Mechanisms Involved in Platelet Procoagulant Response

  • Edouard M. Bevers
  • Paul Comfurius
  • Robert F. A. Zwaal
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 344)

Abstract

Blood platelets are essential to the normal hemostatic process. Vessel wall injury produces several platelet agonists which through specific membrane receptors elicit a variety of cellular responses. Shape change, activation of binding sites for fibrinogen and other adhesive molecules, and secretion of intracellular granule contents ensure the rapid formation of large platelet aggregates, which prevent further loss of blood from the injured vessel. In addition, an important platelet response is the surface exposure of specific phospholipids, providing a catalytic surface for the assembly of enzyme complexes of the coagulation cascade. This platelet procoagulant response leads to a dramatic increase in the rate of thrombin formation, which allows rapid formation of an insoluble meshwork of fibrin, required to consolidate the primary haemostatic plug. On the other hand, the same catalytic surface is also instrumental in negative feedback control of the coagulation cascade by activated protein C. Platelets are the primary source of procoagulant lipid surfaces, but other cells such as erythrocytes or endothelial cells may, sometimes, under pathological conditions- also become procoagulant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, S.S., Rawala-Sheikh, R., Ashby, B. and Walsh, P.N., 1989, Platelet receptor-mediated factor X activation by factor IXa. High-affinity IXa receptors induced by factor VIII are deficient on platelets in Scott syndrome, J. Clin. Invest. 84:824.PubMedCrossRefGoogle Scholar
  2. Allan, D. and Michell, R.H., 1975, Accumulation of 1,2 diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes, Nature 258:348.PubMedCrossRefGoogle Scholar
  3. Baldwin, J.M., O’Reilly, R., Whitney, M. and Lucy, J.A., 1990, Surface exposure of phosphatidylserine is associated with the swelling and osmotically-induced fusion of human erythrocytes in the presence of Ca2+, Biochim. Biophys. Acta 1028:14.PubMedCrossRefGoogle Scholar
  4. Beaudoin, A.R. and Grondin, G., 1991, Shedding of vesicular material from the cell surface of eukaryotic cells: different cellular phenomena, Biochim. Biophys. Acta 1071:203.PubMedCrossRefGoogle Scholar
  5. Revers, E.M., Comfurius, P. and Zwaal, R.F.A., 1983, Changes in membrane phospholipid distribution during platelet activation, Biochim. Biophys. Acta 736:57.CrossRefGoogle Scholar
  6. Revers, E.M., Comfurius, P., Nieuwenhuis, H.K., Levy-Toledano, S., Enouf, J., Belluci, S., Caen, J.P. and Zwaal, R.F.A., 1986, Platelet prothrombin converting activity in hereditary disorders of platelet function, Br. J. Haematol. 63:335.Google Scholar
  7. Revers, E.M., Tilly, R.H.J., Senden, J.M.G., Comfurius, P. and Zwaal, R.F.A., 1989, Exposure of endogenous phosphatidylserine at the outer surface of stimulated platelets is reversed by restoration of aminophospholipid translocase activity, Biochemistry 28:2382.CrossRefGoogle Scholar
  8. Revers, E.M., Wiedmer, T., Comfurius, P., Shattil, S.J., Weiss, H.J., Zwaal, R.F.A. and Sims, P.J., 1992, Defective Ca’+-induced microvesiculation and deficient expression of procoagulant activity in erythrocytes from a patient with a bleeding disorder: a study of the red blood cells of Scott syndrome, Blood 79:380.Google Scholar
  9. Bitbol, M., Fellmann, P., Zachowski, A. and Devaux, P.F., 1987, Ion regulation of phosphatidylserine and phosphatidylethanolamine outside-inside translocation in human erythrocytes, Biochim. Biophys Acta 904:268.PubMedCrossRefGoogle Scholar
  10. Blumenfeld, N., Zachowski, A., Galacteros, F., Beuzard, Y. and Devaux, P.F., 1991, Transmembrane mobility of phospholipids in sickle erythrocytes: the effect of deoxygenation on diffusion and asymmetry, Blood 77:849.PubMedGoogle Scholar
  11. Chandra, R., Joshi, P.C., Bajpai, V.K. and Gupta, C.H., 1987, Membrane phospholipid organization in calcium-loaded human erythrocytes, Biochim. Biophys. Acta 902:253.PubMedCrossRefGoogle Scholar
  12. Chap, H.J., Zwaal, R.F.A. and van Deenen, L.L.M., 1977, Action of highly purified phospholipases on blood platelets. Evidence for an asymmetric distribution of phospholipids in the surface membrane. Biochim. Biophys. Acta 467:146.PubMedCrossRefGoogle Scholar
  13. Comfurius, P., Revers, E.M. and Zwaal, R.F.A., 1985, The involvement of cytoskeleton in the regulation of transbilayer movement of phospholipids in human blood platelets, Biochim. Biophys. Acta 815:143.PubMedCrossRefGoogle Scholar
  14. Comfurius, P., Senden, J.M.G., Tilly, R.H.J., Schroit, A.J., Revers, E.M. and Zwaal, R.F.A. 1990, Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium induced shedding of plasma membrane and inhibition of aminophospholipid translocase, Biochim. Biophys. Acta 1026:153.PubMedCrossRefGoogle Scholar
  15. Connor, J. and Schroit, A.J., 1988, Transbilayer movement of phosphatidylserine in erythrocytes; inhibition of transport and preferential labeling of a 31 kD protein by sulthydryl reactive reagents, Biochemistry 27:848.PubMedCrossRefGoogle Scholar
  16. Connor, J., Bucana, C., Fidler, I.J. and Schroit, A.J., 1989, Differentiation-dependent expression of phosphatidylserine in mammalian plasma membranes: quantitative assessment of outer leaflet lipid by prothrombinase complex formation, Proc. Natl. Acad. Sci. U.S.A. 86:3184.PubMedCrossRefGoogle Scholar
  17. Connor, J., Gillum, K. and Schroit, A.J., 1990, Maintenance of lipid asymmetry in red blood cells and ghosts: effect of divalent cations and serum albumin on the transbilayer distribution of phosphatidylserine, Biochim. Biophys. Acta 1025:82.PubMedCrossRefGoogle Scholar
  18. Crawford, N., 1972, The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma, Br. J. Haematol. 21:53.CrossRefGoogle Scholar
  19. Esmon, C.T., 1992, The protein-C anticoagulant pathway, Arterioscleros. Thromb. 12, 135.CrossRefGoogle Scholar
  20. Fox, J.E.B., Austin, C.D., Boyles, J.K. and Steffen, P.K., 1990a, Role of membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the plateletplasma membrane, J. Cell Biol. 111:483.CrossRefGoogle Scholar
  21. Fox, J.E.B., Reynolds, C.C. and Austin, C.D., 1990b, The role of calpain in stimulus-response coupling: evidence that calpain mediates agonist-induced expression of procoagulant activity in platelets, Blood 76:2510.Google Scholar
  22. Fox, J.E.B., Austin, C.D., Reynolds, C.C. and Steffen, P.K., 1991, Evidence that agonist-induced activation of calpain causes shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets, J. Biol. Chem. 266:13289.PubMedGoogle Scholar
  23. Franck, P.F.H., Revers, E.M., Lubin, B.H., Comfurius, P., Chiu, D.T.-Y., Op den Kamp, J.A.F., Zwaal, R.F.A., van Deenen, L.L.M. and Roelofsen, B., 1985, Uncoupling of the membrane skeleton from the lipid bilayer: the cause of accelerated phospholipid flip-flop leading to enhanced procoagulant activity of sickle cells, J. Clin. Invest. 75:183.PubMedCrossRefGoogle Scholar
  24. Frederik, P.M., Stuart, M.C.A., Bomans, P.H.H., Busing, W.M., Burger, K.N.J. and Verkley, A.J., 1991, Perspective and limitations of cryo-electron microscopy, Microscopy 161:253.CrossRefGoogle Scholar
  25. Gilbert, G.E., Sims, P.J., Wiedmer, T., Furie, B., Furie, B.C. and Shattil, S.J., 1991, Platelet-derived microparticles express high-affinity receptors for factor VIII, J. Biol. Chem. 266:17261.PubMedGoogle Scholar
  26. Haest, C.W.M., 1982, Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane, Biochim. Biophys. Acta 694:331.PubMedCrossRefGoogle Scholar
  27. Hamilton, K.K., Hattori, R., Esmon, C.T. and Sims, P.J., 1990, Complement proteins С5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for the assembly of the prothrombinase complex, J. Biol. Chem. 265:3809.PubMedGoogle Scholar
  28. Kane, W.H. and Majerus, P.W., 1982, The interaction of human coagulation factor Va with platelets, J. Biol. Chem. 257:3963.PubMedGoogle Scholar
  29. Mann, K.G., Nesheim, M.E., Church, W.R., Haley, P. and Krishnaswamy, S., 1990, Surface dependent reactions of the vitamin K-dependent enzyme complexes, Blood 76:1.PubMedGoogle Scholar
  30. Morrot, G., Zachowski, A. and Devaux, P.F., 1990, Partial purification and characterization of the human erythrocyte Mg2+-ATPase, FEBS lett. 266:29.PubMedCrossRefGoogle Scholar
  31. Op den Kamp, J.A.F., 1979, Lipid asymmetry in membranes, Ann. Rev. Biochem. 48:47.CrossRefGoogle Scholar
  32. Rosing, J., Tans, G., Govers-Riemslag, J.W.P., Zwaal, R.F.A. and Hemker, H.C., 1980, The role of phospholipids and factor Va in the prothrombinase complex, J. Biol. Chem. 255:274.PubMedGoogle Scholar
  33. Rosing, J., Revers, E.M., Comfurius, P., Hemker, H.C., van Dieijen, G., Weiss, H.J. and Zwaal, R.F.A., 1985a, Impaired factor X- and prothrombin activation associated with decreased phospholipids exposure in platelets from a patient with a bleeding disorder, Blood 65:1557.Google Scholar
  34. Rosing, J., Van Rijn, J.L.M.L., Revers, E.M., Van Dieijen, G., Comfurius, P. and Zwaal, R.F.A., 1985b, The role of activated human platelets in prothrombin and factor X activation, Blood 65:319.Google Scholar
  35. Rosing, J., Speijer, H. and Zwaal, R.F.A., 1988, Prothrombin activation on phospholipid membranes with positive electrostatic potential, Biochemistry 27:8.PubMedCrossRefGoogle Scholar
  36. Sandberg, H., Andersson, L.-O. and Нёglund, S., 1982, Isolation and characterization of lipid-protein particles containing platelet factor 3 released from human platelets, Biochem. J. 203:303.PubMedGoogle Scholar
  37. Sandberg, H., Bode, A.P., Dombrose, F.A., Hoechli, M. and Lentz, B.R., 1985, Expression of procoagulant activity in human platelets: release of membranous vesicles providing platelet factor 1 and platelet factor 3, Thrоmb. Res. 39:63.CrossRefGoogle Scholar
  38. Schick, P.K., Kurica, K.B. and Chacko, G.K., 1976, Location of phosphatidylethanolamine and phosphatidylserine in the human platelet plasma membrane, J. Clin. Invest. 57:1221.PubMedCrossRefGoogle Scholar
  39. Schroit, A.J. and Zwaal, R.F.A., 1991, Transbilayer movement of phospholipids in red cell and platelet membranes, Biochim. Biophys. Acta 1071:313.PubMedCrossRefGoogle Scholar
  40. Schroit, A.J., Bloy, C., Connor, J. and Cartrou, J.P., 1990, Involvement of Rh blood group polypeptides in the maintenance of aminophospholipid asymmetry, Biochemistry 29:10303.PubMedCrossRefGoogle Scholar
  41. ScЬroit, A.J., Madsen, J.W. and Tanaka, Y., 1985, In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes, J. Biol. Chem. 260:5131.Google Scholar
  42. Seigneuret, M. and Devaux, P.F., 1984, ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes, Proc. Natl. Acad. Sci. U.S.A. 81:3751.PubMedCrossRefGoogle Scholar
  43. Sims, P.J., Faioni, E.M., Wiedmer, T. and Shattil, S.J., 1988, Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity, J. Biol. Chem. 263:18205.PubMedGoogle Scholar
  44. Sims, P.J., Wiedmer, T., Esmon, C.T., Weiss, H.J. and Shattil, S.J., 1989, Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane, J. Biol. Chem. 264:17049.PubMedGoogle Scholar
  45. Tans, G., Rosing, J., Thomassen, M.C.L.G.D., Heeb, M.J., Zwaal, R.F.A. and Griffin, J.H., 1991, Comparison of anticoagulant and procoagulant properties of stimulated platelets and platelet-derived microparticles, Blood 77:2641.PubMedGoogle Scholar
  46. Thiagarajan, P. and Tait, J.F., 1991, Collagen-induced exposure of anionic phospholipid in platelets and platelet-derived microparticles, J. Biol. Chem. 266: 24302.PubMedGoogle Scholar
  47. Tilly, R.H.J., Senden, J.M.G., Comfurius, P., Revers, E.M. and Zwaal, R.F.A., 1990, Increased aminophospholipid translocase activity in platelets during secretion, Biochim. Biophys. Acta 1029:188.PubMedCrossRefGoogle Scholar
  48. Tracy, P.B., Peterson, J.M., Nesheim, M.E., McDuffie, F.C. and Mann, K.G., 1979, Interaction of coagulation factor V and factor Va with platelets, J. Biol. Chem. 254:10345.Google Scholar
  49. Van Dam-Mieras, M.C.E., Bruggeman, C.A., Muller, A.D., Debie, W.H.M. and Zwaal, R.F.A., 1987, Induction of endothelial cell procoagulant activity by cytomegalovirus infection., 7hromb. Res. 47:69.CrossRefGoogle Scholar
  50. Van de Water, L., Tracy, P.B., Aronson, D., Mann, K.G. and Dvorak, H.F., 1985, Tumor cell generation of thrombin via functional prothrombinase assembly, Cancer Res. 45:5521.Google Scholar
  51. Van Dieijen, G., Tans, G., Rosing, J. and Hemker, H.C., 1981, The role of phospholipids and factor VIIla in the activation of bovine factor X, J. Biol. Chem. 256:3433.PubMedGoogle Scholar
  52. Verhallen, P.F.J., Revers, E.M., Comfurius, P. and Zwaal, R.F.A., 1987, Correlation between calpain-mediated cytoskeletal degradation and expression of procoagulant activity. A role for the platelet membrane skeleton in the regulation of membrane lipid asymmetry? Biochim. Biophys. Acta 903:206.PubMedCrossRefGoogle Scholar
  53. Visser, M.R., Tracy, P.B., Vercellotti, G.M., Goodman, J.L., White, J.G. and Jacob, H.S., 1988, Enhanced thrombin generation and platelet binding on herpes simplex virus-infected endothelium, Proc. Natl. Acad. Sci. U.S.A. 85:8227.PubMedCrossRefGoogle Scholar
  54. Weiss, H.J., Vi, W.J., Lages, B.A. and Rogers, J. (1979), Isolated deficiency of platelet procoagulant activity, Am. J. Med. 67:206.PubMedCrossRefGoogle Scholar
  55. Wiedmer, T., Shattil, S.J., Cunningham, M. and Sims, P.J., 1990, Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet factor Va receptor, Biochemistry 29:623.PubMedCrossRefGoogle Scholar
  56. Wolf, P., 1967, The nature and significance of platelet products in human plasma, Br. J. Haematol. 13:269.PubMedCrossRefGoogle Scholar
  57. Zwaal, R.F.A., 1978, Membrane and lipid involvement in blood coagulation, Biochim. Biophys. Acta 515:163.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Edouard M. Bevers
    • 1
  • Paul Comfurius
    • 1
  • Robert F. A. Zwaal
    • 1
  1. 1.Department of Biochemistry Cardiovascular Research Institute MaastrichtUniversity of LimburgMaastrichtThe Netherlands

Personalised recommendations