RAP1B and Platelet Function

  • Eduardo G. Lapetina
  • Francis X. Farrell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 344)


Platelets contain multiple low molecular weight GTP-binding proteins which share strong sequence similarity to ras including rap, rac, ral, and rho (Nagata et al., 1989; Polakis et al., 1989). In addition, platelets contain regulatory molecules which both control the hydrolysis of GTP bound to the protein and/or promote the exchange of GDP for GTP (Hart et al., 1991). Surprisingly, platelets do not contain the ras molecule in a significant amount, yet possess high levels of the ras regulatory molecule rasGAP. RasGAP has been shown to bind rapla with high affinity without increasing its GTPase activity (Frech et al., 1990). It is generally accepted that in addition to rasGAP acting as a GTPase activating protein, it may function as the downstream target molecule of ras (Hall, 1990a). For this reason, the role of rasGAP and rapl in platelets is intriguing given that platelets also contain the GTPase activating protein specific for rapl. Recent data has proposed that this complex interaction may play a controling role in platelet signal transduction.


GTPase Activate Protein Increase cAMP Level Intrinsic GTPase Activity Phosphotyrosine Residue CAAX Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D., Koch, C. A., Grey, L., Ellis, C., Moran, M. F., and Pawson, T. 1990, Binding of SH2 domains of phospholipase C-γl, GAP, and Src to activated growth factor receptors, Science 250:979.PubMedCrossRefGoogle Scholar
  2. Araki, S., Kikuchi, A., Hata, Y., Isomura, M., and Takai, Y. 1990, Regulation of reversible binding of smg p25A, a ras p21-like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor, J. Biol. Chem. 265:13007.PubMedGoogle Scholar
  3. Burstein, E. S., Linko-Stentz, K., Lu, Z., and Macara, I. G. 1991, Regulation of the GTPase activity of the ras-like protein p25rab3a J Biol. Chem. 266:2689.PubMedGoogle Scholar
  4. Downward, J. 1990a, The ras superfamily of small GTP-binding proteins, Trends Eiochem. Sci. 15:469.CrossRefGoogle Scholar
  5. Downward, J., Riehl, R., Wu, L., and Weinberg, R. A. 1990b, Identification of a nucleotide exchange-promoting activity for p21ras, Proc. Natl. Acad. Sci. USA. 87:5998.CrossRefGoogle Scholar
  6. Frech, M., John, J., Pizon, V., Chardin, P., Tavitian, A., Clark, R., McCormick, F., and Wittinghofer, A. 1990, Inhibition of GTPase activating protein stimulation of Ras-p21 GTPase by the Kiev-1 gene product, Science 249:169.PubMedCrossRefGoogle Scholar
  7. Gideon, P., John, J., Frech, M., Lautwein, A., Clark, R., Schemer, J. E., and Wittinghofer, A. 1992, Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 Interaction: The C-terminal domain of GAP is not sufficient for full activity, Mol. Cell Biol. 12:2050.PubMedGoogle Scholar
  8. Halenback, R., Crosier, W. J., Clark, R., McCormick, F., and Koths, K. 1990, Purification, characterization and western blot analysis of human GTPase-activating protein from native and recombinant sources, J. Riol. Chem. 265:21922.Google Scholar
  9. Hall, A. 1990a, ras and GAP-who’s controlling whom? Cell 61:921.CrossRefGoogle Scholar
  10. Hall, A. 1990b, The cellular functions of small GTP-binding proteins, Science 249:635.CrossRefGoogle Scholar
  11. Hancock, J. F., Magee, A. I., Childs, J.E., and Marshall, C. J., 1989, All ras proteins are polyisoprenylated but only some are palmitoylated, Cell 57:1167.PubMedCrossRefGoogle Scholar
  12. Hart, M. J., Shinjo, K., Hall. A., Evans, T., and Cerione R, A. 1991, Identification of the human platelet GTPase activating protein for the CDC42Hs protein, J. Biol. Chem. 266:20840.PubMedGoogle Scholar
  13. Koch, C. A., Anderson, D., Moran, M. F., Ellis, C., and Pawson, T. 1991, SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins, Science 252:668.PubMedCrossRefGoogle Scholar
  14. Lapetina, E. G., Lacal, J. C., Reep, B. R. and Molina, L. yV. 1989, A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets, Proc. Natl. Acad. Sci. USA 86:3131.PubMedCrossRefGoogle Scholar
  15. Lapetina, E. G. 1990, The signal transduction induced by thrombin in human platelets, FEES Letts. 286:400.CrossRefGoogle Scholar
  16. Lazarowski, E. R., Lacal, J. C., and Lapetina, E. G. 1989, Agonist-induced phosphorylation of an immunologically ras-related protein in human erythroleukemia cells, Eiochem. Biophys. Res. Comm. 161:972.CrossRefGoogle Scholar
  17. Lazarowski, E. R., Winegar, D. A., Nolan, R. D., Oberdisse, E., and Lapetina, E. G. 1990, Effect of protein kinase A on inositide metabolism and rapt G-protein in human erythroleukemia cells, J. Rio!. Chem. 265:13118.Google Scholar
  18. McCormick, F. 1989, ras GTPase activating protein: signal transmitter and signal terminator, Cell 56:5.PubMedCrossRefGoogle Scholar
  19. Molina, L. yV., Ohmstede, C.-A., and Lapetina, E. G. 1990, Properties of the exchange rate of guanine nucleotides to the novel rap2b protein. Eiochem. Biophys. Res. Comm. 171:319.CrossRefGoogle Scholar
  20. Moran, M. F., Koch, C. A., Anderson, D., Ellis, C., England, L., Martin, G. S., and Pawson, T. 1990, Src homology region 2 domains direct protein-protein interactions in signal transduction, Proc. Natl. Acad, Sci. USA 87:8622.CrossRefGoogle Scholar
  21. Nagata, K.-I., Nagao, S., and Nozawa, Y. 1989, Low Mr GTP-binding proteins in human platelets; cyclic AMP-dependent protein kinase phosphorylates m22КG(I) in membrane but not c21KG in cytosol, Biochem. Biophys. Res. Comm. 160:235.PubMedCrossRefGoogle Scholar
  22. Ohmstede, C.-A., Farrell, F. X., Reep, B. R., Clemetson, K. J., and Lapetina, E. G. (1990). Rap-2B: A ras-related GTP-binding protein from platelets, Proc. Natl. Acad. Sci USA. 87:6527.PubMedCrossRefGoogle Scholar
  23. Pizon, V., Chardin, P., Lerosey, I., Olofsson, B. and Tavitian, A. 1988, Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the “effector” region, Oncogene 3:201.PubMedGoogle Scholar
  24. Polakis, P. G., Weber, R. F., Nevins, B., Didsbury, J. R., Evans, T., and Synderman, R. 1989, Identification of the ral and racl gene products, low molecular mass GTP-binding proteins from human platelets, J. Biol. Chem. 264:16383.PubMedGoogle Scholar
  25. Polakis, P. G., Rubinfeld, B., Evans T., and McCormick, F. (1991). Purification of plasma membrane-associated GTPase-activating protein specific for rapt/Krev-1 from HL-60 cells, Proc. Natl. Acad. Sci. USA 88:239.PubMedCrossRefGoogle Scholar
  26. Queue, F. W. and Wojchowski D. M. 1991, Proliferative action of erythropoietin is associated with rapid protein tyrosine phosphorylation in responsive B6SUt.EP cells, J. Biol. Chem. 266:609.Google Scholar
  27. Rubinfeld, B., Munemitsu, S., Clark, R., Conroy, L., Watt, K., Crosier, W. J., McCormick, F. and Polakis, P. 1991, Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap 1, Cell 65:1033.PubMedCrossRefGoogle Scholar
  28. Seidel-Dugan, C., Meyer, B. E., Thomas, S. M. and Brugge, J. S. 1992, Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-Src, Mol. Cell. Biol. 12:1835.PubMedGoogle Scholar
  29. Siess, W., Winegar, D. A. and Lapetina, E. G. 1990, Raplb is phosphorylated by protein kinase A in intact human platelets, Biochem. Biophys. Res. Comm. 170:944.PubMedCrossRefGoogle Scholar
  30. Settleman, J., Narasimhan, V., Foster, L. C. and Weinberg, R. A. 1992, Molecular cloning of cDNAs encoding the GAP-associated protein p190: Implications for a signaling pathway from ras to the nucleus, Cell 69:539.PubMedCrossRefGoogle Scholar
  31. Torti, M., Bencke Marti, K., Altschuler, D., Yamamoto, K. and Lapetina, E. G. 1992, Erythropoietin induces p2lras activation and p120GAP tyrosine phosphorylation in human erythroleukemia cells, J. Biol. Chem. 267:8293.PubMedGoogle Scholar
  32. Torti, M. and Lapetina, E. G. 1992, The role of raplb and p2lras GTPase-activating protein in the regulation of phospholipase C-γ1 in human platelets, Proc. Natl. Acad. Sci. USA. 891:7796.CrossRefGoogle Scholar
  33. Trahey, M., Wong, G., Halenbeck, R., Rubinfeld, B., Martin, G. A., Lander, M., Long, C. M., Crosier, W. J., Watt, K., Koths, K. and McCormick, F. 1988, Molecular cloning of two types of GAP complementary DNA from human placenta, Science 242:1697.PubMedCrossRefGoogle Scholar
  34. Vogel, U. S., Dixon, R. A. F., Schaber, M. D., Diehl, R. E., Marshall, M. S., Scolnick, E. M., Sigal, I. S. and Gibbs, J. B. 1988, Cloning of bovine GAP and its interaction with oncogenic ras p21, Nature 335:90.PubMedCrossRefGoogle Scholar
  35. Wong, G., Muller, O., Clark, R., Conroy, L., Moran, M. F., Polakis, P. and McCormick, F, 1992, Molecular cloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62, Cell 69:551.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Eduardo G. Lapetina
    • 1
  • Francis X. Farrell
    • 1
  1. 1.Division of Cell BiologyBurroughs Wellcome Co.USA

Personalised recommendations