Skip to main content

Abstract

Elucidation of the mechanisms of oxygen atom transfer reactions catalyzed by monooxygenase metalloenzymes has been a major challenge in the field of oxidation chemistry.1,2 Such enzymes catalyze aliphatic hydroxylation, olefin epoxidation, aromatic hydroxylation, heteroatom oxidation, and heteroatom dealkylation, with dioxygen as the oxidant. Intensive study of cytochrome P-450 enzymes,1 which contain heme at their active sites, and of metalloporphyrin model compounds has resulted in a proposed catalytic mechanism which involves a high-valent iron oxo porphyrin complex as a reactive intermediate. By contrast, the active sites of non-heme iron-containing monooxygenase enzymes and their mechanisms are not as fully characterized. In recent years, the chemistry of these latter enzymes has attracted the attention of both bioinorganic and biological chemists who have consequently been characterizing their active sites and attempting to understand the mechanisms of their oxygen atom transfer reactions by studying the enzymes directly as well as model systems.2,3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.R. Ortiz de Montellano. “Cytochrome P-450: Structure, Mechanism, and Biochemistry,” Plenum, New York (1985).

    Google Scholar 

  2. L. Que, Jr. and A.E. True, Dinuclear iron- and manganese-oxo sites in biology, in: “Progress in Inorganic Chemistry: Bioinorganic Chemistry,” S.J. Lippard, Ed., John Wiley & Sons, Inc., New York (1990).

    Google Scholar 

  3. J.B. Vincent, G.L. Olivier-Lilley, and B.A. Averill, Proteins containing oxo-bridged dinuclear iron centers: A bioinorganic perspective, Chem. Rev. 90:1447 (1990).

    Article  CAS  Google Scholar 

  4. N.D. Priestley, H. G. Floss, W.A. Froland, J.D. Lipscomb, P.G. Williams, and H. Morimoto, Cryptic stereospecificity of methane monooxygenase, J. Am. Chem. Soc. 114:7561 (1992).

    Article  CAS  Google Scholar 

  5. J.E. Colbert, A.G. Katopodis, and S.W. May, Epoxidation of cis-1,2-dideuterio-1- octene by Pseudomonas oleovorans monooxygenase proceeds without deuterium exchange, J. Am. Chem. Soc. 112:3993 (1990).

    Article  CAS  Google Scholar 

  6. R. Shiman, S.H. Jones, and D.W. Gray, Mechanism of phenylalanine regulation of phenylalanine hydroxylase, J. Biol. Chem. 265:11633 (1990).

    PubMed  CAS  Google Scholar 

  7. S.E. Sen and G.D. Prestwich, Trisnorsqualene alcohol, a potent inhibitor of vertebrate squalene epoxidase, J. Am. Chem. Soc. 111:1508 (1989).

    Article  CAS  Google Scholar 

  8. T.A. Dix and S.J. Benkovic, Mechanism of oxygen activation by pteridine-dependent monooxygenases, Acc. Chem. Res. 21:101 (1988).

    Article  CAS  Google Scholar 

  9. J. Stubbe and J.W. Kozarich, Mechanisms of bleomycin-induced DNA degradation,Chem. Rev. 87:1107 (1987).

    Article  CAS  Google Scholar 

  10. D.H.R. Barton and M. Ozbalik, Selective functionalization of saturated hydrocarbons by the “Gif” and “Gif-Orsay” systems, in: “Activation and Functionalization of Alkanes,” C. Hill, ed., John Wiley & Sons, New York (1989).

    Google Scholar 

  11. H.-C. Tung, C. Kang, and D.T. Sawyer, Nature of the reactive intermediates from the iron-induced activation of hydrogen peroxide: Agents for the ketonization of methylenic carbons, the monooxygenation of hydrocarbons, and the dioxygenation of arylolefins, J. Am. Chem. Soc. 114:3445 (1992).

    Article  CAS  Google Scholar 

  12. A. Suga, T. Sugiyama, M. Otsuka, M. Ohno, Y. Sugiura, and K. Maeda, Oxidation of alkenes by a chiral non-porphyrinic oxidizing catalyst based on the bleomycin-Fe(II) complex, Tetrahedron 47:1191 (1991).

    Article  CAS  Google Scholar 

  13. D.Y. Dawson, S.E. Hudson, and P.K. Mascharak, Oxygen transfer reactions by synthetic analogues of iron-bleomycin, J. Inorg. Biochem. 47:109 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. W. Nam, R. Ho, and J.S. Valentine, Iron-cyclam complexes as catalysts for the epoxidation of olefins by 30% aqueous hydrogen peroxide in acetonitrile and methanol, J. Am. Chem. Soc. 113:7052 (1991).

    Article  CAS  Google Scholar 

  15. Y.-D. Wu, K.N. Houk, J.S. Valentine, and W. Nam, Is intramolecular hydrogen-bonding important for bleomycin reactivity? A molecular mechanics study, Inorg. Chem. 31:718 (1992).

    Article  CAS  Google Scholar 

  16. J. Rebek, Jr., Progress in the development of new epoxidation reagents, Heterocycles 15:517 (1981).

    Article  CAS  Google Scholar 

  17. M.A. Brook, J.R. Lindsay Smith, R. Higgins, and D. Lester, Model systems for cytochrome P450 dependent monooxygenases. Part 4. The epoxidation of alkenes by peroxyacids in the presence of cobalt complexes, J. Chem. Soc., Perkin Trans. 2 1049 (1985).

    Google Scholar 

  18. J.R. Lindsay Smith and P.R. Sleath, Model Systems for cytochrome P450 dependent monooxygenases. Part 1. Oxidation of alkenes and aromatic compounds by tetraphenylporphinatoiron(III) chloride and iodosylbenzene, J. Chem. Soc., Perkin Trans. 2 1009 (1982).

    Google Scholar 

  19. T.G. Traylor and F. Xu, Model reactions related to cytochrome P-450. Effects of alkene structure on the rates of epoxide formation, J. Am. Chem. Soc. 110:1953 (1988).

    Article  CAS  Google Scholar 

  20. J.P. (Tollman, P.D. Hampton, and J.I. Brauman, Suicide inactivation of cytochrome P-450 model compounds by terminal olefins. 2. Steric and electronic effects in heme N-alkylation and epoxidation, J. Am. Chem. Soc. 112:2986 (1990).

    Article  Google Scholar 

  21. J.T. Groves and Y. Watanabe, On the mechanism of olefin epoxidation by oxo-iron porphyrins. Direct observation of an intermediate, J. Am. Chem. Soc. 108:507 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. T.G. Traylor, W.-P. Fann, and D. Bandyopadhyay, A common heterolytic mechanism for reactions of iodosylbenzenes, peracids, hydroperoxides, and hydrogen peroxide with iron(III) porphyrins, J. Am. Chem. Soc. 111:8009 (1989).

    Article  CAS  Google Scholar 

  23. T.G. Traylor and A.R. Miksztal, Alkene epoxidations catalyzed by iron(III), manganese(III), and chromium(III) porphyrins. Effects of metal and porphyrin substituents on selectivity and regiochemistry of epoxidation, J. Am. Chem. Soc. 111:7443 (1989).

    Article  CAS  Google Scholar 

  24. J.T. Groves and T.E. Nemo, Epoxidation reactions catalyzed by iron porphyrins. . Oxygen transfer from iodosylbenzene, J. Am. Chem. Soc. 105:5786 (1983).

    Article  CAS  Google Scholar 

  25. K.S. Suslick and B.R. Cook, Regioselective epoxidations of dienes with manganese(III) porphyrin catalysts, J. Chem. Soc., Chem. Commun. 200 (1987).

    Google Scholar 

  26. K.S. Suslick and B.R. Cook, Shape selective oxidation as a mechanistic probe, in: “Inclusion Phenomena and Molecular Recognition,” J.L. Atwood, ed., Plenum, New York (1990).

    Google Scholar 

  27. P. Battioni, J.P. Renaud, J.F. Bartoli, M. Reina-Artiles, M. Fort, and D. Mansuy, Monooxygenase-like oxidation of hydrocarbons by H2O2 catalyzed by manganese porphyrins and imidazole: Selection of the best catalytic system and nature of the active oxygen species, J. Am. Chem. Soc. 110:8462 (1988).

    Article  CAS  Google Scholar 

  28. W.Y. Lu, J.F. Bartoli, P. Battioni, and D. Mansuy, Selective oxygenation of hydrocarbons and sulfoxidation of thioethers by dioxygen with a Mn-porphyrin-based cytochrome P450 model system using Zn as electron donor, New J. Chem. 16:621 (1992).

    CAS  Google Scholar 

  29. K.B. Sharpless, J.M. Townsend, and D.R. Williams, On the mechanism of epoxidation of olefins by covalent peroxides of molybdenum(VI), J. Am. Chem. Soc. 94:295 (1972).

    Article  CAS  Google Scholar 

  30. H. Mimoun, L. Saussine, E. Daire, M. Postel, J. Fischer, and R. Weiss, Vanadium(V) peroxo complexes. New versatile biomimetic reagents for epoxidation of olefins and hydroxylation of alkanes and aromatic hydrocarbons, J. Am. Chem. Soc. 105:3101 (1983).

    Article  CAS  Google Scholar 

  31. W. Nam and J.S. Valentine, Zinc(II) complexes and aluminum(III) porphyrin complexes catalyze the epoxidation of olefins by iodosylbenzene, J. Am. Chem. Soc. 112:4987 (1990).

    Article  Google Scholar 

  32. Y. Yang, F. Diederich, and J.S. Valentine, Lewis acidic catalysts for olefin epoxidation by iodosylbenzene, J. Am. Chem. Soc. 113:7195 (1991).

    Article  CAS  Google Scholar 

  33. Y. Yang, F. Diederich, and J.S. Valentine, Reaction of cyclohexene with iodosylbenzene catalyzed by non-porphyrin complexes of iron(III) and aluminum(III). Newly discovered products and a new mechanistic proposal, J. Am. Chem. Soc. 112:7826 (1990).

    Article  CAS  Google Scholar 

  34. J.T. Groves, Y. Watanabe, and T.J. McMurry, Oxygen activation by metalloporphyrins. Formation and decomposition of an acylperoxymanganese(III) complex, J. Am. Chem. Soc. 105:4489 (1983).

    Article  CAS  Google Scholar 

  35. Y. Watanabe, K. Yamaguchi, I. Morishima, K. Takehira, M. Shimizu, T. Hayakawa, and H. Orita, Remarkable solvent effect on the shape-selective oxidation of olefins catalyzed by iron(III) porphyrins, Inorg. Chem. 30:2581 (1991).

    Article  CAS  Google Scholar 

  36. R.A. Sheldon and J.K. Kochi. “Metal-Catalyzed Oxidations of Organic Compounds,“ Academic Press, New York (1981).

    Google Scholar 

  37. G.V. Buxton, J.C. Green, R. Higgins, and S. Kanji, Formation of epoxides in the oxidation of β-hydroxyalkyl radicals by copper(II) in aqueous solution, J. Chem. Soc., Chem. Commun. 158 (1976).

    Google Scholar 

  38. S.-I. Murahashi, Y. Oda, and T. Naota, Iron- and ruthenium-catalyzed oxidations of alkanes with molecular oxygen in the presence of aldehydes and acids, J. Am. ChemSoc. 114:7913 (1992).

    Article  CAS  Google Scholar 

  39. R. Iwanejko, P. Leduc, T. Mlodnicka, and J. Poltowicz, Metalloporphyrin-catalyzed epoxidation of propylene, in: “Dioxygen Activation and Homogeneous Catalytic Oxidation,“ L.I. Simandi, ed., Elsevier, Amsterdam (1991).

    Google Scholar 

  40. T. Muto, C. Urano, T. Hayashi, T. Miura, and M. Kimura, On the mode of oxygenation with ferric perchlorate-hydrogen peroxide system, Chem. Pharm. Bull. 31:1166 (1983).

    Article  CAS  Google Scholar 

  41. T.G. Traylor, S. Tsuchiya, Y.S. Byun, and C. Kim, Iron(III) porphyrin catalyzed epoxidations with hydrogen peroxide and hydroperoxides, J. Am. Chem. Soc. in press.

    Google Scholar 

  42. P.N. Balasubramanian and T.C. Bruice, Oxygen transfer involving non-heme iron. The reaction of (EDTA)FeIII with m-chloroperbenzoic acid, J. Am. Chem. Soc. 108:5495 (1986).

    Article  CAS  Google Scholar 

  43. P.N. Balasubramanian and T.C. Bruice, Oxygen transfer involving nonheme iron: The influence of leaving group ability on the rate constant for oxygen transfer to (EDTA)Fe(III) from peroxycarboxylic acids and hydroperoxides, Proc. Natl. Acad.Sci. USA 84:1734 (1987).

    Article  PubMed  CAS  Google Scholar 

  44. J.T. Groves and W.J. Kruper, Jr., Preparation and characterization of an oxoporphinato-chromium(V) complex, J. Am. Chem. Soc. 101:7613 (1979).

    Article  CAS  Google Scholar 

  45. J.T. Groves, W.J. Kruper, Jr., and R.C. Haushalter, Hydrocarbon oxidations with oxometalloporphinates. Isolation and reactions of a (porphinato)manganese(V) complex, J. Am. Chem. Soc. 102:6375 (1980).

    Article  CAS  Google Scholar 

  46. J.T. Groves, R.C. Haushalter, M. Nakamura, T.E. Nemo, and B.J. Evans, High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450, J. Am. Chem. Soc. 103:2884 (1981)

    Article  CAS  Google Scholar 

  47. W. Nam and J.S. Valentine, Reevaluation of the significance of 18O incorporation in metal complex-catalyzed oxygenation reactions carried out in the presence of H218O, J. Am. Chem. Soc. 115:1772 (1993)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Valentine, J.S., Nam, W., Ho, R.Y.N. (1993). Non-Porphyrin Iron Complex-Catalyzed Epoxidation of Olefins. In: Barton, D.H.R., Martell, A.E., Sawyer, D.T. (eds) The Activation of Dioxygen and Homogeneous Catalytic Oxidation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3000-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3000-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6307-1

  • Online ISBN: 978-1-4615-3000-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics