Cytoskeletal Interactions of Raplb in Platelets

  • Gilbert C. WhiteII
  • Neville Crawford
  • Thomas H. Fischer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 344)


Low molecular weight GTP binding proteins (G proteins) are membrane-associated proteins which reversibly bind guanine nucleotides and regulate cellular processes, such as growth and differentiation (Evans et al., 1991; Macara, 1991). Members of this superfamily of proteins show considerable sequence homology and share structural features, including an effector domain which interacts with GTPase activating proteins or GAPs and post-translational modification at the carboxy terminus by polyisoprenyl groups, either farnesyl or geranyl-geranyl (Maltese, 1990; Gibbs, 1991). To date, more than 50 low molecular weight G proteins in four subfamilies have been reported. The prototype for this group of proteins is p21ras the 21 kDa protein product of the ras protooncogene. At least seven distinct G proteins are present in platelets (Bhullar & Haslam, 1988; Ohmori et al., 1988; Polakis et al., 1989; Polakis et al., 1989; Farrell et al., 1990; Nemoto et al., 1992) (Table I).


NADPH Oxidase Human Platelet Phorbol Myristate Acetate Intracellular Membrane United Kingdom Introduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abo, A., Pick, E., Hall, A., Totty, N., Teahan, C. and Segal, A.W. 1991, Activation of NADPH oxidase involved the small GTP-binding protein p21rac, Nature 353:668.PubMedCrossRefGoogle Scholar
  2. Balch, W.E. 1990, Small GTP binding proteins in vesicular transport, Trends Biochem. Soc. 15:473.CrossRefGoogle Scholar
  3. Bhullar, R.P. and Haslam, R.J. 1988, Gn-proteins are distinct from ras p21 and other known low molecular mass GTP-binding proteins in platelets, FEES Letts. 237:168.CrossRefGoogle Scholar
  4. Evans, T., Hart, M.-J., and Cerione, R.A. 1991, The ras superfamilies: Regulatory proteins and post-translational modifications, Curr. Opin. Cell Biol. 3:185.PubMedCrossRefGoogle Scholar
  5. Farrell, F.X., Ohmstede, C.A., Reep, B.R. and Lapetina, E.G. 1990, cDNA sequence of a new ras-related gene (rap2b) isolated from human platelets with sequence homology to rap2, Nucl. Acids Res. 18:4281.PubMedCrossRefGoogle Scholar
  6. Fisher, T.H., Gatling, M.N., Lacal, J.C. and White II, G.C. 1990, Rap lb, a cAMP-dependent protein kinase substrate, associates with the platelet cytoskeleton. J. Biol. Chem. 265: 19405.Google Scholar
  7. Fischer, T.H., Collins, J.H. and White, II, G.C. 1991, The localization of the cAMP-dependent protein kinase phosphorylation site in the platelet ras protein, raplb, FEES Letts. 282:173.CrossRefGoogle Scholar
  8. Gibbs, J.B., Ras C-terminal processing enzymes, New drug targets, Cell 65:1.Google Scholar
  9. Hata, U., Kaibuchi, K., Kawamura, S., Hiroyoshi, M., Shirataki, H. and Takai, Y. 1991, Enhancement of the actions of smg p21 GDP/GTP exchange protein by the protein kinase A-catalyzed phosphorylation of smg p21, J. Biol. Chem. 266:6571.PubMedGoogle Scholar
  10. Horvath, A.R., Muszbek, L. and Kellie, S. 1992, Translocation of pp60c-src to the cytoskeleton during platelet aggregation, EMBO J. 11:855.PubMedGoogle Scholar
  11. Kawata, M., Farnsworth, C.C., Yoshida, Y., Gelb, M.H., Glomset, J.A. and Takai, Y. 1990, Posttranslationally processed structure of the human platelet protein smg p21B: Evidence for geranylgeranylation and carboxyl methylation of the C-terminal cysteine, Proc. Natl. Acad. Sci. 87:8960.PubMedCrossRefGoogle Scholar
  12. Knaus, V.G., Heyworth, P.G., Evans, T., Cumutte, J.T. and Bokoch, G. 1991, Regulation of phagocyte oxygen radical production by the GTP-binding protein rac-2, Science 254:1512.PubMedCrossRefGoogle Scholar
  13. Lacal, J.-C. and Aronson, S.A. 1986, Ras p21 deletion mutants and monoclonal antibodies as tools for localization of regions relevant to p21 function, Proc. Natl. Acad. Sci. 83:5400.PubMedCrossRefGoogle Scholar
  14. Macara, I.G. 1991, The ras superfamily of molecular switches, Cell Signalling 3:179.PubMedCrossRefGoogle Scholar
  15. Maltese, W.A. 1990, Posttranslational modification of proteins by isoprenoids in mammalian cells, FASEB J. 4:3319.Google Scholar
  16. Menashi, S., Weintroub, H. and Crawford, N.G. 1981, Characterization of human platelet surface and intracellular membranes isolated by free flow electrophoresis, J. Biol. Chem. 256:4095.PubMedGoogle Scholar
  17. Nemoto, Y., Namba, T., Teru-uchi, T., Ushikubi, F. and Narumiya, S. 1992, A rho gene product in human blood platelets. I. Identification of the platelet substrate for botulinum C3 ADP-ribosylation as rhoA protein, J. Biol. Chem. 267:20916.PubMedGoogle Scholar
  18. Newman, P.J., Hillery, C.A., Albrecht, R., Parise, L.V., Berndt, M.C., Mazurov, A.V., Dunlop, L.C., Zhang, J. and Rittenhouse, S.E. 1992, Activation dependent changes in human platelet PECAM-1: Phosphorylation, cytoskeleton association and surface membrane redistribution, J. Cell Biol. 119:239.PubMedCrossRefGoogle Scholar
  19. Ohmori, T., Kikuchi, A., Yamamoto, K., Kawata, M., Kondo, J. and Takai, Y. 1988, Identification of a platelet Mr 22,000 GTP-binding proteins as the novel smg p21 gene product having the same effect domain as the ras gene product, Biochem. Biophys. Res. Comm. 157:670.PubMedCrossRefGoogle Scholar
  20. Phillips, D.R., Jennings, L.K. and Edwards, H.H. 1980, Identification of membrane proteins mediating the interaction of human platelets, J. Biol. Chem. 86:77.Google Scholar
  21. Polakis, P.G., Snyderman, R. and Evans, T. 1989, Characterization of G25K, a GTP-binding protein containing a novel putative nucleotide binding domain, Biochem. Biophys. Res. Comm. 160:25.PubMedCrossRefGoogle Scholar
  22. Polakis, P.G., Weber, R.F., Nevins, B., Didsbury, J.R., Evans, T. and Snyderman, R. 1989, Identification of the ral and rac 1 gene products, low molecular mass GTP-binding proteins from human platelets, J. Biol. Chem. 264:16383.PubMedGoogle Scholar
  23. Pronk, G.J., Medema, R.H., Burgering, B.M.Th., Clark, R., McCorn ick, F. and Bos, J.L. 1992, Interaction between the p2lras GTPase activating protein and the insulin receptor, J. Biol. Chem. 267:24058.PubMedGoogle Scholar
  24. Siess, W., Winegar, D. and Lapetina, E.G. 1990, Raplb is phosphorylated by protein kinase A in intact human platelets, Biochem. Biophys. Res. Comm. 170:944.PubMedCrossRefGoogle Scholar
  25. Torti, M. and Lapetina, E.G. 1992, Role of raplb and p2lras GTPase-activating protein in the regulation of phospholipase C-γ1 in human platelets, Proc. Natl. Acad. Sci. 89:7796.PubMedCrossRefGoogle Scholar
  26. Torti, M., Sinigaglia, F., Ramaschi G. and Balduini, C. 1991, Platelet glycoprotein IIb-IIIa is associated with 21-kDa GTP-binding protein, Biochem. Biophys. Acta 1070:20.PubMedCrossRefGoogle Scholar
  27. Zhang, J., Fry, M.J., Waterfield, M.D., Jaken, S., Liao, L., Fox, J.E.B. and Rittenhouse, S.E. 1992, Activation phosphoinositide 3-kinase associates with the membrane skeleton in thrombin-exposed platelets, J. Biol. Chem. 267:4686.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Gilbert C. WhiteII
    • 1
  • Neville Crawford
    • 2
  • Thomas H. Fischer
    • 1
  1. 1.Center for Thrombosis and HemostasisUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Biochemistry and Cell BiologyRoyal College of Surgeons of EnglandLondonUK

Personalised recommendations