Skip to main content

Abstract

Upgrading the value of raw materials by the selective conversion of organic molecules to oxygenated derivatives using air as an oxidant represents a worthy goal and challenge. Industrially, oxygenates are prepared at a rate of 109 to 1010 lbs/year, mostly using high temperature (above 100°C) processes.1 Since, in general, the oxygenated products are more reactive then the starting hydrocarbons, secondary reactions which lower the selectivity occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Weissermel and H.-J. Arpe, “Industrial Organic Chemistry”, Verlag Chemie, New York (1978).

    Google Scholar 

  2. Some representative examples are:

    Google Scholar 

  3. R.S. Drago, Coord. Chem. Rev. 117:185 (1992).

    Article  CAS  Google Scholar 

  4. R.A. Sheldon and J.K. Kochi, “Metal-Catalyzed Oxidations of Organic Compounds”, Academic Press, New York (1981).

    Google Scholar 

  5. D.T. Sawyer, “Oxygen Chemistry”, Oxford University Press, New York (1991).

    Google Scholar 

  6. L.I. Simandi, “Catalytic Activation of Dioxygen by Metal Complexes”, Kluwer Academic Publishers, Dordrecht (1992).

    Book  Google Scholar 

  7. C.L. Hill, Ed., “Activation and Functionalization of Alkanes”, J. Wiley & Sons, New York, (1989).

    Google Scholar 

  8. A.E. Martell and D.T. Sawyer, Eds., “Oxygen Complexes and Oxygen Activation by Transition Metals”, Springer Science+Business Media New York (1988).

    Google Scholar 

  9. R.H. Holm, Chem. Rev. 87:1401 (1987).

    Article  CAS  Google Scholar 

  10. C.F. Yocum, C.T. Yerkes, R.E. Blankenship, R.R. Sharp, G.T. Babcock, Proc. Natl. Acad. Sci. USA,78:7507 (1981).

    Article  PubMed  CAS  Google Scholar 

  11. J. Amesz, Biochim. Biophys. Acta ,726:1 (1983).

    Article  CAS  Google Scholar 

  12. G.C. Dismukes in U.L. Schramm, F.C. Welder, Eds., “Manganese in Metabolism and Enzyme Function”, Academic Press, London (1986).

    Google Scholar 

  13. G. Renger, Angew, Chem. ,99:660 (1987)

    Article  CAS  Google Scholar 

  14. G. Renger, Angew, Chem. Int. Ed. Engl. ,26:643 (1987).

    Article  Google Scholar 

  15. G.W. Brudvig, J. Bioenerg. Biomemb. ,19:91 (1987).

    Article  CAS  Google Scholar 

  16. V.L. Pecoraro, Ed., “Manganese Redox Enzymes”, VCH, New York (1992).

    Google Scholar 

  17. G.N. George, R.C. Prince, S.P. Cramer, Science ,243:789 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. B. Kok, B. Forbush, M. McGloin, Photochem. Photobiol ,11:457 (1970).

    Article  PubMed  CAS  Google Scholar 

  19. W.D. Frasch, R. Mei, Biochem. Biophys. Acta ,891:8 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. R.T. Stibrany, S.M. Gorun, Angew. Chem. Int. Ed. Engl ,29:1156 (1990). A structurally related complex has been reported by W. H. Armstrong in Ref. 3f.

    Article  Google Scholar 

  21. V.V. Barynin, A.I. Grebenko, Dokl. Akad. Nauk S.S.S.R. ,286:461 (1986).

    CAS  Google Scholar 

  22. C.V. Khangulov, N.V. Voevodskaya, V. U. Barynin, A. I. Grebenko, V. R. Melik-Adamyan, Bioflzika ,32:960 (1987).

    CAS  Google Scholar 

  23. US Patent 4,153,635 (1979).

    Google Scholar 

  24. H.S. Blanchard, J. Am. Chem. Soc. ,82:4433 (1968).

    Google Scholar 

  25. A.I. Minkov, N.P Keier, Kinet. i Katal. ,8:160 (1967).

    CAS  Google Scholar 

  26. J.A. Howard and K.U. Ingold, Can. J. Chem. 46:2655 (1968).

    Article  CAS  Google Scholar 

  27. Y. Kamiya, Bull. Chem. Soc. Japan 43:830 (1969).

    Article  Google Scholar 

  28. M. Kashiyae, K. Kashe, S. Yoshitomi, Nippon Kagaku Kaishi ,357 (1990).

    Google Scholar 

  29. H. Kanai, H. Hayashi, T. Koike, M. Ohsuga, M. Matsumoto, J. Catal. ,138:611 (1992).

    Article  CAS  Google Scholar 

  30. Y. Engström, S. Eriksson, I. Thelan, M. A. Kerman, Biochemistry ,18:2941 (1979).

    Article  PubMed  Google Scholar 

  31. A. Willing, H. Follmann, G. Auling, Eur. J. Biochem. ,170:603 (1988)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bond, J.E., Gorun, S.M., Stibrany, R.T., Schriver, G.W., Vanderspurt, T.H. (1993). Bioinspired Catalysis: Hydroperoxidation of Alkylaromatics. In: Barton, D.H.R., Martell, A.E., Sawyer, D.T. (eds) The Activation of Dioxygen and Homogeneous Catalytic Oxidation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3000-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3000-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6307-1

  • Online ISBN: 978-1-4615-3000-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics