Skip to main content

Oxidation of Olefins to Aldehydes Using a Palladium-Copper Catalyst

  • Chapter
The Activation of Dioxygen and Homogeneous Catalytic Oxidation

Abstract

The oxidation of terminal olefins with palladium salts usually affords methyl ketones.1–3 However, in 1986 it was reported that aldehydes could be obtained using a catalyst comprising (CH3CN)2Pd(NO2)Cl and CuCl2 in t-butanol solvent, which was proposed to be bimetallic with the NO2 group intact.4 Our studies suggest that this catalyst is best described as a Wacker-like oxidation catalyst modified by an alkyl nitrite, and we report an improved version of this catalyst. Moreover, the application of our system to the oxidation of terminal olefins with allylic substituents has led to some insight as to the potential role of the copper co-catalyst in Wacker-like reactions.

IR data (THF-d8): Nitrate bands: 1549, 1500, 1300, 1288, 1255 cm-1. Nitrosyl band: 1860 cm-1. The nitrosyl compound could be independently generated by treating CuCl2 with NOC1 in THF. This nitrosyl complex is rapidly converted to the mixture of nitrate species on exposure to oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.M. Maitlis. “The Organic Chemistry of Palladium,” vol. 2, Academic, New York (1971).

    Google Scholar 

  2. P.M. Henry. “Palladium Catalyzed Oxidation of Hydrocarbons,” D. Reidel, Dordrecht (1980).

    Google Scholar 

  3. J. Tsuji. “Organic Synthesis with Palladium Compounds,” Springer-Verlag, New York (1980).

    Book  Google Scholar 

  4. J.-y. Lai, X.-x. Shi, L.-x. Dai, J. Org. Chem.. 57:3485 (1992).

    Article  CAS  Google Scholar 

  5. T. Hosokawa, Y. Ataka, S.-I. Murahashi, Bull. Chem. Soc. Jpn. 63:166 (1990).

    Article  CAS  Google Scholar 

  6. T. Hosokawa, T. Shinohara, Y. Ooka, S.-I. Murahashi, Chem. Lett. 2001 (1989).

    Google Scholar 

  7. J. Nogami, H. Ogawa, S. Miyamoto, T. Mandai, S. Wakabayashi, J. Tsuji, Tetrahedron Lett. 29:5181 (1988).

    Article  Google Scholar 

  8. A.K. Base, L. Krishnan, D.R. Wagle, M.S. Menhas, Tetrahedron Lett. 27:5955 (1986).

    Article  Google Scholar 

  9. T. Hosokawa, T. Ohta, S.-I. Murahashi, J. Chem. Soc., Chem. Commun. 848 (1983).

    Google Scholar 

  10. E.C. Alyea, S.A. Dias, G. Ferguson, A.J. McAlees, R. McCrindle, P.J. Roberts, J. Am. Chem. Soc. 99:4985 (1977).

    Article  CAS  Google Scholar 

  11. W.G. Lloyd, B.J. Luberoff, J. Org. Chem. 34:3949 (1969).

    Article  CAS  Google Scholar 

  12. A 65% aldehyde selectivity for the oxidation of allyl acetate in the presence of hexamethylphosphoric triamide has also been reported: T. Hosokawa, S. Aoki, M. Takano, T. Nakahira, Y. Yoshida, S.-I. Murahashi, J. Chem. Soc., Chem. Commun. 1559 (1991).

    Google Scholar 

  13. B.L. Feringa, J. Chem. Soc., Chem. Commun. ,909 (1986).

    Google Scholar 

  14. M.A. Andrews and K.P. Kelly, J. Am. Chem. Soc. 103:2894 (1981).

    Article  CAS  Google Scholar 

  15. M.A. Andrews and C.-W.F. Cheng, J. Am. Chem. Soc. 104:4268(1982).

    Article  CAS  Google Scholar 

  16. M.A. Andrews, T.C.-T. Chang, C.-W.F. Cheng, T.J. Emge, K.P. Kelly, and T.F. Koetzle, J. Am. Chem. Soc. 106:5913 (1984).

    Article  CAS  Google Scholar 

  17. M.A. Andrews, T.C.-T. Chang, C.-W.F. Cheng, and K.P. Kelly, Organometallics 3:1777 (1984).

    Article  CAS  Google Scholar 

  18. M.A. Andrews, T.C.-T. Chang, and C.-W.F. Cheng, Organometallics 4:268 (1985).

    Article  CAS  Google Scholar 

  19. T.T. Wenzel, J. Chem. Soc., Chem. Commun. 932 (1989).

    Google Scholar 

  20. I.I. Moiseev, A. A. Grigor’ev, S.V. Pestrikov, Zh. Org. Khim.. 4:354 (1968).

    CAS  Google Scholar 

  21. P.M. Henry. “Palladium Catalyzed Oxidation of Hydrocarbons,” p. 133, D. Reidel, Dordrecht (1980).

    Google Scholar 

  22. P.M. Henry. “Palladium Catalyzed Oxidation of Hydrocarbons,” p 43, D. Reidel, Dordrecht (1980).

    Google Scholar 

  23. T. Hosokawa, S.-I. Murahashi, Acc. Chem. Res. 23:49 (1990) and references cited therein.

    Article  CAS  Google Scholar 

  24. Cu(II)-O-O-Cu(II) species: (see, for instance, Z. Tyeklar, K.D. Karlin, Acc. Chem. Res. ,22:241 (1989)

    Article  CAS  Google Scholar 

  25. Cu(III)-O species: (see, for instance, N. Kitajima, T. Koda, Y. Iwata, Y. Moro-oka, J. Am. Chem. Soc. 112:8833 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wenzel, T.T. (1993). Oxidation of Olefins to Aldehydes Using a Palladium-Copper Catalyst. In: Barton, D.H.R., Martell, A.E., Sawyer, D.T. (eds) The Activation of Dioxygen and Homogeneous Catalytic Oxidation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3000-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3000-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6307-1

  • Online ISBN: 978-1-4615-3000-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics