Skip to main content

The Platelet as a Cа2+-Driven Cell: Mechanisms Which May Modulate Cа2+-Driven Responses

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 344))

Abstract

Platelets play a central role in the haemostatic response (Gordon and Milner, 1976). They also contribute significantly to the initiation of responses by other cells which occur concomitantly with, or as a necessary sequel to, the initial events that prevent loss of blood (Larsen et al, 1989). Some of the excitatory agonists involved in initiating these responses, and the nature of the responses which can occur, are shown in Fig. 1. The response pattern is characteristic of the agonist used (Crawford and Scrutton, 1987), and in Fig. 1 the excitatory agonists are grouped according to the type of response pattern which they induce. These response patterns can be summarised as follows:

  1. 1

    “Direct”. In this pattern which for human platelets is induced by thrombin and PAF, and possibly in some instances by vasopressin, all responses can result directly from the initial agonist-receptor interaction. The responses induced are aggregation, thromboxane A2 synthesis and secretion from all three storage granules (amine storage, protein storage and lysosomes) present in the platelet (Crawford and Scrutton, 1987). Interplay between the effect of the released products, particularly ADP and thromboxane A2, leads to enhanced aggregation especially when a low concentration of the initial agonist is used (Packham and Mustard, 1986).

  2. 2

    “Adhesion-dependent”. This pattern is characteristic of collagen. It is initiated by interaction of platelets with, and their spreading on, collagen fibrils which causes thromboxane A2 synthesis, secretion from all three storage granules and uniquely an increase in the phosphatidylserine content of the outer leaflet of the plasma membrane. The enhanced extracellular exposure of phosphatidylserine provides the trigger for the assembly of the factor X and prothrombin activation complexes on the activated platelets and so localises thrombin formation to the vicinity of the site of collagen exposure (Revers et al, permeabilised preparations occur at high concentrations of this cyclic nucleotide (Haslam et al 1985) and appear unlikely to be of physiological significance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adunayah, S.E., and Dean, W.L., 1987, Regulation of human platelet membrane Са2+ transport by cAMP and calmodulin-dependent phosphorylation, Biochim. Biophys. Acta. 930:401.

    Article  Google Scholar 

  • Athayde, C.M., and Scrutton, M.C., 1990, Guanine nucleotides and Ca2+-dependent lysosomal secretion. Europ. J. Biochem. 189:647.

    Article  PubMed  CAS  Google Scholar 

  • Aktories, K., and Jakobs, K.H., 1985, Regulation of platelet cyclic AMP formation, in: “The platelets: physiology and pharmacology”, G.L. Longenecker, ed., Academic, New York, р.243.

    Google Scholar 

  • Banno, Y., Suzuki, T., and Nozawa, Y., 1992, Isolation of a polyphosphoinositide phospholipase C (type β) from cytosolic and membrane fractions of human platelets, Platelets, 3:69.

    Article  PubMed  CAS  Google Scholar 

  • Bertolino, G., and Balduini, C.L., 1992, Aggregation of human platelets stimulates calcium ion movement and release reaction, Platelets 3:79.

    Article  PubMed  CAS  Google Scholar 

  • Bevers, E.M., Comfurius, P., and Zwaal, R.F.A., 1991, Platelet procoagulant activity: physiological significance and mechanisms of exposure, Blood Revs. 5:146.

    Article  CAS  Google Scholar 

  • Carlson, K.E., Brass, L.F., and Manning, D.R., 1991, Thrombin and phorbol esters cause the selective phosphorylation of a G-protein other than Gi in human platelets, J. Biol. Chem. 264:13298.

    Google Scholar 

  • Charo, I.F., Feinman, R.D., and Detwiler, T.C., 1977, Interrelations of platelet aggregation and secretion, J. Clin. Invest. 60:866.

    Article  PubMed  CAS  Google Scholar 

  • Cook, S.J., and Wakelam, M.J.O., 1989, Analysis of the water-soluble products of phosphatidylcholine breakdown by ion exchange chromatography, Biochem. J. 263:581.

    PubMed  CAS  Google Scholar 

  • Crawford, N., and Scrutton, M.C., 1987, Biochemistry of the blood platelet, in: “Haemostasis and Thrombosis”, A.L. Bloom and D.P. Thomas, eds., 2nd edition, Churchill Livingstone, Edinburgh, p.47.

    Google Scholar 

  • Culty, M., Davidson, M.M.L., and Haslam, R.J., 1988, Guanosine-5’-[τ-thiol]-triphosphateand thrombin stimulate the hydrolysis of polyphosphoinositides by phospholipase C in electropermeabilised platelets, Europ. J. Biochem. 171:523.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, R.M.C., 1967, The formation of phosphatidylglycerol and other phospholipids by the transferase activity of phospholipase D, Biochem. J. 102:205.

    PubMed  CAS  Google Scholar 

  • Doni, M.G., Deana, R., Padoin, E., Ruzzene, M., and Alexandre, A., 1991, Platelet activation by diacylglycerol is inhibited by nitroprusside, Biochim. Biophys. Acta 1094:323.

    Article  PubMed  CAS  Google Scholar 

  • Edgecombe, M., Scrutton, M.C., and Kerry, R., 1993, Platelet-platelet contact is required to observed guanylate cyclase activation in stimulated platelets, Platelets. In press.

    Google Scholar 

  • Exton, J. H., 1990. Signalling through phosphatidylcholine. J. Biol. Chem. 265, 1.

    PubMed  CAS  Google Scholar 

  • Fujimoto, T., Fujimura, K., and Kuramoto, K., 1991, Electrophysiological evidence that glycoprotein IIb-IIIa complex is involved in calcium channel activation in human platelet plasma membrane, J. Biol. Chem. 266:16370.

    PubMed  CAS  Google Scholar 

  • Gomperts, B.D., Churcher, Y., Koffer, A., Kramer, I.M., Lillie, T., and Tatham, P.E., 1990, The role and mechanism of the GTP-binding protein GE in the control of regulated exocytosis, Biochem. Soc. Symp. 56:85.

    PubMed  CAS  Google Scholar 

  • Gordon, J.L., and Milner, A.J., 1976, Blood platelets as multifunctional cells, in “Platelets in Biology and Pathology”, J.L. Gordon, ed. Elsevier/North Holland, Amsterdam, p.3.

    Google Scholar 

  • Halenda, S., and Rehm, A.G., 1987, Thrombin and C-kinase activators potentiate calcium-stimulated arachidonic acid release in human platelets, Biochem. J. 248:471.

    PubMed  CAS  Google Scholar 

  • Hallam, T.J., Daniel, J.L., Kendrick-Jones, J., and Rink, T.J., 1985, Relationship between cytoplasmic free calcium and myosin light chain phosphorylation in intact platelets, Biochem. J. 232:373.

    PubMed  CAS  Google Scholar 

  • Haslam, R.J., and Davidson, M.M.L., 1984, Potentiation by thrombin of secretion from permeabilised platelets equilibrated with Ca2+ buffers: relationship to protein phosphorylation and diacylglycerol formation, Biochem. J. 222:351.

    PubMed  CAS  Google Scholar 

  • Haslam, R.J., Davidson, M.M.L., and Desjardins, J.V., 1978, Inhibition of adenylate cyclase by adenosine analogues in broken and intact human platelets: evidence for unidirectional control of platelet function by cyclic-3’,5’-adenosine monophosphate, Biochem. J. 176:83.

    PubMed  CAS  Google Scholar 

  • Haslam, R.J., Davidson, M.M.L., Knight, D.E., and Scrutton, M.C., 1985, GTP not cyclic GMP enhances secretion from permeabilised platelets, Nature (Lond). 313:821.

    Article  CAS  Google Scholar 

  • Hazen, S.L., and Gross, R.W., 1991, Human myocardial Сa2+-independent phospholipase A2 is modulated by ATP: concordant ATP-induced alterations in enzyme kinetics and mechanism-based inhibition, Biochem. J. 280:581.

    PubMed  CAS  Google Scholar 

  • Heinrich, D., Scharf, T., Santoro, S., Clementson, K.J., and Mueller-Eckhardt, C., 1985, Monoclonal antibodies against human glycoproteins IIb-IIIa. II. Different effects on platelet function, Thromb. Res. 38:547.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, J.S., and Haynes, D.H., 1992, Cyclic GMP increases the rate of the calcium extrusion pump in intact human platelets but has no direct effect on the dense tubular calcium accumulation system, Biochem. Biophy. Acta. 1105:40.

    Article  CAS  Google Scholar 

  • Kinlough-Rathbone, R.L., and Mustard, J.F., 1986, Synergism of agonists, in: “Platelet responses and metabolism”, H. Holmsen, ed., CRC Press Inc., Boca Raton, Vol.1, p.193.

    Google Scholar 

  • Knight, D.E., and Scrutton, M.C., 1984, Cyclic nucleotides modulate a system which controls the Ca2+ sensitivity in human platelets, Nature (Lond). 309:66.

    Article  CAS  Google Scholar 

  • Knight, D.E., and Scrutton, M.C., 1987, Secretion of 5-hydroxytryptamine from electropermeabilised human platelets: effects of GTP and cyclic-3’,5’-AMP. FEES Letts 233:47.

    Article  Google Scholar 

  • Knight, D.E., Niggli, V., and Scrutton, M.C., 1984, Thrombin and activators of protein kinase C modulate secretory responses of permeabilised human platelets induced by Ca2+, Europ. J. Biochem. 143:437.

    Article  PubMed  CAS  Google Scholar 

  • Lanza, F., Beretz, A., Kubina, M., and Cazenave, J.P., 1987, Increased aggregation and secretion responses of human platelets when loaded with the calcium fluorescent probes, quin2 and Fura2, Thromb. Haemostas. 58:737.

    CAS  Google Scholar 

  • Larsen, E., Celi, A., Gilbert, G.E., Furie, B.C., Erban, J.K., Bonfanti, R., Wagner, D.D., and Furie, B., 1989, PADGEM protein: a receptor which mediates the interaction of activated platelets with neutrophils and monocytes, Cell 59:305.

    Article  PubMed  CAS  Google Scholar 

  • Lecompte, T., Potevin, F., Champeix, P., Morel, M.C.X., Favier, R., Hurtaud, M.F., Schiegel, N., Samama, M., and Kaplan, C., 1990, Aequorin-detected calcium changes in stimulated thrombasthenic platelets: aggregation-dependent calcium movement in response to ADP, Thromb. Res. 58:561.

    Article  PubMed  CAS  Google Scholar 

  • Lees, A.D., Wilson, J., Orchard, C.H., and Orchard, M.A., 1989, Ouabain enhances basal and stimulusinduced cytoplasmic calcium concentrations in platelets, Thromb. Haemostas. 62:1000.

    CAS  Google Scholar 

  • Loeb, L.A., and Gross, R.W., 1986, Identification and purification of sheep platelet phospholipase A2: activation by physiological concentrations of calcium ion., J. Biol. Chem. 261:10467.

    PubMed  CAS  Google Scholar 

  • Lounsbury, K.M., Casey, P.J., Brass, L.F., and Manning, D.R., 1991, Phosphorylation of Gz in human

    Google Scholar 

  • MacIntyre, D.E., Pollock, W.K., Shaw, A.M., Bushfield, M., MacMillan, L.J., and McNicol, A., 1985, Agonist-induced inositol phospholipid metabolism and Ca2+ flux in human platelet activation, Adv. Exp. Med. Biol. 192:127.

    Article  PubMed  CAS  Google Scholar 

  • Manning, D.R., and Brass, L.F., 1991, The role of GTP-binding proteins in platelet activation, Thromb. Haemostas. 66:393.

    CAS  Google Scholar 

  • Mauro, G., Dangelmaier, C.A., and Smith, J.B., 1984, Inositol lipids, phosphatidate and diacylglycerol share stearoylarachidonylglycerol as a common backbone in thrombin-stimulated platelets, Biochem. J. 224:933.

    Google Scholar 

  • Maurice, D.H., and Haslam, R.J., 1991, Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP, Mol. Pharmacol. 37:671.

    Google Scholar 

  • Moncada, S., Palmer, R.M.J. and Higgs, E.A., 1987, Prostacyclin and endothelium-derived relaxing factor: biological interactions and significance, in: “Haemostasis and Thrombosis 1987”,M. Verstraete, J. Vermylen, R. Lijnen, J. Arnout, eds., Leuven University Press, Leuven, p.597.

    Google Scholar 

  • Morgan, R.O., and Newby, A.C., 1989, Nitroprusside differentially inhibits ADP-stimulated calcium influx and mobilisation in human platelets, Biochem. J. 258:447.

    PubMed  CAS  Google Scholar 

  • Naka, S., Tohmatsu, T., Hattori, H., Okano, Y., and Nozawa, Y., 1986, Inhibitory action of cyclic GMP on secretion, polyphosphoinositide hydrolysis and Ca2+ mobilisation in thrombin-stimulated human platelets, Biochem. Biophys. Res. Comm. 135:1099.

    Article  Google Scholar 

  • Nakashima, S., Hattori, H., Shirato, L., Takenaka, A., and Nozawa, Y., 1987, Differential sensitivity of arachidonic acid releease and 1,2-diacylglycerol formation to pertussis toxin, GDРВS and NaF in saponin-perneabilised platelets: possible evidence for distinct GTP-binding proteins involving phospholipase C and A2 activation, Biochem. Biophys. Res. Comm. 148:971.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, S., Suganuma, A., Matsui, A., Hattori, H., Sato, M., Takenaka, A., and Nozawa, Y., 1989, Primary role of calcium ions in arachidonic acid release from rat platelet membranes: comparison with human platelet membranes, Biochem. J. 259:139.

    PubMed  CAS  Google Scholar 

  • Nakashima, S., Suganuma, A., Matsui, A., and Nozawa, Y., 1991, Thrombin induces a biphasic 1,2diacylglycerol production in human platelets, Biochem. J. 275:355.

    PubMed  CAS  Google Scholar 

  • Niewiarowski, S., Budzynski, A., Morinelli, T.A., Brudzynski, T.M.M., and Stewart, G.J., 1981, Exposure of fibrinogen receptors on human platelets by proteolytic enzymes, J. Biol. Chem. 256:917.

    PubMed  CAS  Google Scholar 

  • Nozawa, Y., Shigeru, S., and Nagata, K., 1991, Phospholipid-mediated signalling in receptor activation of human platelets, Biochem. Biophys. Acta. 1082:219.

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke, F., Zavoico, G.B.,and Feinstein, M.B., 1989,Release of Ca2+ by inositol-1,4,5-trisphosphate in platelet membrane vesicles is not dependent on cyclic AMP-dependent protein kinase, Biochem. J. 257:715.

    PubMed  Google Scholar 

  • Orchard, M.A., and Scrutton, M.C., 1993, Aggregation fails to increase cytosolic [Ca2+] in aequorin-loaded human platelets. Platelets. In press.

    Google Scholar 

  • Packham, M.A., and Mustard, J.F., 1986, Interactions of platelet activating pathways: studies with inhibitors specific for individual pathways, in: “Platelet responses and metabolism”, H. Holmsen, ed., CRC Press Inc., Boca Raton, p.268.

    Google Scholar 

  • Patel, S., and Scrutton, M.C., 1991, Ca2+-driven [3H]arachidonate release in electropermeabilised human platelets shows an absolute requirement for MgATP2-, Biochem. J. 273:561.

    PubMed  CAS  Google Scholar 

  • Peltola, K., and Scrutton, M.C., 1990, Guanine nucleotides enhance calcium-driven protein storage granule secretion from electropermeabilised human platelets, Biochem. Soc. Trans. 18:466.

    PubMed  CAS  Google Scholar 

  • Petty, A., and Scrutton, M.C., 1989, Platelet aggregation in whole blood: is the response to adrenaline, 5-hydroxytryptamine and PAF a direct consequence of stimulation by these agonists? Thromb. Res. 54:151.

    Article  PubMed  CAS  Google Scholar 

  • Petty, A., and Scrutton, M.C., 1992, Release of choline metabolites from human platelets: evidence for activation of phospholipase D and of phosphatidylcholine-specific phospholipase C, Platelets. 4, 23.

    Article  Google Scholar 

  • Pollock, W.K., and Rink, T.J., 1986, Thrombin and ionomycin can raise platelet cytosolic Ca2+ to micromolar levels by discharge of internal Ca2+ stores: studies using Fura2, Biochem. Biophys. Res. Comm. 139:308.

    Article  PubMed  CAS  Google Scholar 

  • Pollock, W.K., Rink, T.J., and Irvine, R.F., 1986, Liberation of [3H]arachidonate and changes in cytosolic free calcium in Fura2-lоaded human platelets stimulated by ionomycin and collagen, Biochem. J. 235:869.

    PubMed  CAS  Google Scholar 

  • Potevin, F., Lecompte, T., Favier, R., and Samama, M., 1991, Rapid aequorin loading into platelets in the presence of DMSO - characterisation of the responses (changes in light transmission and in calcium) to various agonists, Thromb. Haemostas. 66:334.

    CAS  Google Scholar 

  • Powling, M.J., and Hardisty, R.M., 1985, Glycoprotein IIb-IIIa complex and Ca2+ influx into stimulated platelets, Blood 66:731.

    PubMed  CAS  Google Scholar 

  • Radomski, M.W., Palmer, R.M.J., and Moncada, S., 1987a, The anti-aggregating proeprties of vascular endothelium: interactions between prostacyclin and nitric oxide, Brit. J. Pharmacol. 92:639.

    Article  CAS  Google Scholar 

  • Radomski, M.W., Palmer, R.M.J. and Moncada, S., 1987b, The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium, Biochem. Biophys. Res. Comm. 148:1482.

    Article  CAS  Google Scholar 

  • Radomski, M.W., Palmer, R.M.J., and Moncada, S., 1990, An L-arginine/nitric oxide pathway present in human platelets regulates aggregation, Proc. Natl. Acad. Sci. USA 87:5193.

    Article  PubMed  CAS  Google Scholar 

  • Randall, R.W., Bonser, R.W., Thompson, N.T., and Garland, L.G., 1990, A novel and sensitive assay for phospholipase D in intact cells, FEES Letts. 264:87.

    Article  CAS  Google Scholar 

  • Rink, T.J., and Sanchez, A., 1984, Effects of prostaglandin I2 and forskolin on secretion from platelets evoked at basal concentrations of cytoplasmic free calcium by thrombin, collagen, phorbol ester and exogenous diacylglycerol, Biochem. J. 222:833.

    PubMed  CAS  Google Scholar 

  • Rink, T.J., and Sage, S.O., 1990, Calcium signalling in human platelets, Ann. Rev. Physiol. 52:431.

    Article  CAS  Google Scholar 

  • Rittenhouse, S.E., 1979, Production of diglyceride in activated platelets, J. Clin. Invest. 63:580.

    Article  Google Scholar 

  • Rubin, R., 1988. Phosphatidylethanol formation in human platelets: Evidence for thrombin induced activation of phospholipase D. Biochem. Biophys. Res. Commun. 156, 1090.

    Article  PubMed  CAS  Google Scholar 

  • Rybak, M.E., Renzulli, L.A., Bruns, M., and Cahaly, D.P., 1988, Platelet glycoprotein IIb and IIIa as a calcium channel in liposomes, Blood 72:714.

    PubMed  CAS  Google Scholar 

  • Scrutton, M.C., and Athayde, C.M., 1991, The biochemical basis for the regulation of platelet responsiveness, in: “The Platelet in Health and Disease”, C.P. Page, ed., Blackwell, Oxford,p. 6199.

    Google Scholar 

  • Shattil, S.J., and Brass, L.F., 1987, Induction of the fibrinogen receptor on human platelets by intracellular mediators, J. Biol. Chem. 262:992.

    PubMed  CAS  Google Scholar 

  • Shattil, S.J., Budzynski, A., and Scrutton, M.C., 1989, Epinephrine induces platelet fibrinogen receptor expression, fibrinogen binding and aggregation in whole blood in the absence of other excitatory agonists, Blood 73:150.

    PubMed  CAS  Google Scholar 

  • Siess, W., 1989, Molecular mechanisms of platelet activation, Physiol. Rev. 69:58.

    PubMed  CAS  Google Scholar 

  • Siess, W., and Lapetina, E.G., 1989, Prostacyclin inhibits platelet aggregation by phorbol ester or Ca2+ ionophore at steps distal to activation of protein kinase C and Ca2+-dependent protein kinases, Biochem. J. 258:57.

    PubMed  CAS  Google Scholar 

  • Siess, W., and Lapetina, E.G., 1990, Functional relationship between cyclic AMP-dependent protein phosphorylation and platelet inhibition, Biochem. J. 271:815.

    PubMed  CAS  Google Scholar 

  • Smith, J.B., 1992, Personal communication.

    Google Scholar 

  • Smith, J.B., Ingerman, C., Kocsis, J.J., Silver, M.J., 1973, Formation of prostaglandins during the aggregation of human platelets, J. Clin. Invest. 52:965.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.B., Dangelmaier, C.A., Selak, M.A., and Daniel, J.L., 1991, Facile platelet adhesion to collagen requires metabolic energy and actin polymerisation, and evokes intracellular free calcium mobilisation, J. Cell. Biochem. 47:54.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.B., Dangelmaier, C.A., Selak, M.A., Ashby, B., and Daniel, J.L., 1992, Cyclic AMP does not inhibit collagen-induced platelet signal transduction, Biochem. J. 283:889.

    PubMed  CAS  Google Scholar 

  • Thompson, N.T., Scrutton, M.C., and Wallis, R.B., 1986, Particle volume changes associated with light transmittance changes in the platelet aggregometer: dependence upon aggregating agent and effectiveness of stimulus, Thromb. Res. 41:615.

    Article  PubMed  CAS  Google Scholar 

  • Tyers, M., Rachubinski, R A, Stewart, M.I., Varrichio, A.M., Shorr, R.G.I., Haslam, R.J., and Harley, C.B., 1988, Molecular cloning and expression of the major protein kinase C substrate of platelets, Nature (Lond.), 333:470.

    Article  CAS  Google Scholar 

  • Verhallen, P.J.F., Revers, E.M., Comfurius, P., and Zwaal, R.F.A., 1987, Correlation between calpainmediated cytoskeletal degradation and platelet procoagulant activity, Biochim. Biophys. Ada. 903:206.

    Article  CAS  Google Scholar 

  • Ware, J.A., Johnson, P.C., Smith, M., and Salzman, E.W., 1986, Effect of common agonists on cytoplasmic ionised calcium concentrations in platelets, J. Clin. Invest. 77:878.

    Article  PubMed  CAS  Google Scholar 

  • Ware, J.A., Smith, M., Fossel, E.T., and Salzman, E.W., 1988, Cytoplasmic Mg2+ concentration in platelets: implications for determination of Ca2+ with aequorin, Am. J. Physiol. 255:Н855.

    Google Scholar 

  • Watson, S.P., and Lapetina, E.G., 1985, 1,2-Daacylglycerol and phorbol ester inhibit agonist-induced formation of inositol phosphates in human platelets: possible implications for negative feedback regulation of inositol phospholipid hydrolysis, Proc. Natl. Acad. Sci. USA 82:2623.

    Article  PubMed  CAS  Google Scholar 

  • Watson, S.J., McNally, J., Shipman, L.J., and Godfrey, P.P., 1988, The action of the protein kinase C inhibitor, staurosporine, on human platelets: evidence against a regulatory role for protein kinase C in the formation of inositol trisphosphate by thrombin, Biochem. J. 249:345.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, A., Yamamoto, N., Kitigawa, H., Tanaue, B., and Yamazaki, H., 1987, Ca2+ influx mediated through the GP IIb/IIIa complex during platelet activation, FEBS Lett. 225:228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scrutton, M.C. (1993). The Platelet as a Cа2+-Driven Cell: Mechanisms Which May Modulate Cа2+-Driven Responses. In: Authi, K.S., Watson, S.P., Kakkar, V.V. (eds) Mechanisms of Platelet Activation and Control. Advances in Experimental Medicine and Biology, vol 344. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2994-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2994-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6304-0

  • Online ISBN: 978-1-4615-2994-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics