Advertisement

Exploring the Intricate Details of Antibiotic Biosynthesis

  • Steven J. Gould
Part of the Environmental Science Research book series (ESRH, volume 44)

Abstract

It is not sufficient to identify the ordinary metabolic precursor(s) of a secondary metabolite, and then simply use “paper chemistry” to infer the subsequent processes leading to the final product. In order to illustrate the scope of the approaches we are currently using to elucidate the intricate details of secondary metabolism in microorganisms, portions of three studies are presented.

Keywords

Intricate Detail Triflic Acid Absolute Stereochemistry Radiochemical Detector Intramolecular Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Lee, A. A. Fantini, G. O. Morton, J. C. James, D. B. Borders and R. T. Testa, New Antitumor Antibiotic, LL-C10037α Fermentation, Isolation and Structure Determination, J. Antibiot ,37:1149 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    B. Shen, Y. G. Whittle, S. J. Gould, and D. A. Keszler, Structure and Absolute Stereochemistry of the Epoxyquinol LL-C10037α and Related Metabolites From Streptomyces LL-C10037, J. Org. Chem. ,55:4422 (1990).CrossRefGoogle Scholar
  3. 3.
    S. J. Box, M. L. Gilpin, M. Gwynn, G. Hanscomb, S. R. Spear, and A. G. Brown, MM 14201, A New Epoxyquinone Derivative With Antibacterial Activity Produced by a Species of Streptomyces, J. Antibiot ,36:1631 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. G. Whittle and S. J. Gould, The Biosynthesis of LL-C10037α From the Shikimate Pathway, J. Am. Chem. Soc ,109: 5043 (1987).CrossRefGoogle Scholar
  5. 5.
    S. J. Gould, B. Shen, and Y. G. Whittle, Biosynthesis of Antibiotic LL-C10037a: The Steps Beyond 3-Hydroxyanthranilic Acid, J. Am. Chem. Soc. ,111:7932 (1989).CrossRefGoogle Scholar
  6. 6.
    S. J. Gould and B. Shen, Epoxyquinones from 2,5-Dihydroxyacetanilide: Opposite Facial Specificity in the Epoxidation by Enzymes From Streptomyces LL-C10037 and Streptomyces MPP 3051, J. Am. Chem. Soc. ,113:684 (1991).CrossRefGoogle Scholar
  7. 7.
    B. Shen and S. J. Gould, Opposite Facial Specificity For Two Hydroquinone Epoxidases: (3-Si ,4-Re)-2,5-Dihydroxyacetanilide Epoxidase From Streptomyces LLC10037 and (3-Re ,4-Si)-2,5-Dihydroxyacetanilide Epoxidase From Streptomyces MPP 3051, Biochemistry ,30:0000 (1991).Google Scholar
  8. 8.
    J. A. Sadowski, H. K. Schnoes, and J. W. Suttie, Vitamin K Epoxidase: Properties and Relationship to Prothrombin Synthesis, Biochemistry ,16:3856 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    J. W. Priest and R. J. Light, Patulin Biosynthesis: Epoxidation of Toluquinol and Gentisyl Alcohol by Particulate Preparations From Penicillium patulum, Biochemistry ,28:9192 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    Y. Sato and S. J. Gould, Biosynthesis of Kinamycin D. Incorporation of [1,2-13C2]acetate and of [2-2H3,1-13C]acetate, Tetrahedron Lett ,26:4023 (1985)CrossRefGoogle Scholar
  11. 11.
    Y. Sato and S. J. Gould, Biosynthesis of Kinamycin Antibiotics by Streptomyces murayamaensis. Determination of the Origin of Carbon, Hydrogen, and Oxygen Atoms by 13C NMR Spectroscopy, J. Am. Chem. Soc. ,108:4625 (1986).CrossRefGoogle Scholar
  12. 12.
    P. J. Seaton and S. J. Gould, Kinamycin Biosynthesis, Derivation by Excision of an Acetate Unit From a Single-chain Decaketide Intermediate, J. Am. Chem. Soc. 109: 5282 (1987).CrossRefGoogle Scholar
  13. 13.
    P. J. Seaton and S. J. Gould, Origin of the Cyanamide Carbon of the Kinamycin Antibiotics, J. Am. Chem. Soc ,110:5912 (1988).CrossRefGoogle Scholar
  14. 14.
    M. C. Cone, P. J. Seaton, K. A. Halley and S. J. Gould, New Products Related to Kinamycin From Streptomyces murayamaensis. I. Taxonomy, Production, Isolation and Biological Properties. J. Antibiot. 42:179 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    P. J. Seaton and S. J. Gould, New Products Related to Kinamycin From Streptomyces murayamaensis. II. Structures of Pre-kinamycin, Keto-anhydrokinamycin, and Kinamycins E and F, J. Antibiot. ,42:189 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    G. Fendrich, W. Zimmermann, J. Gruner and J. A. L Auden, Manufacture of Antitumor Phenanthridine Derivatives With a Novel Streptomyces, Eur. Pat. Appl. EP 304,400 (Cl. C07D221/18), 22 Feb 1989, CH appl. 87/3, 196, 20 Aug 1987 (Chem. Abstr. ,112:75295q (1990)).Google Scholar
  17. 17.
    M. Gore, S. J. Gould and D. D. Weiler, Total Synthesis of Phenanthroviridin Aglycon: The First Naturally Occurring Benzo[ö]phenanthridine, J. Org. Chem. ,56:2289 (1991).CrossRefGoogle Scholar
  18. 18.
    S. Takeuchi, K. Hirayama, K. Ueda, H. Sakai and H. Yonehara, Blasticidin S. A New Antibiotic, J. Antibiot. ,11:1 (1958).PubMedGoogle Scholar
  19. 19.
    H. Seto, I. Yamaguchi, N. Ötake and H. Yonehara, Studies on the Biosynthesis of Blasticidin S Part I. Precursors of Blasticidin S Biosynthesis, Agr. Biol. Chem. ,32:1292 (1968).CrossRefGoogle Scholar
  20. 20.
    D. J. Aberhart, S. J. Gould, H.-J. Lin, T. K. Thiruvengadam and B. H. Weiler,Stereochemistry of Lysine 2,3-Aminomutase Isolated From Clostridium subterminale Strain SB4, J. Am. Chem. Soc. ,105:5461 (1983).CrossRefGoogle Scholar
  21. 21.
    T. K. Thiruvengadam, S. J. Gould, D. J. Aberhart and H.-J. Lin, Biosynthesis of Streptothricin F. 5. Formation of ß-Lysine by Streptomyces L-1689-23, J. Am. Chem. SoSoc. ,105:5470 (1983).CrossRefGoogle Scholar
  22. 22.
    P. C. Prabhakaran, N.-T. Woo, P. S. Yorgey and S. J. Gould, Biosynthesis of Blasticidin S From L-α-Arginine. Stereochemistry in the Arginine-2,3-aminomutase Reaction, J. Am. Chem. Soc. ,110:5785 (1988).CrossRefGoogle Scholar
  23. 23.
    S. J. Gould, P. C. Prabhakaran, unpublished results.Google Scholar
  24. 24.
    N. Ōtake, S. Takeuchi, T. Endo and H. Yonehara, Chemical Studies on Blasticidin S Part III. The Structure of Blasticidin S, Agr. Biol. Chem. ,30:132 (1966).CrossRefGoogle Scholar
  25. 25.
    Full details will be published elsewhere.Google Scholar
  26. 26(a).
    D. P. Wallach with the technical assistance of N. J. Crittenden, Studies on the GABA Pathway-I: The Inhibition of γ-Aminobutyric Acid-α-Ketoglutaric Acid Transaminase in vitro and in vivo by U-7524 (Amino-o×yacetic acid), Biochem Pharmacol. ,5:323 (1961)Google Scholar
  27. 26(b).
    K. Kanamori, R. L Weiss and J. D. Roberts, Glutamate Biosynthesis in Bacillus azotofixans 15N NMR and Enzymatic Studies, J. Biol. Chem. ,263:2817 (1988).PubMedGoogle Scholar
  28. 27.
    K. Nakayama and H. Yoshida, Fermentative Production of L-Arginine, Agr. Biol. Chem.,36:1675 (1972).CrossRefGoogle Scholar
  29. 28.
    S. Simmonds, E. B. Keller, J. P. Chandler and V. du Vigneaud, The Effect of Ethionine on Transmethylation From Methionine to Choline and Creatine in vivo, J. Biol. Chem. ,183:191 (1950).Google Scholar
  30. 29.
    H. Seto, K. Furihata and H. Yonehara, Studies on the Biosynthesis of Blasticidin S V. Isolation and Structure of Pentopyranic Acid, J. Antibiot. ,29:595 (1976).PubMedCrossRefGoogle Scholar
  31. 30.
    H. Seto, N. Ōtake, and H. Yonehara, The Structures of Pentopyranines A and C, Two Cytosine Nucleosides With α-L-Configuration, Agr. Biol. Chem. ,37:2421 (1973).CrossRefGoogle Scholar
  32. 31.
    H. Seto and H. Yonehara, Studies on the Biosynthesis of Blasticidin S VII. Isolation of Demethylblasticidin S, J. Antibiot ,30:1022 (1977).PubMedCrossRefGoogle Scholar
  33. 32.
    R. F. Schleif and P. C. Wensink, Enzyme Assays, in: “Practical Methods in Molecular Biology,” Springer-Verlag, New York (1981).CrossRefGoogle Scholar
  34. 33.
    J. Guo and S. J. Gould, Biosynthesis of Blasticidin S From Cytosylglucuronic Acid (CGA). Isolation of Cytosine:UDPGIucuronosyltransferase and Incorporation of CGA by Streptomyces griseochromogenes, J. Am. Chem. SoSoc. ,113:0000 (1991).Google Scholar
  35. 34.
    H. Seto, N. Ōtake, and H. Yonehara, Studies on the Biosynthesis of Blasticidin S Part II. Leucylblasticidin S, a Metabolic Intermediate of Blasticidin S Biosynthesis, Agr. Biol. Chem. ,32:1299 (1968).CrossRefGoogle Scholar
  36. 35.
    J. Guo and S. J. Gould, Biosynthesis of Blasticidin S. Cell-free Demonstration of Methylation as the Last Step, submitted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Steven J. Gould
    • 1
  1. 1.Department of ChemistryOregon State UniversityCorvallisUSA

Personalised recommendations