linked to Bacteriohopanetetrol from the Bacterium Methylobacteriwn organophilum, Chem. Soc. Chem. Commun. 869 (1988).

    Google Scholar 

  28. M. W. Loewus, F. A. Loewus, G.-U. Brillinger, H. Otsuka, and H. G. Floss, Stereochemistry of the myo-Inositol-l-phosphate Synthase Reaction, J. Biol. Chem. 255:11710 (1980).

    PubMed  CAS  Google Scholar 

  29. B. Lewin, Genes II ,Wiley, New York (1985) p 249.

    Google Scholar 

  30. C. Walsh, Enzymatic Reaction Mechanisms ,Freeman, San Francisco (1979) p 347.

    Google Scholar 

  31. See: T. S. Widlanski, S. L. Bender, and J. R. Knowles, Dehydroquinate Synthase: A Sheep in Wolf’s Clothing?, J. Am. Chem. Soc. 109:1873 (1987) and references cited therein.

    Article  CAS  Google Scholar 

  32. C. Walsh, Enzymatic Reaction Mechanisms ,Freeman, San Francisco (1979) p 586.

    Google Scholar 

  33. K. R. Hanson, and I. A. Rose, Interpretations of Enzyme Reaction Stereospecificity,Ace. Chem. Res. 8:1 (1975)

    Article  CAS  Google Scholar 

  34. C. Walsh, Enzymatic Reaction Mechanisms ,Freeman, San Francisco (1979) p 591.

    Google Scholar 

  35. C. A. Caparelli and M. F. Price, Carbocyclic Glycinamide Ribonucleotide is a Substrate for Glycinamide Ribonucleotide Transformylase, Arch. Biochem. Biophys. 264:340 (1988).

    Article  Google Scholar 

  36. R. J. Parry, V. Bornemann, and R. Subramanian, Biosynthesis of the Nucleoside Antibiotic Aristeromycin, J. Am. Chem. Soc. 111: 5819 (1989)

    Article  CAS  Google Scholar 

  37. R. J. Parry, K. Haridas, R. De Jong, and C. R. Johnson, Biosynthesis of Aristeromycin: Evidence for the Intermediacy of a 4ß-Hydroxymethyl-1α, 2α, 3α-trihydroxycyclopentanetriol, Tetrahedron Lett. 31: 7549 (1990);

    Article  CAS  Google Scholar 

  38. R. J. Parry, K. Haridas, R. De Jong, and C. R. Johnson, Investigations of Aristeromycin Biosynthesis: Evidence for the Intermediacy of a 2α, 3α-Dihydroxy-4ß-(hydroxymethyl)-1ß-cyclopentaneamine, Chem. Commun. 740 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parry, R.J. (1992). Investigations of the Biosynthesis of Aristeromycin. In: Petroski, R.J., McCormick, S.P. (eds) Secondary-Metabolite Biosynthesis and Metabolism. Environmental Science Research, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3012-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3012-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6312-5

  • Online ISBN: 978-1-4615-3012-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics